A Method for Correcting for Telescope Spectral Transmission in the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) John D. Elwell, Deron K. Scott Space Dynamics Laboratory / Utah State University #### **GIFTS** - GIFTS mission is to provide water vapor, wind, temperature, and trace gas profiles from geosynchronous orbit - Requires highly accurate radiometric and spectral calibration - Radiometric calibration will be performed during ground calibration and updated in-flight using two onboard cavity blackbody in-flight calibrators (IFCs) and cold space - Presentation describes how we will correct for two terms in the responsivity calibration Calcon 2003 # GIFTS Imaging Interferometer Specifications - Two IR focal planes - Short/midwave - 4.4 to 6.1 μm - 1 K absolute accuracy for scenes >240 K - Longwave - 8.8 to 14.6 μm - 1 K absolute accuracy for scenes >190 K - 128 x 128 pixels, 110 μm pitch, 4-km pixel footprints at nadir - 7 spectral resolutions from 0.6 cm⁻¹ to 38 cm⁻¹ - 0.2 K reproducibility #### **GIFTS Optical Schematic** - τ_2 Transmissions (reflectances) of elements - ε_{2} Emissivities of elements - B₂ Planck radiances at element temperatures - C_f Complex response to emissions of the rear optics - R_f System responsivity #### **GIFTS Optical Schematic** Need to correct for: τ_{t} – signal transmission of the telescope mirrors $$\tau_t = \tau_1 \cdot \tau_2 \cdot \tau_3$$ $\tau_t =$ $$\tau_t = \tau_1 \cdot \tau_2 \cdot \tau_3 \qquad \tau_t = (1 - \epsilon_1) \cdot (1 - \epsilon_2) \cdot (1 - \epsilon_3)$$ τ_m - transmission of the blackbody pick-off mirror #### **Radiometric Calibration** Scene radiance using inflight calibrators¹: $$N = \left(\frac{\tau_m}{\tau_t}\right) \cdot Re\left(\frac{C_e - C_s}{R_f}\right) + B_s \qquad \text{where} \qquad R_f = \frac{C_h - C_c}{B_h \cdot \epsilon_h - B_c \cdot \epsilon_c}$$ where: N Computed scene radiance B_h, B_c Planck radiances of hot and cold references ε_h , ε_c Emissivities of hot and cold references (assumed equal) B_s Planck function of cold space (effectively 0 for GIFTS) C_h, C_c, C_e, C_s, C_f Measured responses to hot and cold reference, scene, space, and structure (Back end temperatures assumed constant between IFC views) τ_m Blackbody viewing mirror transmission (assumed constant temp) τ_t Telescope transmission (reflectivity) ¹ Revercomb, et al., "On Orbit Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)", Calcon 200 #### $\tau_{\rm m}$ and $\tau_{\rm t}$ Measurement - Fold mirror τ_m and telescope τ_t will change during flight, and such changes must be periodically measured - The experiments for deriving τ_t and τ_m will be performed quarterly ## Assumptions Made in Measuring $\tau_{\rm m}$ and $\tau_{\rm t}$ - Absorption of gold-coated aluminum telescope mirrors is negligible - Mirror reflectivities (transmissions) can be computed if mirror emissivities are known $$\tau = 1 - \varepsilon$$ - Mirror emissivities can be estimated by measuring mirror emissions and the mirror temperatures - τ_{m} can be determined in-flight by viewing either IFC at two different fold mirror temperatures ## Measuring τ_m Experimentally - Collect data viewing an in-flight calibrator at two different flip-in mirror temperatures - By taking the difference of measured emissions at two different fold mirror temperatures, τ_m can be computed as: $$\tau_{m} = \left\lceil \text{Re} \left\lceil \frac{\left(\text{B}_{h} - \text{B}_{c} \right)}{\left(\text{C}_{h} - \text{C}_{c} \right)} \cdot \frac{\left(\text{C}_{m1} - \text{C}_{m2} \right)}{\left(\text{B}_{m1} - \text{B}_{m2} \right)} \right\rceil + 1 \right\rceil^{-1}$$ B_{m1}, B_{m2}, C_{m1}, C_{m2} are the Planck radiances and the measured responses to the cold blackbody with the fold mirror at two different temperatures # τ_{m} Uncertainties \bullet Principle uncertainties in measuring τ_{m} | | | 2000 cm ⁻¹ | 900 cm ⁻¹ | |--------------------|-------|----------------------------|----------------------------| | Error Source | Error | τ _m Uncertainty | τ _m Uncertainty | | T_{m1} | 1K | 0.016 | 0.046 | | T_{m2} | 1K | 0.182 | 0.107 | | T_h | 0.1 K | 0.013 | 0.010 | | T _c | 0.1 K | 0.005 | 0.007 | | ϵ_{h} | 0.002 | 0.008 | 0.014 | | $\epsilon_{\rm c}$ | 0.002 | 0.002 | 0.008 | | RSS | | 0.184% | 0.118% | ## Measuring τ_t Experimentally - Collect a minimum of three measurements with each optical element at different temperatures - The following steps will be performed to collect data - Turn off telescope cooling loop and collect data for 24 hours - Collect emission data by viewing cold space - After each emissions data collection, close the fold mirror and collect tail-end optics emissions data by looking at the cold blackbody ## Deriving τ_t Cold space response: $$C_{S} = (B_{S} \cdot \tau_{t} + L_{t}) \cdot R_{f} + C_{f}$$ B_s Planck radiance of space (4 K), assumed to be 0 τ_t Telescope transmission L_t Total emission from telescope R_f System responsivity C_f Complex emission from optics behind the telescope With B_s=0, the unknowns are the telescope emission, Lt, and the complex emissions from the rear optics, Cf ## Deriving τ_t C_f can be measured for each telescope emission measurement by looking at the cold IFC $$C_{f} = C_{c} - \left[\left[\left(B_{c} \cdot \varepsilon_{c} \right) + B_{str} \cdot \left(1 - \varepsilon_{c} \right) \right] \cdot \tau_{m} + B_{m} \cdot \left(1 - \tau_{m} \right) \right] \cdot R_{f}$$ • L_t, total telescope emission, is the sum: $$L_{t} = B_{pm} \cdot \varepsilon_{pm} \cdot \left(1 - \varepsilon_{m1}\right) \cdot \left(1 - \varepsilon_{m2}\right) + B_{m1} \cdot \varepsilon_{m1} \cdot \left(1 - \varepsilon_{m2}\right) + B_{m2} \cdot \varepsilon_{m2}$$ • This can be linearized with the substitutions: $$\alpha_1 = \varepsilon_{pm} \cdot (1 - \varepsilon_{m1}) \cdot (1 - \varepsilon_{m2})$$ $\alpha_2 = \varepsilon_{m1} \cdot (1 - \varepsilon_{m2})$ $\alpha_3 = \varepsilon_{m2}$ ## Deriving τ_t A set of simultaneous linear equations can be set up to solve for L_t $$\frac{C_{s} - C_{f}}{R_{f}} = B_{pm} \cdot \alpha_{1} + B_{m1} \cdot \alpha_{2} + B_{m2} \cdot \alpha_{3}$$ - The values on the left side are known - The B values are computed from element temperatures - With more than three samples, these equations are then solved using a least-squared error approach for α_1 , α_2 , and α_3 - The resulting mirror emissivities can be computed as: $$\varepsilon_{pm} = \frac{\alpha_1}{\left(1 - \varepsilon_{m2}\right) \cdot \left(1 - \varepsilon_{m3}\right)} \qquad \varepsilon_{m1} = \frac{\alpha_2}{\left(1 - \varepsilon_{m2}\right)} \qquad \varepsilon_{m2} = \alpha_2$$ ## τ_t Uncertainties • Principle uncertainties in measuring τ_t | | | 2000 cm ⁻¹ | 900 cm ⁻¹ | |----------------|--------------|-----------------------------------|-----------------------------------| | Error Source | <u>Error</u> | τ _t <u>Uncertainty</u> | τ _t <u>Uncertainty</u> | | T_{pm} | 1K | 0.067 | 0.030 | | Tm1 | 1K | 0.064 | 0.030 | | Tm2 | 1K | 0.067 | 0.031 | | T_h | 0.1 K | 0.021 | 0.016 | | T_c | 0.1 K | 0.007 | 0.011 | | ϵ_{h} | 0.002 | 0.006 | 0.011 | | ϵ_{c} | 0.002 | 0.002 | 0.006 | | RSS | | 0.117 | 0.057 | #### **Overall Radiance Calibration** • The combined uncertainty of the radiance calibration and derivation of τ_t and τ_m has been modeled SDL Calcon 2003 September 15-18, 2003 - Responsivity must be computed seperately for each pixel, therefore multiple scans must be collected to do any averaging - τ_m and τ_t are applicable to all pixels - A single scan of interferometer data will provide about 16000 samples over which τ_m and τ_t can be averaged - Still to be addressed - Residual nonlinearity - Changes in responsivity over 24-hour telescope thermal cycle