
P2.22 DESIGN STUDIES FOR REAL-TIME DISTRIBUTED PROCESSING OF
INFRARED HYPERSPECTRAL IMAGE DATA

Raymond K. Garcia* and Maciej J. Smuga-Otto

Space Science and Engineering Center, University of Wisconsin-Madison

Faced with the challenge of enormous data volumes specified by forthcoming imaging infrared interferometers, and
the necessity of processing this data in a timely fashion, we have conducted design studies and built prototypes of a
distributed data processing system capable of meeting throughput and latency requirements. Such a system must
take in raw instrument data (interferograms of scene and reference black bodies) and produce radiometrically
calibrated infrared spectra, as well as vertical atmospheric profiles retrieved from these spectra, including
temperature and water vapor mixing ratio. The system must also take advantage of the inherently parallel profile of
the data processing, and be designed to survive many generations of computing hardware evolution. We illustrate the
current iteration of our test system, together with the problems encountered and the solutions devised. Applications to
current ground and airborne interferometers as well as future spacecraft instruments are also presented.

1. INTRODUCTION

La plus ça change... An introductory meteorology
textbook from 1970 mentions the problems associated
with classifying and storing the enormous amounts of
data (cloud photographs, as it happens) generated by
the then-active Nimbus and Tiros weather satellite
series [Barry and Chorley, 1970; p.60]. Today's satellites
generate incomparably more high-quality data than
those from 1970, and future satellite projects promise to
continue this trend.

One such instrument project, the Geosynchronous
Imaging Fourier Transform Spectrometer (GIFTS), is the
focus of our study [Smith et al. 2002]. The GIFTS is
designed to gather high-resolution infrared spectral data
from a square grid of 128 x 128 sensor fields of view at
a time, every such grid to be transmitted down from the
satellite to the front-end processor on the ground once
every 11 seconds at peak throughput. This translates to
a continuous compressed data rate of about 60 Mbps
(million bits per second), or well over a Terabyte of raw
data a day. The University of Wisconsin Space Science
and Engineering Center (UW SSEC) is performing
design studies of the GIFTS data processing system for
NOAA..

2. CONSTRAINTS AND CHALLENGES

The main challenge for designing a data processing
system for GIFTS is to ensure that it can keep up with
the realtime data inflow, while assuring correctness of
the product. Since the GIFTS is a Michelson
interferometer with an array detector, the calculations
involved very closely resemble those needed for current
atmospheric interferometer-sounders. These include
correction for detector nonlinearity, removal of frequency
scale dilation (‘off-axis’ correction needed as a result of

.* Corresponding author address: Ray Garcia,
1225 W. Dayton St., University of Wisconsin-Madison,
Madison, WI 53706; rayg@ssec.wisc.edu

optical path variation), radiometric calibration against
reference blackbody spectra, and a finite field of view
correction. Further design considerations mandate that
damaged data must be corrected or discarded, and
quality metrics must be extracted during the
calculations.

Estimates of the computational cost of the needed
science algorithms stand at approximately 200ms of
compute time per instrument pixel at typical CPU and
memory bus speeds for calendar year 2001. That
computational cost is predicted using theoretical cycle
count calculations and verified empirically using profiles
of existing instrument data processing. In order to
process such data in an acceptable amount of time, it
becomes necessary to maintain the option of using
large-scale parallel computing systems.

Significant cost savings can be achieved for large-scale
computing projects by replacing special purpose
supercomputers with clusters of commodity off-the shelf
(COTS) processors where possible. The combined
processor power of such 'Beowulf clusters' can mitigate
their comparatively poor processor interconnection
capability. The highly independent nature of the
calculations required by each detector pixel fits squarely
in the capability envelope of clustered systems.
Therefore, the data processing system for GIFTS
(henceforth called the GIFTS Information Processing
System, or GIPS) is targeted to be deployed on such a
cluster of commodity processors, necessitating careful
planning to ensure that the performance requirement is
met, and giving rise to other requirements specific to a
distributed computing environment.

Chief among these requirements is robustness—a
system deployed across a network of commodity
machines, albeit tightly coupled, must be tolerant to the
inevitable failure of some of the commodity components.
Some faults in the system can be handled on the
hardware side by the system integrator—by carefully
monitoring common health indicators like processor and
disk drive temperature—but the lion's share of the

responsibility rests on the shoulders of the software
system engineers.

Other requirements for such a system stem from a need
for longevity, easy maintainability and operability. These
requirements reduce the cost of running the system.
Given that GIFTS is intended as a research platform for
a future generation of satellite-borne high spectral
resolution interferometer-sounders, the concepts,
designs and source code used in GIPS must be
comprehensible to programmers not associated with the
initial deployment.

The requirements for the GIFTS Information Processing
System present an imposing challenge that will need to
be overcome in order to make full use of future
generations of meteorological satellites.

3 . SCIENCE INTRODUCTION—ALGORITHMS,
PIPELINES IN THE ABSTRACT

GIFTS' heritage includes instruments and associated
science processing algorithms such as UW SSEC's
uplooking Atmospheric Emited Radiance Interferometer
(AERI), NASA LaRC's NPOESS Airborne Science Test-
bed Interferometer (NAST-I), and UW SSEC's airborne
Scanning High-resolution Interferometer Sounder (S-
HIS). The GIPS system interface must specify a
consistent set of software Application Programming
Interfaces (API’s) with which to couple these science
algorithms to the data to be processed by the system.
This level of abstraction is necessary reduce design
complexity, and to facilitate future upgrades to the
science algorithms in a deployed system.

Concurrent with designing the interface is the task of
adapting the existing science algorithms to that interface
specification, and testing the algorithms separately (unit
tests), as an ensemble (functional tests), and in the
target environment (integration tests). Since these
algorithms form the core of GIPS, and since managing
them presents an inherent source of complexity, a
unifying metaphor is desirable to help grasp the salient
points of the architecture.

Since most of the processing is straightforward in the
sense that there is little or no feedback based on the
computations already performed, the chosen metaphor
is that of a “refinery.” The data can then be thought of
as being successively refined by a series of stages in a
numerical pipeline—these stages being the individual
science algorithms which act upon the data.

This metaphor encourages a functional programming
approach to the task of data processing: Each numerical
operator, representing a science algorithm, is a stateful
entity accepting a particular set of immutable data
structures as input and providing another particular set
as its output. Thus, numerical operators can be
combined together into complex stages which transform
one kind of data into another by the application of
several compatible operators in a defined order. Such

modularity goes a long way to satisfying maintainability
and documentation requirements by allowing the
inclusion of an audit trail service. This audit service
records which operations were performed on a specific
packet of data.

3.1 Science—blackbody and calibration example

An example of a set of refinery components is the linear
calibration stage. The purpose of this numerical operator
assembly is to assign physically referenced radiances to
the instrument measured intensity values. Each
spectrum is an array of (wavenumber,value) pairs prior
to the conversion, and is an array of
(wavenumber,radiance) pairs upon exit from this stage.

Figure 1. Flow diagram of simplified radiometric calibration
stage.

The conversion is effected by mapping the
measurement intensity at each wavenumber to a
physical radiance, using simultaneous blackbody
reference spectra of known temperature as a
measurement intensity scale. A limitation of the
instrument design, however, is that the blackbody
reference spectra cannot be taken simultaneously with
the measurement itself, and must be estimated.

The blackbody reference model can be represented as
a fit curve over time for each wavenumber. The source
data for building the reference model are obtained by
periodic measurements of reference blackbody sources
through the instrument optics. On aircraft and ground-
based instruments, these curves are often temporally
interpolative: this is largely due to the instability of the
instrument optics being significant in comparison to the
desired measurement accuracy. For GIFTS, a predictive
model for maintaining the fit curves is appropriate and
necessary in order to meet system performance and
capability requirements.

Given this, the operating pipeline for a given instrument
pixel includes periodic updating of the calibration model
by supplying blackbody spectra of known temperature
for that pixel. The calibration model operators in turn
provides a database of fit curve coefficients which are
applied to a measurement time offset in order to
synthesize reference spectra. The intensities of the
reference spectra are used in the calibration equation to
assign physical radiances to the measurement
intensities recorded by the detector pixel. [see Figure 1]

The implication of applying the coefficients is that the
calibration stage must maintain state information (the fit
curve coefficient 'context'), and that logic must be
capable of deciding whether to update the coefficients,
or use them to create radiances, based on engineering
information from the instrument.

The use of predictive fit curves invites later verification
of the accuracy of the prediction for use as a quality
metric, for model tuning, to provide radiance post-
correction, or to test for a need for re-computing of the
radiance spectra at that measurement time. These
considerations mandate a system requirement to allow
scheduled reprocessing.

4. SYSTEM REQUIREMENTS AND DESIGN: WHERE
SCIENCE AND DATA MEET

The task of applying the science algorithms to the
relevant data in the context of the entire processing
system brings with it new considerations and
challenges, including testing for correctness, control
mechanisms, and most important, the ability to meet
performance requirements.

The next challenge lies in running 16384 (128 x 128)
such pipelines with sufficient concurrency to ensure that
the processing system is keeping up with the data inflow
rate and meeting downstream needs for low product
latency (i.e. the time between reception and delivery).

The current specification of the GIFTS instrument
asserts that the processing of one pixel of GIFTS data is
numerically independent of the processing of another
pixel—that is, there is no need to communicate
intermediate data between parts of the system working
on spatially distinct pixels. Pixel-specific reference data
structures such as resampling intervals for off-axis
correction, nonlinearity settings for the pixel, and current
blackbody-derived calibrations to apply during the
science processing need to be available to the pixel
pipeline, but this sort of data coupling is significantly
easier to manage than a spatially-coupled system would
be.

Even with this simplifying assumption for which
communication would only need to be established
between a ‘master’ scheduling and data distribution
point and ‘workers’ assigned to push pixel data through
the pipeline, the volume of generated network traffic for
both data and control is formidable. To ensure that the
system meets requirements, the performance
characteristics are broken down into two fundamental
metrics:

Throughput is defined as the rate of data flow through
the system. Throughput provides a measure of the
system's capacity to keep up with real-time data inflow.
In order to ensure sufficient throughput, the
interconnection layer between CPUs must be able to
sustain the expected data rates. If this network layer

can sustain the load, then system throughput can
theoretically be increased by adding more computing
hardware to an existing configuration, with the caveat
that certain parts of the software may execute longer as
the configuration size grows. This so-called super-serial
term (serial component performance penalty) may be
introduced by resource limitations in the master
scheduling software, by system-wide synchronizations,
by interconnection delays and error recovery, by certain
classes of contention-resolution protocols, or by
complete network graph startup and shutdown
procedures in a communicator-based system such as
MPI. The effect is that the system's performance can be
expected to peak at a certain node count after which it
will decline as the serial component penalty outweighs
the contribution of any additional computing resources.
Using techniques that display such super-linear
behavior should thus be limited to rare special
circumstances such as fault recovery procedures,
amortized over the processing of many data cubes, or
avoided altogether.

Latency is the other crucial system performance metric
used to ensure that data products are delivered in a
timely fashion after initial receipt of raw instrument data
from the satellite. Whereas throughput requirements can
simply be met by adding more nodes to the cluster and
ensuring that pathological scaling behaviors don't offset
the performance gain thus obtained, the latency
requirements demand that the tasks to be processed be
broken down into sufficiently small pieces, so that no
single task stays "in the pipeline" past the maximum
allotted time.

An example of how throughput and latency differ can be
obtained from looking at two possible strategies for
processing GIFTS data cubes—each data cube
represents the total data collected from the 128 x 128
grid of individual detectors. At one extreme, data from
each pixel is fed to a worker node of the cluster
whenever it is freed up from processing a previous pixel.
Using this “fine granularity” approach, latency of
processing an entire GIFTS cube is limited only by
system’s total processing power. At the other extreme,
an entire GIFTS cube's worth of data is sent to a worker
to process at once—this is the coarse granularity
extreme—when the next cube arrives on the system
queue 11 seconds later, it is assigned to another (now
free) worker. With a sufficient quantity of workers, this
scheme ensures sufficient throughput to keep up with
real-time data inflow. But the latency for each cube is
then bound by the time it takes an individual node (in
this case, a computer in the cluster) to process the
entire cube. For modern hardware, that latency is on the
order of 1 hour.

The latter approach is an unacceptable risk due to
current technological limitations; the former, while
outwardly appealing, can incur significant per-pixel
transport overhead, and thus may contribute to the
aforementioned super-linear performance ceiling. Thus
this granularity of data messages becomes a tunable

parameter of the system, one that should be
manipulated to account for a variety of implementation-
specific effects and balanced to trade product latency for
overhead cost.

4.1 System requirements and design—special
concern: Robustness

A well-known property of parallel processing systems is
that since the probability of failure of any one of the
identical compute nodes is constant, the overall
probability of compute node failure increases linearly
with the number of nodes in the system. Thus, it
becomes a priority to transform likely component failures
from being system failures in to recoverable system
faults.

Any system design having constrained latency (i.e.
“real-time”) and availability requirements must include
discovery of likely failure scenarios. These scenarios
can be grouped into those involving bad hardware, bad
software or bad data that is based on device
specifications and past community experience with
similar clusters. Anticipated failure scenarios can be
used for formulation of mitigation strategies.

Mitigation strategies affect the choice of third-party
hardware and software components as well as their
intended use. The economic trade-off is between
system programmer time needed to develop autonomic
responses and thus reduce the component failure to a
system fault versus operator time (both immediate and
downstream) needed to intervene and recover from a
failure versus the price to purchase and maintain
specially hardened components not subject to the same
sorts of failure.

 Failures of hardware due to normal wear-and-tear can
be expected of a commodity computing cluster. While
interconnect failures are rare, recovery from such a
failure is potentially time-consuming. These kinds of
problems may necessitate hardware redundancy within
the system and the ability for the software to identify
faults and compensate using redundant hardware
without increasing latency. Alternately, some failure
paths, such as a power failure or interconnect failure,
may be relegated to operator intervention combined with
an acceptable recovery time.

A wide spectrum of mitigation strategies can be
identified for a software system having a requirement for
effectively uninterrupted service. At one extreme, a
component failure would cause the software to
terminate gracefully, to reconfigure appropriately, and to
restart at an earlier checkpoint known to be good. The
other extreme involves building a system that is capable
of adding and removing components dynamically, and
using this capability to reassign tasks ad hoc. The
former approach runs the risk of bringing the amount of

system downtime past explicitly set limits; the latter
necessitates a more complex system and increases
costs, especially if performance is to be maintained
during the various dynamic switchovers. Other
strategies can include fail-over, keeping a spare on
hand for rapid install, or even re-routing the entire raw
data stream off-site through contingency bandwidth to a
secondary system. Such a standby system could
interrupt its normal duties to temporarily handle the data
processing while the primary system is brought back on-
line.

A compromise might allow dynamic failover to be
implemented for those components, such as pixel
computation nodes which are most likely to fail often,
while a less choreographed technique might be utilized
for less frequent faults, such as a database server
failure which in any case may necessitate human
intervention.

The mitigation strategy for system faults must include a
means of notifying the system operator and recording
faults for the purpose of localization and backtracking.
The originating component must also be identified for
purposes of detaching, servicing and reattaching, but
trying to establish the root cause of component failure
may be an unjustifiable expense (e.g. for older
equipment), or best left to long-term statistical methods.
It will be beneficial for the system to maintain meaningful
records of its activities for use in analysis, reconstruction
and verification.

4.2 System requirements and design—special
concern: Audit trails

The algorithms, and the ways in which they are
combined, will evolve over the operational lifetime of the
system. In order to distinguish data processed by one
rather than another variant of an algorithm, an audit
service is needed to enrich the product pipeline outputs
with metadata. At its simplest, this service will record
what software was applied to the data, and in what
order. Of particular importance will be the version
signatures of the algorithm code and contributing data
structures, as well as identifying the participating
hardware. This allows for tracking down potentially
dubious data should a flaw in a particular version of an
algorithm or reference data element be discovered.
Should a problem be identified in a hardware
component, only the directly affected data would have to
be marked as defective. This data could then be
scheduled for re-processing using the system's reserve
capacity.

5. SYSTEM DIAGRAM AND OVERVIEW

Figure 2. Abstract component diagram for GIPS system
candidates.

Figure 2 lays out the abstract components and
connections of a family of tractable distributed
computing system designs intended to address the
design issues raised in the previous sections. The data
channel between nodes, for example, would need to be
wide (i.e. carry large volumes of data), fast, and have
low latency. The control channel would need to be fast
enough to match the data channel and highly reliable.
The monitoring channel would not need to be as fast or
as timely, but should be easily separable and not
interfere with either the data or the control channel. The
input, output, audit, control and worker services could be
fairly independent of each other as long as they
communicate reliably on these channels.

The breakdown of the overall problem into these
discrete components helps in the study of available
technologies for each piece and for the selection of an
optimal solution for each component in isolation. The
distributed computing environment for data delivery
could be Java/RMI or C++/MPI while the control and
monitoring channels could be written in Java/RMI,
C++/ACE, or even a high-level scripting language such
as Python using IP datagrams. Likewise, the audit
subsystem may be implemented in one of the already
listed technologies or as an independent SQL server to
be used by the other components, or as a set of XML
log files on a storage area network.

6. TRADE STUDY OF AVAILABLE COMPONENTS -
GOING TO MARKET WITH THE SHOPPING LIST

One of the most fundamental choices, which would drive
much of the rest of the system design, is choosing a
distributed computing platform. There are many
candidates: Java was built almost from the ground up to
be a network programming language, but much of the
emphasis of its native networking library (RMI) is on

ease of use and robustness with less focus on the
resulting performance. Another heavyweight contender
is CORBA which, like RMI, tries for the illusion of locally
accessible but remotely served objects. It does so at the
cost of simplicity. Another object-oriented framework is
C++/ACE (the Adaptive Computing Environment) which
wraps up network communication patterns in simple API
calls, but is only beginning to be adapted on Beowulf
clusters for the kind of problem being addressed here.
Another approach is to use message-passing C/C++
libraries like MPI, which provide good performance on a
variety of interconnects at the cost of runtime
malleability. Finally, it is possible to build a custom
solution using network primitives such as sockets, RPC
(remote procedure calls), datagram packets, and native
hardware libraries for specialized interconnects such as
Myrinet or Infiniband.

Once the platform for the main data and control
channels is established, other smaller scale design
studies still need to be performed. There is always a
need for support data to be maintained across the
system, such as for transferring the states of pipeline
operators for checkpoint, diagnostic or migration
purposes. The choice of how to do this ranges from
employing another ORB system such as RMI/CORBA,
to an SQL database such as PostgreSQL, or to
implementing it as a web service. The system operator
user interface is another area with great component
design variability. The operator console could be written
in any of Java/Swing, C/GTK, C++/MFC, or as browser-
based web application.

7. RESULTS TO DATE

7.1 First iteration studies

A first iteration of the development spiral resulted in test
code designed to explore the practical aspects of
ensuring sufficient throughput and latency. It relied on
simplified operator interfaces, and testing concentrated
on ways of monitoring the performance of both the
network layer and underlying communication API's for
purposes of tuning and evaluation.

The underlying platform for this experiment was the MPI
messaging library used from within a C++ codebase on
a Linux/x86 cluster of homogeneous nodes with gigabit
ethernet interconnect. Instead of trying to build a
complete self-sustaining 24/7 solution, a subset of the
problem was chosen that involved the explicit feeding of
one or more GIFTS datacube-shaped data sets to a
processing pipeline.

7.2 Approach

In order to run this simulation early in the design
process, two fundamental steps needed to be taken.
First, a realistic profile of the execution footprint (both
processor occupancy and wall-clock time) of a
hyperspectral instrument processing pipeline was
obtained. The existing Scanning-HIS processing code

provided the required science pipeline, and common
UNIX utilities including Gprof were used to obtain such a
profile. Although the eventual science pipeline deployed
for the GIFTS may differ from this implementation, it is
doubtful that it would be less efficient, and thus
invalidate the results of this study.

Once the profile was obtained, placeholder operators
were constructed which took up equivalent amounts of
processor cycles, or equivalent delay of clock-time, as
the science algorithms. Part of the reason for this was to
dissociate the study of performance from much more
exhaustive tests eventually needed to assure
correctness. These computing cost-equivalent black
boxes can then be inserted into a test framework and
interfaces can be refined during development without
necessitating a change in the science libraries.
Another crucial reason for creating these time-
equivalent black boxes is to allow the construction of a
large virtual cluster on a much smaller physical cluster.
Thus many copies of the pixel-worker code which would
reside on separate nodes in the target system may co-
exist on the simulation cluster if they are running
science module blackboxes which just sleep for a period
instead of taking up CPU time. The result should also
represent a “worst-case” behavior, since the virtual
workers are potentially vying for (and thus serializing)
overhead cycles on the available physical hardware.

Figure 3. Flow diagram for 'Osaka' performance demonstration.

This was the architecture chosen of the first iteration
code experiment, dubbed ‘Osaka’. It consisted of an
Input/Master node, an output node, and a configurable
number of worker nodes which could either be made to
occupy an entire physical node (in which case they ran
a CPU-occupancy equivalent) or which could be
grouped many-to-one physical node - a "sink" (in which
case they ran the wall-clock time equivalent) [See
Figure 3].

A fundamental consideration in designing the algorithm
harness for the worker nodes was to ensure that the
communication framework tasks could run in parallel
with the science computations, minimizing the number
of worker cycles wasted waiting for work to be assigned.
This was achieved by using MPI's nonblocking
messaging modes [see Figure 4].

Figure 4. UML activity diagram for workers in Osaka, showing
asynchronous send, receive combined with computations.

7.3 Observations

Various configurations of the Osaka test framework
were run on two different implementations of
MPI—MPICH and LAM. MPICH was accompanied by a
profiling library, MPE. This allowed the gathering of
performance measurements of the relative amount of
time each node spent on various kinds of tasks. The
MPE profiles were subsequently visualized using the
Jumpshot application [See Figure 5]. In order to
corroborate the behavior observed on the Jumpshot
diagrams and to allow for simple monitoring of LAM
runs, a low-overhead manual profiling library was also
included in the code. The data thus obtained provided
the basis for the performance evaluations for this initial
development cycle.

Figure 5. Annotated Jumpshot performance profile from Osaka
running a small number of virtual worker nodes.

Observations from Osaka indicate that the
startup/shutdown costs were directly proportional to the
number of virtual workers engaged in the run – in
accordance with the super-serial model of performance.
Thus adding nodes to the configuration did not result in
a proportional increase in performance but seemed to
reach an asymptote around 160 nodes, above which
which the system would become unstable. Since this
was above the number predicted necessary, it was not a
source of immediate concern. Starting up a job with
more data cubes queued up would amortize this
startup/shutdown cost, and would push the system
towards a more linear scaling behavior [See Figures 6
and 7]. In addition, it was observed that LAM provided
more predictable behavior when faced with simulated
faults, including the forced shutdown of worker nodes
during a run by killing the associated process.

Figure 6. Efficiency measurement as a function of node count
running a single data cube through Osaka. Note degradation of
efficiency due to linear increase in start-up cost.

Figure 7. Efficiency of Osaka as a function of number of data
cubes processed. Mitigation of super-linear cost is
accomplished by amortizing it over multiple data cubes.

7.4 Second iteration studies

The second iteration design studies (in progress as of
writing) include investigation of the ACE network
computing framework for the control and data channels
with a particular eye on meeting robustness objectives
simultaneously with performance objectives. This
includes, for instance, graceful admittance and dismissal
of worker resources.

Further, the specification and integration of one or more
simplified algorithm stages doing real work on simulated
GIFTS data cubes into this test code is in progress. This
will include straw-man API specifications for a reference
database and algorithm operator interfaces and test
specifications derived from heritage code and draft
theoretical basis documents.

8. CONCLUSIONS

The GIFTS instrument’s data processing requirements
pose a significant challenge to the atmospheric science
and computer science fields. The University of
Wisconsin - Madison Space Science & Engineering
Center, with significant support from NOAA and its
contractors, is aggressively working to contain the
complexity of the task in an incremental design and
implementation strategy. This strategy includes research
into integrating proven off-the-shelf hardware and
software technologies in order to of provide a scalable
and reliable distributed data processing system capable
of delivering timely products to the meteorology
community. By unfolding the dependencies and
algorithms of the science software into an array of
sixteen thousand data processing pipelines hosted on a
commodity cluster of workstations within a task
distribution framework, we demonstrate that the
challenge can be made computationally and
organizationally tractable.

9. ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with Keith
McKenzie and Anand Swaroop of NOAA as well as
Shahram Tehranian and Tony Harvey of AC

Technologies, Inc. Support for this work was provided
by NOAA federal grant NAO7EC0676 with previous
support under NASA contract NAS1-00072.

10. REFERENCES

Barry, R. G. and R. J. Chorley, 1970: Atmosphere,
Weather and Climate. Holt, Reinhart and Winston.

Gunther, Neil J., 1998: The Practical Performance
Analyst. McGraw-Hill.

IEEE/EIA 12207 (1998): Software life cycle processes.
Institute of Electrical and Electronics Engineers.

Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.;
Hanafin, J.A., and Brown, O: The Marine-Atmospheric
Emitted Radiance Interferometer: A high-accuracy,
seagoing infrared spectroradiometer. Journal of
Atmospheric and Oceanic Technology 18 (6), 2001,
pp994-1013.

Nittel, Silvia, Kenneth W. Ng and Richard R. Muntz,
Conquest: CONcurrent QUEries over Space and Time.
Nittel, Silvia with Kenneth W. Ng and Richard R. Muntz,
UCLA.

Smith, W.L.; Harrison, F.W.; Hinton, D.E.; Revercomb,
H.E.; Bingham, G.E.; Petersen, R., and Dodge, J.C.
GIFTS-The precursor geostationary satellite component
of the future earth observing system. In: IGARSS 02:
International Geoscience and Remote Sensing
Symposium, 2002. Proceedings, v.1. Piscataway, NJ,
Institute of Electrical and Electronic Engineers, Inc.
(IEEE), 2002, pp357-361.

Tobin, Dave; Baggett, Kevin; Garcia, Ray; Woolf, Hal;
Huang, Allen; Knuteson, Bob; Mecikalski, John; Olson,
Erik; Osborne, Brian; Posselt, Derek, and Revercomb,
Hank. Simulation of GIFTS data cubes. In: Conference
on Satellite Meteorology and Oceanography, 11th,
Madison, WI, 15-18 October 2001. Boston, American
Meteorological Society, 2001. Pp563-565.

Twomey, S., 1977: Introduction to the Mathematics of
Inversion in Remote Sensing and Indirect
Measurements. Elsevier Scientific Publishing Company.

Wallanu, Kurt C., Scott A. Hissam and Robert C.
Seacord, 2002: Building Systems from Commercial
Components. Addison-Wesley.

