

The status of the RTTOV forward model and an assessment of its accuracy using high spectral resolution satellite data

Marco Matricardi

Advanced High Resolution Infrared Observations EUMETSAT Darmstadt, Germany

15-17 September, 2008

Status of RTTOV-9

The development of RTTOV-9 is a joint effort of:

- Met Office (Roger Saunders and Peter Rayer)
- ECMWF (Marco Matricardi, Deborah Salmond, Niels Bormann, Alan Geer)
- Météo France (Pascal Brunel and Philippe Marguinaud)

Status of RTTOV-9

- Parameterised aerosol scattering for a range of user aerosol components
- New cloud parameterised scattering for infrared sensors <u>inside</u> RTTOV
- Linear in optical depth approximation for the Planck function to improve the accuracy of the radiance computation
- Include reflected solar radiation for wavelengths below 5 microns.
- Now six variable gas profiles which can be supplied to RTTOV (H2O, O3, CO2, N2O, CO, CH4)
- Further optimisation of optical depth computations for all gases for high resolution IR sensors (RTTOV-9 predictors)
- An altitude dependent variation of local zenith angle and optionally allow for atmospheric refraction
- The input profile levels can be defined by user and the radiances and transmittances output are on the same levels allowing better mapping of computed jacobians on to user levels
- Simplified interface to avoid need to specify polarisation (NB SSM/I chan numbers)
- The 2m surface humidity variable can now be an active variable in the state vector
- The Mie scattering tables used by RTTOV_SCATT updated to increase their dynamic range

Plans for RTTOV-10

- Include Zeeman splitting for AMSU-A (14) and SSMIS (Yong Han)
- Provide new LBLRTM based coefficients for CrIS
- Add Non-LTE
- Rewrite coeff generation software and make available to users
- Upgrade FASTEM-3 microwave ocean surface emissivity
 Upgrade FASTEM-3 over land for lower frequencies (SMOS)
- Add new SSU predictors for reanalyses
- **Design for including principal components capability (PC-RTTOV)**
- Simple VIS/NIR optical depth and scattering calculations

RTTOV-9 monitoring experiments

- Four monitoring experiments have been run using cycle 33R1 of the ECMWF Integrated Forecasting System (IFS) at T799 (25 km) resolution.
- A feature of cycle 33R1 is a vertical discretization of the atmosphere into a grid of 91 pressure levels. The spacing of the grid follows the horography of the terrain while the top level is fixed at 0.01 hPa.
- IASI radiances have been compared to radiances simulated using version 9 of the RTTOV fast forward model over a fifteen day period from the 1st April 2008 to the 15th April 2008.

RTTOV-9 monitoring experiments

Coefficients ^{1,2}	Continum	CO2 line mixing	Molecular database
kCARTA ¹ 52 profile training set <i>Chevalier (2003)</i>	MT_CKD_v1.1_UMBC Mlawer et al. (2004)	CO ₂ P/Q/R branch Line mixing (v2 and v3) <i>Strow et al. (2002)</i>	HITRAN_2000 Rothman et al. (2003)
GENLN2 ²	CKD_2.4	CO_2 Q branch (v2 and v3)	HITRAN_2000 Rothman et al. (2003)
43 profile training set Matricardi and Saunders (2000)	Clough et al. (1989)	<i>Strow et al. (1994)</i>	
LBLRTM ² 83 profile training set <i>Matricardi</i> (2008)	MT_CKD_v1.1 Mlawer et al. (2004)	CO ₂ P/Q/R branch Line mixing (v2 and v3) <i>Niro et al.</i> (2005)	HITRAN_2000 HITRAN_2004/06 <i>Rothman et al. (2005)</i> GEISA_2003 <i>Husson et al. (2005)</i>

¹ Brunel, Météo France
² Matricardi, ECMWF

RTTOV-9 monitoring experiments

In addition to the three basic experiments where the concentration of CO₂, N₂O, CO and CH₄ is kept fixed, we have run a further experiment (using LBLRTM coefficients) where the concentration of these species is varied.

To vary the concentration of the trace gases we have taken as representative of the in-situ situation the nearest (in geographical terms) profile chosen among those in the 83 profile training set. The concentration has than been scaled according to the monthly average value measured at the nearest CMDL or AGAGE station.

Foreign broadening

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008

[©] ECMWF 2008

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008

© ECMWF 2008