

Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) On-board Blackbody Calibration System

Fred Best, Hank Revercomb, Robert Knuteson, Dave Tobin, Don Thielman, Scott Ellington, Mark Werner, Doug Adler, Ray Garcia, Joe Taylor, Steve Dutcher, Mark Mulligan

University of Wisconsin Space Science and Engineering Center fred.best@ssec.wisc.edu

USU/SDL CALCON 2005

Topics

- GIFTS Instrument Calibration Approach and Top-level Requirements
- Blackbody System Overview
- Blackbody temperature calibration
 - Resistance measurement calibration
 - Thermistor calibration
- Cavity painting and emissivity determination

GIFTS Instrument Calibration Approach and Top-level Requirements

GIFTS Instrument Radiometric Calibration Approach

- Two small reference Blackbodies located behind telescope, combined with Space View.
- Blackbody design is scaled from the UW ground-based design used on AERI and NAST / S-HIS aircraft instruments.
- Constraints on original S/C prevented traditional external large aperture blackbody configuration.
- Advantages compared to large external blackbody:
 (1) higher emissivity is practical with small size
 (2) effective T easier to characterize, and
 - (3) protection from solar forcing gradients

GIFTS Sensor Module Conceptual Layout

Internal Blackbody Configuration

- Two blackbodies and visible flood source are mounted on the same linear slide
- One source at a time is correctly positioned under flipin mirror
- Blackbody aperture fills both IR Lyot stop and IR detector array
 - Blackbody aperture imaged at Lyot stop

GIFTS Top Level Calibration Error Budget

GIFTS Radiometric Calibration Error Requirement is ≤ 1K

Notes: *: @ 220 K Scene Temperature

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 7

GIFTS Blackbody Calibration Budget

Calibration budget for blackbody subsystem is 0.5 K (3-sigma) absolute & 0.1 K (3-sigma) reproducibility

Summary of Top Level Blackbody Requirements

	Specification*	Current Best Estimate
Ambient Blackbody Nominal Set Point	255 K	255 K
Hot Blackbody Nominal Set Point	290 K	290 K
Temperature Measurement	< 0.1 K	< 0.056 K
Uncertainty	(3 sigma)	
Ambient Blackbody Emissivity	> 0.996	> 0.999
Hot Blackbody Emissivity	> 0.996	> 0.999
Emissivity Uncertainty	< 0.002	< 0.00072
	(3 sigma)	
Wavelength	680 - 2,300 cm ⁻¹	680 - 2,300 cm ⁻¹

*Derived From GIRD Using Radiometric Model

Summary of Top Level Blackbody Requirements

	Specification*	Current Best Estimate
Source Aperture	2.54 cm	2.54 cm
Source FOV (full angle)	> 10°	> 10°
Mass (two blackbodies plus controller board)	< 2.4 kg	< 2.1 kg
Power**: average/max	< 2.2/5.2 W	< 2.2/5.2 W
Envelope	< 8 x 8 x 15.5 cm	< 8 x 8 x 15.4 cm

*Imposed by GIFTS Sensor Module Design

**Temperature of mounting base between 190 to 260 K Temperature of surrounding between 140 to 300 K

Blackbody System Overview

Top Level Block Diagram

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 12

Blackbody Design

Engineering Model Blackbody

Blackbody builds on the strong heritage of ground and aircraft based FTS instruments developed at UW.

Engineering Model Blackbody Controller & Thermal model of board in on-orbit environment

- Motherboard connector along bottom.
- Wedgelock clamps secure the full length of each of the short sides

- Warmest spot on board runs at 54 C, assuming warmest on-orbit environment
- The board thermal design provides a worst case part junction temp. margin of better than 20 C.

Blackbody Thermistor Measurement Use of Calibration Constants

Resistance Calibration of the Blackbody Controller Electronics

Determining the Constants Needed for Self-calibration

Determining Thermistor Calibration Coefficients

Blackbody Controller Resistance Calibration

Determining the Resistance Measurement Self Calibration Constants

Self-calibrating Resistance Measurement Scheme

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 19

External Calibration Resistor Values

Ambient Blackbody

	Nominal Res	istance Range	Nominal Temp	perature Range
Range	Low High		Associated with Low R	Associated with High R
0	25,394.5	59,229.8	-28.4	-43.4
1	15,705.1	33,745.3	-19.2	-33.6
2	9,331.6	20,861.6	-8.6	-24.7
3	5,038.5	12,173.6	4.9	-14.1

	Resistor Nominal Measured		Nominal				
	Laber	value	Value (Kollilis)	Equiv. I [C]			
	1A00	27.4K	27.40349	-29.8			
e O	3A00	29.4K	29.39068	-31.1			
6 u	5A00	38.3K	38.31340	-35.9			
8	7A00	49.9K	49.90540	-40.5			
	9A00	54.9K	54.89922	-42.1			
	1A01	16.5K	16.49754	-20.2			
0 T	3A01	17.8K	17.80062	-21.6			
- Bu	5A01	22.6K	22.59973	-26.2			
Ra	7A01	29.4K	29.38854	-31.1			
	9A01	30.9K	30.89072	-32.0			
	1A02	10.0K	9.963586	-10.0			
e 2	3A02	10.7K	10.698577	-11.5			
nge	5A02	13.7K	13.7K 13.70086				
Ra	7A02	17.8K	17.79990	-21.6			
	9A02	19.06K	19.05953	-23.0			
	1A03	5.36K	5.360126	3.5			
e n	3A03	6.04K	6.098655	0.8			
b u	5A03	8.25K	8.250112	-6.0			
Ra	7A03	10.7K	10.697523	-11.5			
	9A03	11.5K	11.498589	-12.9			
	5/5/04						

Н	ot	BI	a	cl	k	h	0	d١	,
	υı		a		N.	v	J	ωı	

	Nominal Res	istance Range	Nominal Temp	erature Range
Range	Low High		Associated with Low R	Associated with High R
0	20,723.4	47,526.1	9.2	-7.1
1	12,613.4	26,361.8	19.8	4.3
2	7,522.5	16,027.9	31.6	14.6
3	4,017.4	9,782.4	47.1	25.5

	Resistor Label	Nominal Value	Measured Value (Ohms)	Nominal Equiv. T [C]	
	1H00	21.5K	21.50040	8.4	
0	3H00	24.3K	24.29909	5.9	
bu	5H00	30.1K	30.09966	1.7	
Ra	7H00	40.2K	40.20075	-3.9	
	9H00	44.2K	44.20255	-5.7	
	1H01	13.3K	13.30025	18.6	
e 1	3H01	14.3K	14.30104	17.1	
bu	5H01	18.2K	18.19873	11.9	
Ra	7H01	24.3K	24.29286	5.9	
	9H01	9H01 24.9K		5.4	
	1H02	7.87K	7.868968	30.5	
e 7	3H02	8.66K	8.653635	28.3	
bu	5H02	11.0K	10.995917	22.8	
Ra	7H02	14.3K	14.301310	17.1	
	9H02	15.4K	15.396980	15.5	
	1H03	4.32K	4.319953	45.2	
e N	3H03	4.87K	4.869875	42.2	
bu	5H03	6.49K	6.490156	35.1	
Ra	7H03	8.66K	8.649098	28.3	
	9H03	9.28K	9.277229	26.7	

5/5/04

External Calibration Resistors were measured using an Agilent 7458A DVM, with calibration traceability to NIST

Worst case equivalent temperature uncertainty is 0.2mK

System Parameters Needed For Self-Calibration & Determination of Unknown Rt

13 Parameters Were Optimized to Fit Data From of all Ranges and Channels (both ABB & HBB) Using Data Collected From Reading External Calibration Resistors (160 files in all).

BBC Resistance Calibration Results

Equivalent Temperature Error Associated With Reading Same Resistance on Different Ranges is Very Small

		Temperature Error [C]			
Range Comparison	Temperature [C]	AbbA	AbbB	AbbC	AbbD
Range 0/1	-30.2	-0.0006	-0.0006	-0.0004	-0.0004
Range 1/2	-21.0	-0.0002	-0.0002	-0.0002	-0.0001
Range 2/3	-14.0	0.0000	0.0003	0.0000	0.0000

- Temperatures were computed using nominal Stienhart and Hart Coefficients
- The data helps validate the electronics resistance measurement self calibration scheme, set up for each range.

Electronics Stability Over 60 Day Test Period (Equivalent to drift of < 0.6 mK/year.)

Other tests indicate that the error due to expected power supply voltage variations is less than 0.2 mK, and the error due to expected electronics temperature variation is less than 0.5 mK.

End-to-end System Temperature Calibration

Temperature Calibration Functional Block Diagram

System used to collect thermistor resistances (R) at various very well known temperatures (T)

Blackbody Temperature Calibration - Calibration Probe Closely Coupled to Cavity

Slide 27

MADISON

Custom Absolute Temperature Calibration Standard +/- 0.005 K (3 sigma)

 Hart 2563 Standard **Thermistor Module** Hart 2564 Thermistor **Scanner Module** Hart 3560 Extended **Communications Module Thermometrics** Calibration Computer SP-60 Probes (2) Report Number: A4113002 Page 2 of 3 Report of Calibration Accounted for in the uncertainty evaluation are all known influence quantities affecting the reference thermometer system at the time of calibration including long-term behavior of the calibration system, measurement noise, bath iniformity and bath stability. The observed errors and estimated uncertainties are shown in the table below. **Absolute** AS LEFT **Temperature** Probe Serial No: 0201-220 Probe Model No: ABB A0= 1,1534085 E-03 A1= 2.8959232 E-04 A2= -2.7828555 E-06 A3= 2.5689558 E-0 **Calibration of** B0= -4.8421000 E00 B2= -2.4451777 E04 NOMINAL ACTUAL INDICATED AS LEFT TOLERANCE PASS/FAIL Uncertainty VALUE end-to-end ERROR (k=2)(t₉₀ (°C) t90 (°C) t90 (°C) t90 (°C) t90 (°C t90 (°C) -50.000 -50.0165 -50.0191 -0.0026 0.003 40.000 -40.0019 **System at Hart** -40.00140.0005 0.003 0.003 -30.000 -30.0097-30.0094 0.0003 0.002 0.003 -20.000 -20.0185 -20.01800.0005 0.002 0.003 has Uncertainty -9.9993 -0.0002 0.002 0.003 -0.0090 -0.0001 0.002 10.000 0.003 9.9800 9.9798 -0.0002 Of +/- 0.003 K 0.002 0.003 Special Notes: This system was done new. No as found is available. Calibration was performed and as left data (k=2)

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 28

Thermistor Calibration Test Set-up

UW Blackbody Controller and SDL C&DH Simulator Board

Calibration Computer and Hart Thermistor Read-out

Engineering Température Data Collection

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 29

Thermistor Fitting Equation (Steinhart & Hart)

$$T = \frac{1}{A + B \bullet \ln(R) + C \bullet (\ln(R))^3}$$

At each calibration temperature:

- The T_i come from the Calibration Probe
- The R_i come from the Blackbody Controller,

using the Self Calibration.

Regression fit to N points (R_i,T_i),:

$$\begin{vmatrix} N & \sum \ln(R_i) & \sum (\ln(R_i))^3 \\ \sum \ln(R_i) & \sum (\ln(R_i))^2 & \sum (\ln(R_i))^4 \\ \sum (\ln(R_i))^3 & \sum (\ln(R_i))^4 & \sum (\ln(R_i))^6 \end{vmatrix} \bullet \begin{vmatrix} A \\ B \\ C \end{vmatrix} = \begin{vmatrix} \sum (\frac{1}{T_i}) \cdot (\ln(R_i)) \\ \sum (\frac{1}{T_i}) \cdot (\ln(R_i))^3 \\ \sum (\frac{1}{T_i}) \cdot (\ln(R_i))^3 \end{vmatrix}$$
$$\begin{bmatrix} R \end{bmatrix} \bullet \begin{vmatrix} A \\ B \\ C \end{vmatrix} = \begin{bmatrix} Z \end{bmatrix} \qquad \begin{vmatrix} A \\ B \\ C \end{vmatrix} = \begin{bmatrix} R \end{bmatrix}^{-1} \bullet \begin{bmatrix} Z \end{bmatrix}$$

Example of Generation of ABB Range-2 Calibration Coefficients - 5 Points

AbbA

Fit Residuals

				_
Tprobe	Resistance	Tcalc	Tcal-Tprobe	
-10.0415	9,879.895	-10.0417	-0.00019	
-13.9719	11,933.404	-13.9714	0.00047	
-18.0117	14,562.231	-18.0120	-0.00030	
-20.9813	16,911.993	-20.9814	-0.00012	/
-23.5610	19,303.610	-23.5608	0.00014	

Thermistors B, C, and D calculations not shown

Calibration Configuration Characterizations Minimizing Unwanted Sources of Temperature Error

- Temperature Calibration Probe Immersion Error Characterized to be on the order of 6 mK (worst case).
- Temperature error due to Blackbody Controller cable heat leak measured to be insignificant.
- Temperature error due to the gradient between the probe and themistors arising from a rate of change in blackbody temperature during calibration was measured to be insignificant at the stability criteria (dT/dt) adopted for calibration.
- Temperature error arising from the inability of the Stienhart Hart equation to capture a 1 Ohm fixed cable resistance in series with the thermistors was shown by modeling to be insignificant.
- Next slides present more detail on our approach to quantify each of these potential error sources.

Temperature Calibration Probe Immersion Error is on the order of 6 mK (worst case)

During <u>Probe Calibration</u> at Hart Scientific, probes were immersed as shown in the calibration bath, with top of probe exposed to room temp air

> During <u>GIFTS Blackbody Calibration</u>, entire probe (including cable) and cavity were isothermal at calibration temp

This difference in configuration gives rise to a temperature dependent probe immersion error that is carried through to the GIFTS Blackbody calibration

- By measuring the immersion error in a 0°C bath in 20°C air, we can estimate the immersion error over the calibration ranges
- To obtain sufficient precision the test was done in a Triple Point of Water (TPW) cell

Temperature Uncertainty Budget

Temperature Uncertainty	3 sigma error [K]	RSS [K]
Temperature Calibration Standard	0.005	
(Thermometrics SP60 Probe with Hart Scientific 2560 Thermistor Module)		
		0.005
lackbody Readout Electronics Uncertainty		
Readout Electronics Uncertainty (at delivery)	0.005	
		0.005
Blackbody Thermistor Temperature Transfer Uncertainty		
Gradient Between Temperature Standard and Cavity Thermistors	0.010	
Calibration Fitting Equation Residual Error	0.001	
		0.010
Cavity Temperature Uniformity Uncertainty		
Cavity to Thermistor Gradient Uncertainty (1/3 of total max expected gradient)	0.025	
Thermistor Wire Heat Leak Temperature Bias Uncertainty*	0.008	
Paint Gradient (assumes full alue at nominal HBB Temp and conservative viewing geometry)	0.018	
		0.032
_ong-term Stability		
Blackbody Thermistor (8 years of drift assuming 100 C)	0.030	
Blackbody Controller Readout Electronics	0.012	
	1	0.032
Effective Badiometric Temperature Weighting Factor Uncertainty		
Monte Carlo Ray Trace Model Uncertainty in Determining Teff	0.030	¬
(1/3 of total max expected gradient)		0.030
*(conservatively assumed to be the full value calculated for the effect in the worse case		0.056
thermal environment and making conservative thermal coupling assumptions)	Γ	Dudaate
	L	Buaget S
- ··	1	THE UNIVER
CALCON 2005		of -

Blackbody Painting and Emissivity Determination

GIFTS BB Radiance Model

$$R(\lambda) = \varepsilon (\lambda) * B(T_{EFF}, \lambda) + (1 - \varepsilon (\lambda)) * B(T_{ENV}, \lambda)$$

where, $B(T, \lambda)$ = Planck radiance at T and wavelength λ , $\epsilon(\lambda) = cavity isothermal emissivity,$ $T_{EFF} = w_A * T_A + w_B * T_B$ is the effective emitting temperature, and $T_{ENV} = environmental temperature.$

$$R$$

 ϵ , w_A, and w_B are pre-computed using a numerical model while T_A, T_B, and T_{ENV} are measured in flight.

Paint Thickness is Important

Paint Witness Samples Mimic Cavity Cones

Fixture Mimics Cavity Cone Geometry (4 Samples / Fixture)

12 Fixtures (four 1" dia samples each)

48 total samples

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 38

Desired Paint Thickness Achieved

Slide 39

MADISO

GIFTS Blackbody Witness Sample Emissivity

✓ Emissivity measurements of 6 GIFTS BB witness samples are in excellent agreement with previously obtained NIST test data from a NIST painted sample.

NIST Data is from "Joe Rice" Sample sent to UW in July of 2003 by Leonard Hannsen of NIST

GIFTS Blackbody Witness Sample Emissivity (normalized to NIST Sample)

NIST Data is from "Joe Rice" Sample sent to UW in July of 2003 by Leonard Hannsen of NIST

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 41

GIFTS Blackbody Cavity Isothermal Emissivity

Paint emissivity (Ep) is the measured GIFTS Blackbody Witness Sample data, and cavity factor (Cf) is the quadratic fit of the Monte Carlo Cf vs Wavelength model results.

CALCON 2005 Calibration of the GIFTS On-board Blackbody System Slide 42

Emissivity Uncertainty Budget

	Uncertainty (3 sigma)	Note	for Ep=0.94 f=39	ΔΕς	ΔEc (3 sigma)
Paint Witness Sample Measurement	0.4% Ep	[1]	ΔEp=0.0038	(1/f)*∆Ep	0.00010
Paint Application Variation	1.0% Ep	[2]	ΔEp=0.0094	(1/f)*∆Ep	0.00024
Long-term Paint Stability	2.0% Ep	[3]	ΔEp=0.0188	(1/f)*∆Ep	0.00048
Cavity Factor	30% f	[4]	Δf=11.7	(1-Ep)/f^2*Δf	0.00046

f=(1-Ep)/(1-Ec)

f=Cavity Factor Ep=Emissivity of Paint Ec=Emissivity of Cavity

Notes:

[1] Factor of 1.5 times NIST* Stated Accuracy for 2 sigma

Budget ≤ 0.002

0.00072

RSS

[3] 2 x above

[4] Accounts of Cavity Model Uncertainty

[2] Worst case difference between 1 and 3 coats

* NIST Stated accuracy is 4% of Reflectivity (2 sigma)

Summary and Conclusions

- A blackbody calibration system suitable for spaceflight has been developed to meet the demanding requirements of the GIFTS instrument.
- The system builds on the strong heritage of the ground and aircraft based FTS instruments developed at UW.
- The engineering model version of this system was fully calibrated and and shown to exceed required temperature and emissivity accuracies.
- The engineering model system has been delivered to SDL for integration into the GIFTS EDU, which is currently undergoing thermal vacuum testing.

