Atmospheric Cooling in the Far-Infrared

Daniel Feldman¹ Kuo-Nan Liou², Yuk Yung³, Xianglei Huang⁴, 2011 Workshop on Far-Infrared Remote Sensing November 8, 2011

¹ Lawrence Berkeley National Laboratory, Earth Sciences Division
² UCLA, Department of Atmospheric and Oceanic Sciences
³ Caltech, Department of Geological and Planetary Science
⁴ University of Michigan, Department of Atmospheric, Oceanic, and Space Sciences

Outline

- Importance of atmospheric cooling and the role of the far-infrared.
- How measurements impart information on cooling rates (either directly or indirectly).
 - Comparison of distinct methods for determining cooling rates from measurements.
- How the current measurements from AIRS and CERES may be used to gauge processes that affect far-IR cooling.

Cooling Rate Profiles

 Cooling arises from net radiative flux divergence from absorption by gases including H₂O, CO₂, and O₃ and condensed species.

$$\dot{\theta}_{\bar{\nu}}(z) = \frac{1}{C_p \rho(z)} \frac{dF_{\bar{\nu}}^{NET}(z)}{dz}$$

- Models perform band radiation calculations to calculate heating/cooling rates to integrate the primitive equations.
 - Radiation can account for 30% of computational expense.
 - Radiation impacts circulation, especially vertical velocity, controls TTL and convection

Heating/Cooling Rates Matter

- *lacono, et al.,* [2000] investigated the results of an RTM change in CCM3.
 - Significant cooling rate changes from revised H₂O continuum model.
- A comparison of model integrations shows changes in T, H₂O profiles due to altered latent, radiative energy distribution.

RRTMG - CCM3 Temperature Difference

All figs. from Iacono, et al., 2000

60N

40N

20N

MIN: -6.47 MAX: 4.71

20S

GLOBAL: -0.57

0

40S

2

60S

80S

200

400

600

800

1000

80N

PRESSURE (mb)

Remote Sensing Measurements

Artist's rendition of the A-Train courtesy of NASA

- There is a critical need for having accurate, computationally-inexpensive cooling rate data and remote sensing systems may be able to provide this.
- The polar-orbiting EOS A-Train flotilla presents a voluminous dataset describing the earth's lower atmosphere including T, H_2O , O_3 , and clouds
 - AIRS has been operational for 9+ years.
 - CloudSat and CALIPSO platforms operational for 5+ years.

Information in AIRS measurements

- Passive IR spectra provide information on the T, H₂O, and O₃ profiles through differential absorption.
 - 2378 channels
 - 3.7 to 15.4 μm (650-2700 cm⁻¹)
 - No far-IR coverage mostly due to detector limitations.

Deriving Information from Retrieval Flow Chart

FRKELE'

Cooling Rate Profile Uncertainty

- Perturbations in T, H_2O , O_3 profiles lead to θ' changes that propagate across layers.
- Calculation of θ' uncertainty requires formal error propagation analysis.
 - Covariance counts!

$$\left[\mathsf{D}\dot{q}(z)\right]^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial \dot{q}(z)}{\partial x_{i}} \frac{\partial \dot{q}(z)}{\partial x_{j}} \operatorname{cov}(x_{i}, x_{j})$$

From Feldman, et al., 2008.

Cooling Rate Error Propagation

From Feldman, et al., 2008

Cooling Rate Covariance Matrix

- Covariance matrices assess how prior and posterior errors are correlated $\hat{\mathbf{S}}_{\dot{q}} = \frac{\|\dot{q}}{\|\mathbf{x}} \hat{\mathbf{S}}_{\mathbf{x}} \hat{\mathbf{C}}_{\dot{q}}^{\dagger} \| \dot{q}_{\dot{q}}^{\ddot{0}^{T}}$
- Information content of a measurement vis-avis the cooling rate profile can be assessed.

From Feldman, et al., 2008

Cooling Rate Information Content

• Information content is related to the change in understanding of a set of correlated variables as a result of the measurement.

From Feldman, et al. 2008

Instrument	Time period	Spectral range (cm ⁻ ¹)	NeDT (K)	Spectral resolution (cm ⁻¹)	h _{TRP} (bits)	h _{MLS} (bits)	h _{SAW} (bits)
IRIS-D	1970-71	400-1600	2-4	2.8	9.8	8.4	6.4
AIRS	2002-Present	650-1400, 2100-2700	0.1-0.6	1-2	17.1	11.5	12.6
TES	2004-Present	650-1325, 1900-2250	1-4	0.12	13.2	10.5	8.0
IASI	2006-Present	650-2700	0.3-0.5	0.5	21.8	19.9	18.3
Far-IR	Proposed	200-2000	1.1	0.6	17.5	18.3	11.4

Retrieval of Cooling Rates

- Many products derived from the satellite instrument measurements through retrievals.
- Many different approaches to retrieving quantities from measurements.
 - Cooling rates retrieval proposed by Liou and Xue [1988] and Feldman et al [2006]

Inversion for Infrared Cooling Rate Profile

- Conventionally use T, H₂O, O₃, CH₄, and N₂O profiles
- Remote sensing measurements can be inverted for atmospheric state → calculate cooling rates.
- TOA radiance closely related to TOA flux which is a function of net flux divergence
 - Monotonic kernel but a priori constraint guarantees measurement information imparted uniformly across profile

In the absence of TOA far-IR measurements

- Extensive datasets of mid-IR measurements and also information from CloudSat and CALIPSO.
 - Standard retrieval products can (and should) be used to gauge estimate far-IR cooling
 - These require covariance matrix estimates!
- In the absence of far-IR measurements, measurements from other sources must be extrapolated
 - Critical requirement for accurate spectroscopy, cloud optical properties, and an appropriate mapping from mid-IR clouds to far-IR clouds.
- The data is out there!
 - Routine calculations are performed by weather models, in climate models and for satellite products. Comparison required.

Using AIRS + CERES to understand far-IR

- AIRS radiance spectra has been converted to spectrallyresolved fluxes collocated with Aqua CERES LW fluxes [Huang et al, 2010].
- A comparison of the principal components AIRS mid-IR flux (650-2000 cm⁻¹) to CERES broadband flux (200-2000 cm⁻¹) will indicate the extra information in the far-IR.
- Process studies are likely required to understand how the discrepancies between mid-IR and broadband flux map onto far-IR cooling.

Data courtesy of Xianglei Huang

Discussion

- Radiative cooling rates are important to atmospheric circulation and far-IR cooling from water vapor and clouds represent a significant component of this cooling.
- Remote sensing measurements provide information, either directly or indirectly, about spectral and broadband cooling rates
 - The incorporation of this information requires careful attention to retrieval theory.
- Ongoing efforts to compare mid- and broadband IR measurements from AIRS and CERES respectively may yield extra information about far-IR flux and ultimately far-IR cooling.

Acknowledgements

- Collaborators Marty Mlynczak and Dave Johnson of LaRC.
- NASA Earth Systems Science Fellowship, grant number NNG05GP90H.
- NASA Grant NNX08AT80G, NAS2-03144, NNX10AK27G and NNX11AE65G.
- Yuk Yung Radiation Group: Jack Margolis, Vijay Natraj, King-Fai Li, & Kuai Le
- AER, Inc. including Eli Mlawer, Mark Shepard, and Tony Clough for tech support
- Xianglei Huang from University of Michigan
- Yi Huang from (recently) McGill University

