Use of IASI as an Inter-Calibration Reference

Tim Hewison

With thanks to:

Marianne König, Johannes Müller, Lars Fiedler (EUMETSAT), Bob Iacovazzi, Likun Wang (NOAA), Denis Blumstein (CNES), Dave Tobin (CIMSS), and many more...

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy

- Meteosat-IASI Inter-Calibration
 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Contents

Introduction to GSICS

- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Global Space-based Inter-Calibration System

- What is GSICS?
 - Global Space-based Inter-Calibration System
 - Initiative of CGMS and WMO
 - An effort to produce consistent, well-calibrated data from the international constellation of operational satellites
- What are the basic strategies of GSICS?
 - Make pre-launch instrument tests traceable to SI standards
 - Improve on-orbit calibration by integrated cal/val system
 - Initially by LEO-GEO Inter-satellite/inter-sensor calibration
- This will allow us to:
 - Better specify future instruments
 - Improve consistency between instruments' observations
 - Produce less bias in Level 1 and 2 products
 - Retrospectively re-calibrate archive data using this

GSICS Interface to R/SSC-CM

Regional Specialised Satellite Centers on Climate Monitoring (R/SSC-CM) Network will be:

- Based on activities of existing initiatives (GOS, GCOS and GSICS)
- Build upon existing operational infrastructures
- Serve users and other organisations (e.g. WMO Regional Climate Centres RCC, National Weather Services)
- => The way toward operational production of ECVs

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Inter-calibration Strategy

Use of IASI as a Reference

Meteosat Geostationary Imager

Infrared Atmospheric Sounding Interferometer, IASI, on Metop polar-orbiting satellite

Benefits of IASI as reference:

- Well-characterised
- Carefully controlled calibration
- Built-in linearity controls
- No spectral gaps
- On same platform as HIRS/4

Can cross-check with AIRS:

- Simultaneous Nadir Overpasses: SNOs
- Inter-calibrating Meteosat-AIRS

Contents

• Introduction to GSICS

- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration
 - Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Outlook
- Conclusions

MET/TJH1 New Radiance Definiton!

Tim Hewison, 8/26/2008

 \circ

Collocation Criteria

Simultaneous near-Nadir Overpasses

of Meteosat and Metop

- Only night-time data
- ΔLat < 30°, ΔLon < 30° of SSP
- $\Delta t < 15$ mins (=scan period)
- $|\theta| < 15^{\circ}$ (Incidence angle)
- $\Delta \theta < 2^{\circ}$ (Incidence angle diff.)
- 5x5 MSG pixels / IASI iFoV

Restricts collocations to Tropics ~1 orbit/day ~200 good collocations

Spectral Convolution

Missing Energy in MSG 3.9 µm channel

Black-body Planck function at 290K convolved with Spectral Response Function of MSG Integrate to calculate Total Radiance Missing energy not seen by IASI in the Small fraction beyond 2760cm⁻¹ Convert to Brightness Temperatures

Result:

IASI under-estimates MSG 3.9μ m radiance by 1.33% of scene radiance, or ~ 0.17 K at 290K (Scene-dependent)

Not accounted for in analysis

Spatial Averaging

Average Meteosat pixels within each IASI iFoV

Estimate uncertainty due to spatial variability as Standard Deviation of Meteosat pixels

Use in weighted regression

Regression

defined as modal value (typical clear sky radiance)

MVIRI on Meteosat-7 – IASI on Metop-A

Time series of brightness temperature differences between Met7-IASI for typical clear-sky radiances: Each Met7 infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

Contents

• Introduction to GSICS

- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Meteosat-7 – HIRS Inter-Comparisons

2007

- Comparisons of Met-7 HIRS –Processed operationally at EUMETSAT
 - -used to check Met-7 calibration
- Needs to account for different SRFs —Increases uncertainty
- Noisy, but stable
- WV: +2.8 ± 1.0 K
- IR : -2.5 ± 0.6 K
- Biases similar to Met-7 IASI
- Variances much larger

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration
 - Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

SEVIRI on Meteosat-8 – IASI on Metop-A

Time series of brightness temperature differences between MSG1-IASI for typical clear-sky radiances. Each MSG infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

SEVIRI on Meteosat-9 – IASI on Metop-A

Time series of brightness temperature differences between MSG2-IASI for typical clear-sky radiances. Each MSG infrared channel is shown in a different color, with different symbols, following the legend. Error bars represent statistical uncertainty on each mean bias (may be very small).

Summary of Meteosat-IASI during 2007 (using original IMPF radiance definition)

Channel (µm)		3.9	6.2	7.3	8.7	9.7	10.8	12.0	13.4
Ref Scene T _{bref} (K)		290	240	260	290	270	290	290	270
Meteosat-7	Mean Bias (K)		+2.57				-1.	63	
	Std. Dev. (K)		0.12				0.19		
Meteosat-8	Mean Bias (K)	0.46	0.56	0.77	0.22	0.19	0.16	0.13	-0.13
	Std. Dev. (K)	0.09	0.08	0.18	0.09	0.14	0.07	0.07	0.16
Meteosat-9	Mean Bias (K)	0.17	0.61	0.25	0.02	0.00	0.03	0.05	-1.63
	Std. Dev. (K)	0.10	0.05	0.04	0.04	0.07	0.06	0.06	0.26

Brightness Temperatures, T_b, for Reference Scenes and Mean Difference between Meteosat and IASI during 2007.

Statistically significant (at >95% level) biases highlighted in **bold**.

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Outlook
- Conclusions

Ice Contamination of Meteosat IR13.4

- \bullet Inter-calibration of MSG-IASI showed bias in 13.4 μm channel, increasing by ${\sim}1 \mbox{K/yr}$
- Recovers after decontamination
- Theory: Due to Ice on optics

Time series of relative bias (Meteosat-9 – IASI) Lines show fits to data before and after decontamination

Ice Contamination of Meteosat IR13.4

- \bullet Inter-calibration of MSG-IASI showed bias in 13.4 μm channel, increasing by ${\sim}1 \mbox{K/yr}$
- Recovers after decontamination
- Theory: Due to Ice on optics
- 2 Models of ice absorption –from CNES & Astrium
- Changes SRF of IR13.4

Transmission spectra of ice layers of different thicknesses (black): 12 - 2000 nm layers. Spectral Response Functions of Meteosat-9 (red).

Ice Contamination of Meteosat IR13.4

- \bullet Inter-calibration of MSG-IASI showed bias in 13.4 μm channel, increasing by ${\sim}1 \mbox{K/yr}$
- Recovers after decontamination
- Theory: Due to Ice on optics
- 2 Models of ice absorption –from CNES & Astrium
- Changes SRF of IR13.4
- Introduces bias when not accounted for in calibration
- Can be modelled by ~1µm ice

Brightness temperatures Bias modelled by modifying Meteosat-9's SRF by the absorption of different thicknesses of ice.

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

HIRS-IASI Inter-Calibration

- HIRS = *High-resolution* Infrared Radiation Sounder
- Operated on polar-orbiting satellites since 1970s
 - Importance for Climate-monitoring applications
 - Potential reference for inter-calibration of older GEO radiometers
- Can inter-calibrate with IASI
 - Similar method to Meteosat
- HIRS/4 IASI both operate on Metop-A
 - Easy collocations
 - Over full global range of conditions
 - Allow detailed break-down of statistics

Collocating under-sampled scan patterns

- GEO-LEO spatial collocation: -All GEO pixels within LEO FoV
- LEO-LEO SNO spatial collocation: —Resample microwave e.g. lacovazzi *et al.* [2007]

But on Metop-A:

HIRS & IASI are under-sampled

 Should not interpolate
 Take 'overlapping' pixels
 [Fiedler (EUMETSAT)]
 [Wang et al., 2008]
 Or average 4 IASI iFoVs

10km 12 km HIRS IASI

Define overlapped HIRS-IASI pixels at nadir whose distance are less that (12+10)/2=11 km

HIRS-IASI collocations + environment

- HIRS pixels <
- Ø =10km @ nadik
- Δx=26km @ nadir
- Δy~43km @ nadir
- IASI pixels
- Box of 4 IASI iFoVs (Define environment)
- Collocated HIRS pixelswithin IASI iFoV box

IASI T_b Spectrum + HIRS SRFs

HIRS-IASI Brightness Temp. Bias [K]

Most channels unbiased

Bias depends on brightness temp.

HIRS-IASI Bias at T_{bref}

- Relative biases of HIRS-IASI - for two Metop orbits • 1- σ uncertainty ~0.01 K Largest biases in bold -Channels with low T_{bref} • All biases < 1 K• In second case (~1 yr later): -first 2 channels changed -others very constant -RMS difference = 0.03 K Processed operationally
 - Processed operationally –at EUMETSAT since June 2008 –See Lars Fiedler

HIRS	Reference	HIRS-IASI bias at <i>T</i> _{bref} [K]			
Channel	Scene,	2007-04-27	2008-05-07		
	T_{bref} [K]	19:38	20:56-		
1	230	-0.35	-0.06		
2	220	-0.22	-0.06		
3	215	-0.03	-0.04		
4	225	0.12	0.04		
5	240	0.60	0.61		
6	255	0.22	0.18		
7	265	0.20	0.23		
8	285	0.08	0.10		
9	260	0.00	-0.01		
10	280	0.18	0.21		
11	260	0.02	0.01		
12	235	-0.25	-0.32		
13	275	-0.03	-0.06		
14	260	0.04	0.02		
15	250	-0.80	-0.76		
16	240	-0.46	-0.45		
17	280	0.11	0.13		
18	285	0.09	0.11		
19	290	0.02	-0.02		

IASI – HIRS for radiance monitoring at EUMETSAT

- IASI and HIRS co-location criteria is 3 km distance
- All situations (land, sea, day, night, etc.) are collected
- Maximum of 10 IASI-HIRS co-locations per IASI scan line
- IASI versus HIRS monitoring started end of May 2008
- About 1 million collocations have been recorded

Bias IASI – HIRS Scene temperature dependency Channel 15

Slide: 39

Bias IASI – HIRS Scene temperature dependency Channel 16

IASI - HIRS geo distribution of bias ch15

IASI - HIRS geo distribution of bias ch15 clear sky

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Simultaneous Nadir Overpass (SNO) Method

- Allow direct comparison of instruments on 2 polar-orbiting satellites
- Only in polar regions for sun-sync satellites
 - near North & South poles
- Every few days
- Integrate AIRS & IASI radiance spectra
- Compare 33 boxcar
 pseudochannels

Courtesy of Bob lacovazzi (NOAA)

AIRS-IASI by SNO – Results for 13.4 µm

- Plot of Brightness Temperature difference
- AIRS-IASI 13.4 µm pseudochannel
- Small biases <1K
- Stable over >1yr
 - Can calc mean of all
- For all channels >4.5µm
- Biases depend on radiance
- Ongoing work See also
 - Denis Blumstein (CNES),
 - Dave Tobin (CIMSS)

StDev SH StDev NH

Data from <u>GSICS website</u>

.Mean SH

"Mean NH

Analysis of IASI-AIRS North Polar SNOs

- Plot of Mean IASI-AIRS Brightness Temperature differences
 - from 58 SNOs
 - July 2007 to Sept 2008
 - in 33 pseudo channels
- Stable over >1yr
 - No significant trends
- Small differences < 0.5K
- r.m.s. difference =0.18K
- No mean difference
 - 0.04K and not significant
- Ongoing work
 - see Bob lacovazzi (NOAA)

Plot of mean IASI-AIRS Brightness Temperature differences. Y-error bars show standard error of the mean.

X-error bars show the full spectral range of each pseudo channel.

Data from GSICS website

Analysis of IASI-AIRS South Polar SNOs

- Plot of Mean IASI-AIRS Brightness Temperature differences
 - from 53 SNOs
 - July 2007 to Sept 2008
 - in 33 pseudo channels
- Stable over >1yr
 - No significant trends
- For >4.2µm *channels* :
 - Small differences <0.5K
 - r.m.s. difference =0.18K
- Large differences at ≤4.2µm
 - Due to IASI problems at low radiances scenes
- Other SNOs are available:
 - Denis Blumstein (CNES),
 - Dave Tobin (CIMSS)

Plot of mean IASI-AIRS Brightness Temperature differences. Y-error bars show standard error of the mean.

X-error bars show the full spectral range of each pseudo channel.

Data from GSICS website

Northern SNO's from Dave Tobin

Southern SNO's from Dave Tobin

ECMWF bias monitoring for AIRS & IASI

Channel (µm)	<airs-fg> (K)</airs-fg>	< IASI-FG> (K)
14.98	-3.3	<-2
14.33	-0.3	-0.1
14.03	-0.3	0.0
10.90	-0.6	-0.1
9.622	+0.1	-1.6
8.840	-0.3	-0.5
7.513	-0.1	-0.1
7.130	+0.8	-0.2
6.426	>+2	+0.1
4.426	+0.9	+0.6
4.186	+1.5	+0.4
4.175	-0.5	-0.5
4.013	+1.1	+0.6

• Jan 2008

- Tropics, Clear Skies over Sea
- Day and night

 But different orbits!
 May not be comparable
- Mean OBS-FG estimated
 _Same AIRS-IASI channels
- Significant biases (>95%) in **bold**:
 - 4 channels for AIRS
 - 2 channels for IASI
- Processed operationally

 at EUMETSAT since June 2008
 See Lars Fiedler

RM: Daily average of radiance bias in brightness temperature at 280K

Slide: 51

Contents

- Introduction to GSICS
- EUMETSAT Inter-Calibration Strategy
- Meteosat-IASI Inter-Calibration

 Meteosat-HIRS inter-comparison
- Meteosat Ice Contamination Model
- HIRS-IASI Inter-Calibration
- AIRS-IASI inter-comparison
- Conclusions

Conclusions

- Inter-calibration of IR channels with IASI
 - Can be used to monitor relative biases
 - With a repeatability of <0.20 K for Meteosat-7,

<0.20 K for Meteosat-7, ~0.10 K for Meteosat-8, ~0.05 K for Meteosat-9, ~0.03 K for HIRS/4

- Detect day-to-day changes, or monthly trends
- Develop and validate correction algorithms
- Near real time and archive applications
- Small, steady differences between AIRS-IASI (<0.5K)
- Example of application of GSICS
 - Global Space-based Inter-Calibration System

Thank you

Questions and Answers