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Interacting Learning Processes
As Baum argues, reinforcement learning is essential to
intelligence (Baum 2004). It enabled humans who evolved
in the tropics to satisfy their needs for food and warmth in
the arctic. Well known reinforcement learning algorithms
have been identified in the neural behaviors of mammal
brains (Brown, Bullock and Grossberg 1999; Seymour et
al. 2004). A brain senses and acts in the world, and learns
behaviors reinforced by values for distinguishing good and
bad outcomes. The brain learns a simulation model for
tracing cause and effect relations between behaviors and
outcomes – that is, for solving the credit assignment
problem (Sutton and Barto 1998). Reason and high level
representations of sense information are part of this
simulation model, and language is a representation of the
model for exchange with other brains (language may also
serve internally to increase the efficiency of the brain's
simulation model). Thus the simulation model and its role
in reinforcement learning provide a context for integrating
different AI subfields.

Brains can learn simulation models as internal behaviors
that predict sense information, reinforced by predictive
accuracy. For example, learning to predict short-term
changes to visual information based on body motion may
be the basis for learning 3-D allocentric representations of
vision. Learning to predict longer-term changes to visual
information, sometimes in response to the brain's motor
behaviors, may be the basis for learning to partition the
visual field into objects, learning to classify those objects,
and learning to model behaviors of object classes.

Thus processes reinforced by predictive accuracy may
learn a simulation model, useful to other processes that
learn to satisfy basic physical needs. This suggests a brain
design partitioned into interacting learning processes, each
defined by a set of inputs (some sensory, some from other
brain processes), an internal representation, a set of outputs
(some motor, some to other brain processes), and a
reinforcement value. This is similar to Minsky’s notion of
a brain comprising a society of agents, each implementing
a different way to think (Minsky, Singh and Sloman 2004).
Brain processes may interact in a variety of ways.
Processes reinforced by short-term predictive accuracy
may produce useful input to processes making longer-term
predictions. Predictive processes may help trace cause and

effect relations between behaviors and rewards in other
processes. Representations learned by one process may
play a role in the reinforcement values of other processes.

As Baum observes, the immense evolutionary
computation that learned the design for human brains
provided those brains with prior biases (i.e., Bayesian prior
distributions) about the nature of the world that increase
the efficiency of their own learning (Baum 2004). In an
artificial brain design, such prior biases on the designs of
brain processes would come from the knowledge and
techniques of different AI subfields. For example, one
process may take raw vision and body motor controls as
inputs, produce a 3-D allocentric representation as output,
and reinforce based on the accuracy of predicting raw
visual input using the 3-D allocentric representation and
body motion. Vision research can bias or constrain the
mapping from raw vision to 3-D allocentric representation
in order to increase learning efficiency, and probably also
dictate the need for inputs from other vision processes
(neuroscience suggests complex connections among vision
processes). Similarly, processes that learn language may be
biased or constrained by a prior universal grammar,
hypothesized by some linguists as necessary for children to
learn language as quickly as they do (Jackendoff 2002).

Integrating language research will be difficult because
language represents most of the brain’s simulation model,
so language processes must connect to details in most other
brain processes. This complexity has been previously
expressed by those arguing for the need to solve the
symbol grounding problem in order to create intelligent
language behavior. One particularly difficult aspect of
language is its role as a shortcut for brains to learn parts of
their simulation models from other brains. As with other
social processes, most reinforcement for learning language
behavior must come from these other “teacher” brains.
Note the general prejudice that knowledge and skills are
not learned as well via language, sometimes called “book
learning”, as they are via trial and error.

The brain’s simulation model is used for planning, and
planning can help solve the credit assignment problem
(Sutton and Barto 1998). At a high cognitive level,
consider how chess players and mathematicians learn from
the successes and failures of their plans. Their plans
include an account of causality that they use to assign



credit for the success or failure of those plans. Successful
consciously planned behaviors are learned as fast,
unconscious responses, available as behavior elements in
future plans. A brain design needs processes that
implement such high-level planning and learning.

Consciousness
Consciousness is the most remarkable feature of human
brains, and it is natural to ask whether it plays an essential
role in intelligence. Crick and Koch believe that the
purpose of consciousness is to provide a summary of the
state of the world to the brain’s planning functions (Koch
2004). This is similar to my own view that consciousness
evolved as the ability of brains to process experiences that
are not currently occurring (i.e., to simulate experiences) in
order to solve the credit assignment problem for
reinforcement learning (Hibbard 2002). Simulated
experiences may be remembered, imagined, or a
combination.

Jackendoff observes that the contents of consciousness
are purely sensory, and at a low level of processing such as
the 2.5-dimensional sketch for vision and phonemes for
spoken language (Jackendoff forthcoming). He
hypothesizes that the contents of consciousness are at the
level where pure bottom up processing of sense
information ends and feedback from higher levels becomes
necessary to resolve ambiguity, and asks why this should
be. If consciousness is the brain’s primary simulator, then
it should be purely in terms of sense information, and
placing it at a low level would provide maximum
flexibility in simulations. Furthermore, resolving
ambiguity via feedback from higher levels of processing
will often require iterating the low-level sense information,
and the second and later iterations must necessarily use a
simulation (i.e., a memory) of that low-level information.

Jackendoff also observes that our actual thoughts are
unconscious and occur at a level above consciousness. For
example, correctly formed sentences generally come into
our minds and out of our mouths with our consciousness as
mere observer rather than creator. Consciousness does not
make decisions or solve puzzles, but merely observes.
There are even experiments in which humans are mistaken
about whether they or others made decisions (Koch 2004).
Unconscious brain processes learn by reinforcement to
produce and understand language, to interpret sense
information, to make analogies, to propose and test
solutions to puzzles, to solve the frame problem, and so on.
This is not to suggest that any of these skills is simple: they
may be learned as large numbers of cases, guided by
complex prior biases. Learning in these high-level thought
processes is analogous to reinforcement learning of fine
and coordinated control of the many muscles in the hands.

Brain processes above and below the conscious level
learn by reinforcement, but at the conscious level a
different kind of learning occurs: memorization via the fast

creation of resonate attractors in patterns of neural firing
(Carpenter and Grossberg 2003; Sandberg 2003). This fast
learning mechanism also serves to remember sequences of
sense information and unconscious, internal
representations. So, in addition to reinforcement learning, a
brain design should include processes that remember low
level sense information and internal representations.

Experiments with reinforcement learning by machines
have achieved results competitive with humans in narrow
problem areas, but fall far short of humans in general
problem areas. It may be that the key to success in general
problem areas is in the right configuration of interacting
reinforcement learning processes and remembering
processes. Baum suggests that another key is in the prior
biases of learning processes (Baum 2004).

Human Safety
Brains are the ultimate source of power in the world, so
artificial brains with much greater intelligence than
humans potentially pose a threat to humans. My own view
is that the best way to address this threat is through the
values that reinforce learning of machine external
behaviors in the world (Hibbard 2002). Specifically,
behaviors that cause happiness in humans should be
positively reinforced and behaviors that cause unhappiness
in humans should be negatively reinforced. Furthermore,
these values should include the happiness of all humans,
and should be the only values reinforcing external
behaviors. It is plausible that such a restriction is consistent
with intelligence, since a value for the happiness of human
teachers should suffice to reinforce learning of social skills
like language, and values for accuracy of prediction apply
to learning internal simulation behaviors.

Reinforcement learning algorithms include parameters
that determine the relative weighting of short term and
long term achievement of values. It is important that
powerful artificial brains heavily weight long term human
happiness, in order to avoid degenerate behaviors for
immediate human pleasure at the cost of long term
unhappiness. Such heavy long term weighting will cause
artificial brains to use their simulation models to analyze
the conditions that cause long term human happiness. The
reinforcement values should probably also weight
unhappiness much more heavily than happiness, so that
machine brains focus their efforts on helping unhappy
people rather than those who are already happy. This is
similar to a mother who focuses her efforts on the children
who need it most. In order to avoid positively reinforcing
behaviors that cause the deaths of unhappy people, the
reinforcement values may continue to include humans after
their deaths, at the maximal unhappy value.

Of course, the details of reinforcement values for
powerful machine brains are really political issues, to be
settled by a political process with a hopefully educated and
involved public. A political process will be necessary in



any case in order to avoid powerful machine brains whose
values are simply the values of the organizations that
create them: profits for corporations and political and
military power for governments.

Valuing human happiness requires abilities to recognize
humans and to recognize their happiness and unhappiness.
Static versions of these abilities could be created by
supervised learning. But given the changing nature of our
world, especially under the influence of machine
intelligence, it would be safer to make these abilities
dynamic. This suggests a design of interacting learning
processes. One set of processes would learn to recognize
humans and their happiness, reinforced by agreement from
the currently recognized set of humans. Another set of
processes would learn external behaviors, reinforced by
human happiness according to the recognition criteria
learned by the first set of processes. This is analogous to
humans, whose reinforcement values depend on
expressions of other humans, where the recognition of
those humans and their expressions is continuously learned
and updated.
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