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Abstract 
This paper shows that a constraint on universal Turing 
machines is necessary for Legg's and Hutter's formal 
measure of intelligence to be unbiased. Their measure, 
defined in terms of Turing machines, is adapted to finite 
state machines. A No Free Lunch result is proved for the 
finite version of the measure, and this motivates a less 
abstract measure. 

Introduction 
Goertzel's keynote at AGI-08 described theory as one 
useful direction for artificial intelligence research 
(Goertzel 2008). Schmidhuber, Hutter and Legg have 
produced a number of recent results to formally define 
intelligence and idealized intelligent agents. In particular, 
Legg and Hutter have developed a formal mathematical 
model for defining and measuring the intelligence of 
agents interacting with environments (Legg and Hutter 
2006). Their model includes weighting distributions over 
time and environments. The point of this paper is to 
argue that a constraint on the weighting over 
environments is required for the utility of the intelligence 
measure. 

The first section of this paper describes Legg's and 
Hutter's measure and demonstrates the importance of the 
weighting over environments. Their measure is defined 
in terms of Turing machines and the second section 
investigates how the measure can be adapted to a finite 
model of computing. The third section proves an analog 
of the No Free Lunch Theorem for this finite model. The 
final section uses these results to argue for a less abstract 
model for weighting over environments. 

A Formal Measure of Intelligence 
Legg and Hutter used reinforcement learning as a 
framework for defining and measuring intelligence 
(Legg and Hutter 2006). In their framework an agent 
interacts with its environment at a sequence of discrete 
times, sending action ai to the environment and receiving 
observation oi and reward ri from the environment at 
time i. These are members of finite sets A, O and R 
respectively, where R is a set of rational numbers 
between 0.0 and 1.0. The environment is defined by a 
probability measure: 
 

μ( okrk | o1r1a1 … ok-1r k-1a k-1 ) 
 
and the agent is defined by a probability measure: 
 

π(ak | o1r1a1 … ok-1r k-1a k-1 ). 

 
The value of agent π in environment μ is defined by 

the expected value of rewards: 
 
Vμ

π = E(∑i=1
∞ wiri) 

 
where the wi ≥ 0.0 are a sequence of weights for future 
rewards subject to ∑i=1

∞ wi = 1 (Legg and Hutter 
combined the wi into the ri). In reinforcement learning 
the wi are often taken to be (1-γ)γi-1 for some 0.0 < γ < 
1.0. Note 0.0 ≤ Vμ

π ≤ 1.0. 
The intelligence of agent π is defined by a weighted 

sum of its values over a set E of computable 
environments. Environments are computed by programs, 
finite binary strings, on some prefix universal Turing 
machine (PUTM) U. The weight for μ ∈ E is defined in 
terms of its Kolmogorov complexity: 

 
K(μ) = min { |p| : U(p) computes μ } 
 

where |p| denotes the length of program p. The 
intelligence of agent π is: 

 
Vπ = ∑μ∈E 2-K(μ) Vμ

π. 
 
The value of this expression for Vπ is between 0.0 

and 1.0 because of Kraft's Inequality for PUTMs (Li and 
Vitányi 1997): 

 
∑μ∈E 2-K(μ) ≤ 1.0. 
 
Legg and Hutter state that because K(μ) is 

independent of the choice of PUTM up to an additive 
constant that is independent of μ, we can simply pick a 
PUTM. They do caution that the choice of PUTM can 
affect the relative intelligence of agents and discuss the 
possibility of limiting PUTM complexity. But in fact a 
constraint on PUTMs is necessary to avoid intelligence 
measures biased toward specific environments: 

Proposition 1. Given μ ∈ E and ε > 0 there exists a 
PUTM  Uμ  such  that  for  all  agents  π: 

 
Vμ

π / 2 ≤ Vπ < Vμ
π / 2 + ε 

 
where Vπ is computed using Uμ. 

Proof. Fix a PUTM U0 that computes environments. 
Given μ ∈ E and ε > 0, fix an integer n such that 2-n < ε. 
Then construct a PUTM Uμ that computes μ given the 
program "1", fails to halt (alternatively, computes μ) 
given a program starting with between 1 and n 0's 
followed by a 1, and computes U0(p) given a program of 
n+1 0's followed by p. Now define K using Uμ. Clearly: 

 



2-K(μ) = 1/2 
 

And, applying Kraft's Inequality to U0: 
 

∑μ' ≠ μ 2-K(μ') ≤ 2-n < ε. 
 

So: 
 

Vπ = Vμ
π / 2 + X  

 
Where 
 

X = ∑μ' ≠ μ 2-K(μ') Vμ'
π and 0 ≤ X < ε.   

 
In addition to the issue of weighting over 

environments, there are other interesting issues for an 
intelligence measure: 

1. It is not clear what weighting of rewards over 
time is best. Vμ

π is defined using the reinforcement 
learning expression for the value of the state at the first 
time step. But an intelligent agent generally needs time 
to learn a novel environment, suggesting that Vμ

π should 
be defined by the value of the state at a later time step, or 
even its limit as time increases to infinity. On the other 
hand, speed of learning is part of intelligence and the 
expression for the value at the first time step rewards 
agents that learn quickly. 

2. The expression for Vπ combines weighting over 
both environments and time, which can lead to 
unintuitive results. Lucky choices of actions at early, 
heavily weighted, time steps in simple, heavily weighted, 
environments, may count more toward an agent's 
intelligence than good choices of actions in very 
difficult, but lightly weighted, environments. As 
environment complexity increases, agents will require 
longer times to learn good actions. Thus, given a 
distribution of time weights that is constant over all 
environments, even the best agents will be unable to get 
any value as environment complexity increases to 
infinity. It would make sense for different environments 
to have different time weight distributions. 

3. If PUTM programs were answers (as in 
Solomonoff Induction, where an agent seeks programs 
that match observed environment behavior) then 
weighting short programs more heavily would make 
sense, since shorter answers are better (according to 
Occam's razor). But here they are being used as 
questions and longer programs pose more difficult 
questions so arguably should be weighted more heavily. 
But if the total weight over environments is finite and the 
number of environments is infinite, then it is inevitable 
that environment weight must approach zero as 
environment complexity increases to infinity. On the 
other hand, shorter programs are more probable, 
determined for example by frequency of occurrence as 
substrings of sequences of random coin flips, and we 
may wish to weight environments by probability of 
occurrence. 

4. Whatever PUTM is used to compute 
environments, all but an arbitrarily small ε of an agent's 
intelligence is determined by its value in a finite number 
of environments. 

5. As Legg and Hutter state, AIXI (Hutter 2004) has 
maximal intelligence by their measure. However, given a 
positive integer n, there exist an environment μn, based 
on a finite table of AIXI's possible behaviors during the 
first n time steps, and an agent πn, such that μn gives 
AIXI reward 0 at each of those time steps and gives πn 
reward 1 at each of those time steps. If most time weight 
occurs during the first n time steps and we apply 
Proposition 1 to μn (clearly resulting in a different PUTM 
than used to define AIXI), then πn could have higher 
measured intelligence than AIXI (only possible because 
of the different PUTMs). 

A Finite Model 
Wang makes a convincing argument that finite and 
limited resources are an essential component of a 
definition of intelligence (Wang 1995). Lloyd estimates 
that the universe contains no more than 1090 bits of 
information and can have performed no more than 10120 
elementary operations during its history (Lloyd 2002), in 
which case our universe is a finite state machine (FSM) 
with no more than 2^(1090) states. Adapting Legg's and 
Hutter's intelligence measure to a finite computing model 
would be consistent with finite physics, and can also 
address several of the issues listed in the previous 
section. Let's reject the notion that finite implies trivial 
on the grounds that the finite universe is not trivial. 

As before, assume the sets A, O and R of actions, 
observations and rewards are finite and fixed. A FSM is 
defined by a mapping: 

 
f:S(n)×A→S(n)×O×R 
 

where S(n)={1,2,3,…,n} is a set of states and "1" is the 
start state (we assume deterministic FSMs so this 
mapping is single-valued). Letting si denote the state at 
time step i, the timing is such that f(si,ai) = (si+1,oi,ri). 
Because the agent π may be nondeterministic its value in 
this environment is defined by the expected value of 
rewards: 

 
Vf

π = E(∑i=1
M(n) wn,iri) 

 
where the wn,i ≥ 0.0 are a sequence  of  weights  for  
future  rewards  subject  to  ∑i=1

 M(n) wn,i = 1 and M(n) is a 
finite time limit depending on state set size. Note that 
different state set sizes have different time weights, 
possibly giving agents more time to learn more complex 
environments. 

Define F(n) as the set of all FSMs with the state set 
S(n). Define: 

 
F = Un=L

H F(n) 
 

as the set of all FSMs with state set size between L and 
H.  Define weights  Wn  such that  ∑ n=L

H Wn = 1,  and for 
f ∈ F(n) define W(f) = Wn / |F(n)|. Then ∑f∈F W(f) = 1 
and we define the intelligence of agent π as: 

 
 Vπ = ∑f∈F W(f) Vf

π. 
 



The lower limit L on state set size is intended to avoid 
domination of Vπ by the value of π in a small number of 
environments, as in Proposition 1. The upper limit H on 
state size means that intelligence is determined by an 
agent's value in a finite number of environments. This 
avoids the necessity for weights to tend toward zero as 
environment complexity increases. In fact, the weights 
Wn may be chosen so that more complex environments 
actually have greater weight than simpler environments. 

State is not directly observable so this model counts 
multiple FSMs with identical behavior. This can be 
regarded as implicitly weighting behaviors by counting 
numbers of representations. 

No Free Lunch 
The No-Free-Lunch Theorem (NFLT) tells us that all 
optimization algorithms have equal performance when 
averaged over all finite environments (Wolpert and 
Macready 1997). It is interesting to investigate what 
relation this result has to intelligence measures that 
average agent performance over environments. 

The finite model in the previous section lacks an 
important hypothesis of the NFLT: that the optimization 
algorithm never makes the same action more than once. 
This is necessary to conclude that the ensembles of 
rewards are independent at different times. The 
following constraint on the finite model achieves the 
same result: 

Definition. An environment FSM satisfies the No 
Repeating State Condition (NRSC) if it can never repeat 
the same state. Such environments must include one or 
more final states (successor undefined) and a criterion of 
the NRSC is that every path from the start state to a final 
state has length ≥ M(n), the time limit in the sum for Vf

π 
(this is only possible if M(n) ≤ n). 

Although the NRSC may seem somewhat artificial, 
it applies in the physical universe because of the second 
law of thermodynamics (under the reasonable 
assumption an irreversible process is always occurring 
somewhere). Now we show a No Free Lunch result for 
the finite model subject to the NRSC: 

Proposition 2. In the finite model defined in the 
previous section, assume that M(n) ≤ n and restrict F to 
those FSMs satisfying the NRSC. Then for any agent π, 
Vπ = (∑r∈R r) / |R|, the average reward. Thus all agents 
have the same measured intelligence. 

Proof. Given an agent π, calculate: 
 
Vπ = ∑f∈F W(f) Vf

π = 
 
∑n=L

H ∑f∈F(n) W(f) Vf
π = 

 
∑n=L

H (Wn / |F(n)|) ∑f∈F(n) Vf
π = 

 
∑n=L

H (Wn / |F(n)|) ∑f∈F(n) E(∑i=1
M(n) wn,i rf,i) = 

 
∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i ∑f∈F(n) E(rf,i). 

 
where rf,i denotes the reward to the agent from 
environment f at time step i. 

To analyze ∑f∈F(n) E(rf,i), define P(s,a|i,f) as the 
probability that in a time sequence of interactions 
between agent π and environment f, π makes action a and 
f is in state s at time step i. Also define P(r|i,f) as the 
probability that f makes reward r at time step i. Note: 

 
(1) ∑a∈A ∑s∈S P(s,a|i,f) = 1 

 
Let fR denote the R-component of a map 

f:S(n)×A→S(n)×O×R. For any s∈S and a∈A, partition 
F(n) into the disjoint union F(n) = Ur∈R F(s,a,r) where 
F(s,a,r) = { f∈F(n) | fR(s,a) = r}. Define a deterministic 
probability: 

 
P(r|f,s,a)  = 1 if f∈F(s,a,r) 

= 0 otherwise. 
 
Given any two reward values r1,r2∈R (here these do 

not denote the rewards at the first and second time steps) 
there is a one-to-one correspondence between F(s,a,r1) 
and F(s,a,r2) as follows: f1∈F(s,a,r1) corresponds with 
f2∈F(s,a,r2) if f1 = f2 everywhere except: 

 
f1

R(s,a) = r1 ≠ r2 = f2
R(s,a). 

 
(Changing a reward value does not affect whether a FSM 
satisfies the NRSC.) Given such f1 and f2 in 
correspondence, because of the NRSC f1 and f2 can only 
be in state s once, and because they are in 
correspondence they will interact identically with the 
agent π before reaching state s. Thus: 

 
(2) P(s,a|i,f1) = P(s,a|i,f2) 

 
Because of the one-to-one correspondence between 

F(s,a,r1) and F(s,a,r2) for any r1,r2∈R, and because of 
equation (2), the value of ∑f∈F(s,a,r) P(s,a|i,f) is 
independent of r and we denote it by Q(i,s,a). We use 
this and equation (1) as follows: 

 
|F(n)| = ∑f∈F(n) 1 = 
 
∑f∈F(n) ∑a∈A ∑s∈S P(s,a|i,f) = 
 
∑a∈A ∑s∈S ∑f∈F(n) P(s,a|i,f) = 
 
∑a∈A ∑s∈S ∑r∈R ∑f∈F(s,a,r) P(s,a|i,f) = 
 
∑a∈A ∑s∈S ∑r∈R Q(i,s,a) = 
 
∑a∈A ∑s∈S |R| Q(i,s,a). 
 

So for any r∈R: 
 

(3) ∑a∈A ∑s∈S ∑f∈F(s,a,r) P(s,a|i,f) = 
 
∑a∈A ∑s∈S Q(i,s,a) = 
 
|F(n)| / |R|. 
 
Now we are ready to evaluate ∑f∈F(n) E(rf,i): 
 
∑f∈F(n) E(rf,i) = 



 
∑f∈F(n) ∑r∈R r P(r|i,f) = 
 
∑f∈F(n) ∑r∈R r ∑a∈A ∑s∈S P(r|f,s,a) P(s,a|i,f) = 
 
∑r∈R r ∑a∈A ∑s∈S ∑f∈F(n) P(r|f,s,a) P(s,a|i,f) = 
 
∑r∈R r ∑a∈A ∑s∈S ∑f∈F(s,a,r) P(s,a|i,f) = (by 3) 
 
∑r∈R r |F(n)| / |R| = |F(n)| (∑r∈R r) / |R|. 
 
Plugging this back into the expression for Vπ: 
 
Vπ = ∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i ∑f∈F(n) E(rf,i) = 

 
∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i |F(n)| (∑r∈R r) / |R| = 

 
∑n=L

H (Wn / |F(n)|) |F(n)| (∑r∈R r) / |R| = 
 
(∑r∈R r) / |R|.   
 
By letting L = H in the finite model, Proposition 2 

applies to a distribution of environments defined by 
FSMs with the same state set size. 

It would be interesting to construct a PUTM in 
Legg's and Hutter's model for which all agents have the 
same measured intelligence within an arbitrarily small ε. 
It is not difficult to construct a PUTM, somewhat similar 
to the one defined in the proof of Proposition 1, that 
gives equal weight to a set of programs defining all 
FSMs with state set size n satisfying the NRSC, and 
gives arbitrarily small weight to all other programs. The 
difficulty is that multiple FSMs will define the same 
behavior and only one of those FSMs will be counted 
toward agent intelligence, since Legg's and Hutter's 
measure sums over environment behaviors rather than 
over programs. But if their measure had summed over 
programs, then a PUTM could be constructed for which 
an analog of Proposition 2 could be proved. 

A Revised Finite Model 
According to current physics the universe is a FSM 
satisfying the NRSC. If we measure agent intelligence 
using a distribution of FSMs satisfying the NRSC in 
which all FSMs with the same number of states have the 
same weight, then Proposition 2 shows that all agents 
have the same measured intelligence. This is a 
distribution of environments in which past behavior of 
environments provides no information about their future 
behavior. For a useful measure of intelligence, 
environments must be weighted to enable agents to 
predict the future from the past. 

It is easy to construct single environments against 
which different agents have different performance, so 
Proposition 1 implies that a weighting of environments 
based on program length is capable of defining different 
performance measures for different agents. However, we 
want to constrain an intelligence measure to ensure that 
it is based on performance against a large number of 
environments rather than a single environment. 

This suggests a distribution of environments based 
on program length but less abstract than Kolmogorov 
complexity, in order to avoid a distribution of 
environments as constructed in the proof of Proposition 
1. So revise the finite model of the previous sections to 
specify environments in an ordinary programming 
language, with static memory allocation and no recursion 
so environments are FSMs. Lower and upper limits on 
environment program length ensure that the model 
includes only a finite number of environments. For 
nondeterministic FSMs the language may include an 
oracle for truly random numbers. 

Because the physical world satisfies the NRSC its 
behavior never repeats precisely (theoretically behavior 
could repeat precisely in the part of the universe sensed 
by a human, although in practice it doesn't). But human 
agents learn to predict future behavior in the world by 
recognizing current behavior as similar to previously 
observed behaviors, and making predictions based on 
those previous behaviors. Similarity can be recognized in 
sequences  of  values  from  unstructured  sets  such  as  
{0, 1}, but there are more ways to recognize similarity in 
sequences of values from sets with metric and algebraic 
structures such as numerical sets. Our physical world is 
described largely by numerical variables, and the best 
human efforts to predict behaviors in the physical world 
use numerical programming languages. 

So revise the finite model to define the sets A and O 
of actions and observations using numerical values 
(finitely sampled in the form of floating point or integer 
variables), just as rewards are taken from a numerical set 
R. Short environment programs that mix numerical and 
conditional operations will generally produce 
observations and rewards as piecewise continuous 
responses to agent actions, enabling agents to predict 
based on similarity of behaviors. Including primitives for 
numerical operations in environment programs has the 
effect of skewing the distribution of environments 
toward similarity with the physical world. 

The revised finite model is a good candidate basis 
for a formal measure of intelligence. But the real point of 
this paper is that distributions over environments and 
time pose complex issues for formal intelligence 
measures. Ultimately our definition of intelligence 
depends on the intuition we develop from using our 
minds in the physical world, and the key to a useful 
formal measure is the way its weighting distribution over 
environments abstracts from our world. 
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