IASI measurements of short-lived species

Pierre Coheur, Lieven Clarisse, Daniel Hurtmans, Catherine Wespes

Spectroscopie de l'Atmosphère, Chimie Quantique et Photophysique, Université Libre de Bruxelles, Belgique Cathy Clerbaux, Solène Turquety, Juliette Hadji-Lazaro

Service d'Aéronomie / CNRS, IPSL, Université Paris 6 Paris, France

IASI

- Instrument and status
- Measurements and products
- Measuring short-lived species: 4 examples HNO₃ Trace species in biomass burning plumes SO₂/Aerosols in volcanic plumes Dust storms

IASI instrument and status

Jun. 4, 2007 Sep. 27, 2007 Mar. 1, 2008 L1C Operational dissemination L2 (P, T, clouds) operational dissemination L2 (trace gases) operational dissemination

MetOp: First European meteorological platform on polar orbit (EPS system)

Measurements and Products

Measurements and Products

Profile/Column retrievals based on the Optimal Estimation Theory; NRT processing

For HNO3, total column mostly relevant

Total columns

Total columns

Preliminary time series

PSCs formation / denitrification during Antarctic polar night

Total columns

Preliminary time series

Towards tropospheric columns

$$[HNO_3]_{tropo} = [HNO_3]_{total}^{IASI} - [HNO_3]_{strato(215 \rightarrow 2hPa)}^{MLS}$$

Fires in Southern Europe in Summer 2007

868 252 ha burned in 14 countries (EFFIS/JRC)

Burnt areas

Countries most affected: Greece: 270 563 ha; Italy: 153 884 ha; Albania: 127 880 ha; Bulgaria: 67 747 ha; Spain: 55956 ha

Fires in Southern Europe in Summer 2007

Plume composition

Total column retrievals for August 25

NH3

55

SA/CNRS-ULB

50

45

April/May 2008: Russia worst forest fires in 30 years

Fires in Boreal regions in Spring/Summer 2008

Sensitive to high and low altitude plumes

Sensitive –highly– to high altitude plumes only →Use for aerial security Vertical profile retrievals with 3 km height-resolution

P.F. Coheur. 4th Hyperspectral Meeting, Darmstadt, September 2008

Tracking SO₂ plumes

Jebel-at-Tair, September 2007

Tracking SO₂ plumes

May 10 → May 12, 2008

Etna (Sicily), July 2008

GOME-2

P.F. Coheur. 4th Hyperspectral Meeting, Darmstadt, September 2008

Tracking SO2 plumes Benefit of different platforms

IASI

Etna (Sicily), May 2008

One day

P.F. Coheur. 4th Hyperspectral Meeting, Darmstadt, September 2008

Tracking SO₂ plumes from **degassing** volcanoes

Kilauea (Hawaii), May 2008

Use of SO₂ v_1 to increase sensitivity to the surface (<5 km) Sensitivity down to less than 1 DU

Dust plumes

IASI observation on March 3, PM

P.F. Coheur. 4th Hyperspectral Meeting, Darmstadt, September 2008

Dust plumes

MODIS

IASI

Middle East, March 2008

P.F. Coheur. 4th Hyperspectral Meeting, Darmstadt, September 2008

March 4

March 3

Dust plumes

Dust storm (L. Clarisse)

Sand storm in China (May 27, 2008)

Conclusions

IASI is doing great!

Small pixel size Global Earth's coverage twice daily Wide spectral coverage Low radiometric noise

NRT-identification and tracking of pollution plumes

Nominal operations since May 2007

$10 \rightarrow 15$ species are monitored with applications in

- Climate (H₂O and isotopologues, CO₂, CH₄, N₂O)
- Ozone chemistry in the stratosphere (O₃, CFCs, HNO₃)
- Tropospheric chemistry (O₃, CO, CH₄, HNO₃, VOCs) including chemistry and budgets for short-lived species (NH₃, VOCs) and aerosols
- Operational monitoring (fires, volcanoes, dust storms...)

July 2008 eruptions in Alaska

Okmok

Kasatochi plume still to be seen, more than a month after the eruption