

A Method for Correcting for Telescope Spectral Transmission in the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS)

John D. Elwell, Deron K. Scott Space Dynamics Laboratory / Utah State University

GIFTS

- GIFTS mission is to provide water vapor, wind, temperature, and trace gas profiles from geosynchronous orbit
 - Requires highly accurate radiometric and spectral calibration
- Radiometric calibration will be performed during ground calibration and updated in-flight using two onboard cavity blackbody in-flight calibrators (IFCs) and cold space
- Presentation describes how we will correct for two terms in the responsivity calibration

Calcon 2003

GIFTS Imaging Interferometer Specifications

- Two IR focal planes
 - Short/midwave
 - 4.4 to 6.1 μm
 - 1 K absolute accuracy for scenes >240 K
 - Longwave
 - 8.8 to 14.6 μm
 - 1 K absolute accuracy for scenes >190 K
 - 128 x 128 pixels, 110 μm pitch, 4-km pixel footprints at nadir
 - 7 spectral resolutions from 0.6 cm⁻¹ to 38 cm⁻¹
 - 0.2 K reproducibility

GIFTS Optical Schematic

- τ_2 Transmissions (reflectances) of elements
- ε_{2} Emissivities of elements
- B₂ Planck radiances at element temperatures
- C_f Complex response to emissions of the rear optics
- R_f System responsivity

GIFTS Optical Schematic

Need to correct for:

 τ_{t} – signal transmission of the telescope mirrors

$$\tau_t = \tau_1 \cdot \tau_2 \cdot \tau_3$$
 $\tau_t =$

$$\tau_t = \tau_1 \cdot \tau_2 \cdot \tau_3 \qquad \tau_t = (1 - \epsilon_1) \cdot (1 - \epsilon_2) \cdot (1 - \epsilon_3)$$

τ_m - transmission of the blackbody pick-off mirror

Radiometric Calibration

Scene radiance using inflight calibrators¹:

$$N = \left(\frac{\tau_m}{\tau_t}\right) \cdot Re\left(\frac{C_e - C_s}{R_f}\right) + B_s \qquad \text{where} \qquad R_f = \frac{C_h - C_c}{B_h \cdot \epsilon_h - B_c \cdot \epsilon_c}$$

where: N Computed scene radiance

B_h, B_c Planck radiances of hot and cold references

 ε_h , ε_c Emissivities of hot and cold references (assumed equal)

B_s Planck function of cold space (effectively 0 for GIFTS)

 C_h, C_c, C_e, C_s, C_f

Measured responses to hot and cold reference, scene, space, and structure (Back end temperatures assumed constant between IFC views)

τ_m Blackbody viewing mirror transmission (assumed constant temp)

τ_t Telescope transmission (reflectivity)

¹ Revercomb, et al., "On Orbit Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)", Calcon 200

$\tau_{\rm m}$ and $\tau_{\rm t}$ Measurement

- Fold mirror τ_m and telescope τ_t will change during flight, and such changes must be periodically measured
- The experiments for deriving τ_t and τ_m will be performed quarterly

Assumptions Made in Measuring $\tau_{\rm m}$ and $\tau_{\rm t}$

- Absorption of gold-coated aluminum telescope mirrors is negligible
- Mirror reflectivities (transmissions) can be computed if mirror emissivities are known

$$\tau = 1 - \varepsilon$$

- Mirror emissivities can be estimated by measuring mirror emissions and the mirror temperatures
- τ_{m} can be determined in-flight by viewing either IFC at two different fold mirror temperatures

Measuring τ_m Experimentally

- Collect data viewing an in-flight calibrator at two different flip-in mirror temperatures
- By taking the difference of measured emissions at two different fold mirror temperatures, τ_m can be computed as:

$$\tau_{m} = \left\lceil \text{Re} \left\lceil \frac{\left(\text{B}_{h} - \text{B}_{c} \right)}{\left(\text{C}_{h} - \text{C}_{c} \right)} \cdot \frac{\left(\text{C}_{m1} - \text{C}_{m2} \right)}{\left(\text{B}_{m1} - \text{B}_{m2} \right)} \right\rceil + 1 \right\rceil^{-1}$$

 B_{m1}, B_{m2}, C_{m1}, C_{m2} are the Planck radiances and the measured responses to the cold blackbody with the fold mirror at two different temperatures

τ_{m} Uncertainties

 \bullet Principle uncertainties in measuring τ_{m}

		2000 cm ⁻¹	900 cm ⁻¹
Error Source	Error	τ _m Uncertainty	τ _m Uncertainty
T_{m1}	1K	0.016	0.046
T_{m2}	1K	0.182	0.107
T_h	0.1 K	0.013	0.010
T _c	0.1 K	0.005	0.007
ϵ_{h}	0.002	0.008	0.014
$\epsilon_{\rm c}$	0.002	0.002	0.008
RSS		0.184%	0.118%

Measuring τ_t Experimentally

- Collect a minimum of three measurements with each optical element at different temperatures
- The following steps will be performed to collect data
 - Turn off telescope cooling loop and collect data for 24 hours
 - Collect emission data by viewing cold space
 - After each emissions data collection, close the fold mirror and collect tail-end optics emissions data by looking at the cold blackbody

Deriving τ_t

Cold space response:

$$C_{S} = (B_{S} \cdot \tau_{t} + L_{t}) \cdot R_{f} + C_{f}$$

B_s Planck radiance of space (4 K), assumed to be 0

τ_t Telescope transmission

L_t Total emission from telescope

R_f System responsivity

C_f Complex emission from optics behind the telescope

With B_s=0, the unknowns are the telescope emission, Lt, and the complex emissions from the rear optics, Cf

Deriving τ_t

 C_f can be measured for each telescope emission measurement by looking at the cold IFC

$$C_{f} = C_{c} - \left[\left[\left(B_{c} \cdot \varepsilon_{c} \right) + B_{str} \cdot \left(1 - \varepsilon_{c} \right) \right] \cdot \tau_{m} + B_{m} \cdot \left(1 - \tau_{m} \right) \right] \cdot R_{f}$$

• L_t, total telescope emission, is the sum:

$$L_{t} = B_{pm} \cdot \varepsilon_{pm} \cdot \left(1 - \varepsilon_{m1}\right) \cdot \left(1 - \varepsilon_{m2}\right) + B_{m1} \cdot \varepsilon_{m1} \cdot \left(1 - \varepsilon_{m2}\right) + B_{m2} \cdot \varepsilon_{m2}$$

• This can be linearized with the substitutions:

$$\alpha_1 = \varepsilon_{pm} \cdot (1 - \varepsilon_{m1}) \cdot (1 - \varepsilon_{m2})$$
 $\alpha_2 = \varepsilon_{m1} \cdot (1 - \varepsilon_{m2})$
 $\alpha_3 = \varepsilon_{m2}$

Deriving τ_t

A set of simultaneous linear equations can be set up to solve for L_t

$$\frac{C_{s} - C_{f}}{R_{f}} = B_{pm} \cdot \alpha_{1} + B_{m1} \cdot \alpha_{2} + B_{m2} \cdot \alpha_{3}$$

- The values on the left side are known
- The B values are computed from element temperatures
- With more than three samples, these equations are then solved using a least-squared error approach for α_1 , α_2 , and α_3
- The resulting mirror emissivities can be computed as:

$$\varepsilon_{pm} = \frac{\alpha_1}{\left(1 - \varepsilon_{m2}\right) \cdot \left(1 - \varepsilon_{m3}\right)} \qquad \varepsilon_{m1} = \frac{\alpha_2}{\left(1 - \varepsilon_{m2}\right)} \qquad \varepsilon_{m2} = \alpha_2$$

τ_t Uncertainties

• Principle uncertainties in measuring τ_t

		2000 cm ⁻¹	900 cm ⁻¹
Error Source	<u>Error</u>	τ _t <u>Uncertainty</u>	τ _t <u>Uncertainty</u>
T_{pm}	1K	0.067	0.030
Tm1	1K	0.064	0.030
Tm2	1K	0.067	0.031
T_h	0.1 K	0.021	0.016
T_c	0.1 K	0.007	0.011
ϵ_{h}	0.002	0.006	0.011
ϵ_{c}	0.002	0.002	0.006
RSS		0.117	0.057

Overall Radiance Calibration

• The combined uncertainty of the radiance calibration and derivation of τ_t and τ_m has been modeled

SDL

Calcon 2003 September 15-18, 2003

- Responsivity must be computed seperately for each pixel, therefore multiple scans must be collected to do any averaging
- τ_m and τ_t are applicable to all pixels
 - A single scan of interferometer data will provide about 16000 samples over which τ_m and τ_t can be averaged
- Still to be addressed
 - Residual nonlinearity
 - Changes in responsivity over 24-hour telescope thermal cycle

