More Spectroscopy Than You Ever Hoped to Hear About

Tony Clough

Advanced High Spectral Resolution Infrared Observations EUMETSAT

16 September 2008

Clough Assoc.

Collaborators

- Water Vapor Line Parameters
 - Laurent Coudert
 - Jean-Marie Flaud
 - Linda Brown
 - Bob Gamache
- Carbon Dioxide Line Parameters
 - Jean-Michel Hartmann
 - Niro
 - Tashkun
 - Jean-Marie Flaud

LBLRTM Considerations

• LBLRTM Issues

- Changing water in a layer > changes layer boundary altitudes > changes level temperatures
 - Simultaneous temperature and water vapor retrievals are effected
 - Fix boundary altitudes on input (hydrostatic equation not satisfied)
- AJ: self broadening of water vapor lines is not treated
- Upwelling Radiance Calculations: Currently NO capability to include downwelling radiance at upper boundary
 - Not a problem for TOA
 - Problem for HIS, e.g. ozone
 - Problem for AJ

What is 'Truth'?

- Spectral Residuals are Key!
- **Consistency within a band system** •
 - $-v_2$ band to investigate consistency for H₂O
- **Consistency between bands** •
 - IASI v_2 and v_3 bands to investigate consistency for CO₂
- Consistency between species •
 - TES: temperature from O_3 and H_2O consistent with CO_2 ; N_2O
- **Consistency between instruments**
 - IASI

- TES

- AIRS

- NAST-I

- MIPAS

- AERI

- ACE - SHIS

Temperature Retrievals

- Carbon Dioxide
 - Niro et al. Line Coupling- implications for co2 continuum
 - Accuracy of collision rates
 - Limitations of impact approximation
 - Significant impact on our understanding of absorption far from band center
 - Chi factor- duration of collision effects
 - Line intensities- MIPAS line strengths
 - Tashkun, Teffo, Flaud et al.
 - H₂O broadening of CO₂

CO₂ Line Coupling : Effect on Spectra

Line Parameters:

- Niro, F., K. Jucks, J.-M. Hartmann, Spectra calculations in central and wing regions of CO2 IR bands. IV
 Software and database for the computation of atmospheric spectra:
 J Quant Spectrosc Radiat Transfer., 95, 469-481.
- P, Q, & R line coupling for bands of importance
- Niro et al. code modified to generate first order line coupling coefficients, y_i.
- Works in regular line by line mode with LBLRTM
- Temperatures: 4

Chi Factor

Line CouplingDuration of Collision

CloughBurch/Benedict based og band

- Line Shape:
 - Impact Approximation
 - Duration of collision effects under study

• Continuum:

- X Factor
- Sampled 2 cm⁻¹
- New definition required
- Temperature dependence ??

Line Coupling

Lorentz (Impact)

$$k_{i}(v) = \frac{1}{\pi} \frac{S_{i}}{\left(v - v_{i}\right)^{2} + \alpha_{i}^{2}} \begin{bmatrix} \alpha_{i} + y_{i}\left(v - v_{i}\right) \end{bmatrix}$$

Line coupling coefficient: y_{i}

$$k(v) = \sum_{i} \frac{1}{\pi} \frac{S_{i} \alpha_{i}}{(v - v_{i})^{2} + \alpha_{i}^{2}} + \sum_{i} \frac{1}{\pi} \frac{S_{i} [y_{i} (v - v_{i})]}{(v - v_{i})^{2} + \alpha_{i}^{2}}$$

far from line center :
$$(v - v_i) \gg \alpha_i$$
 e.g. continuum

$$= \sum_i \frac{1}{\pi} \frac{S_i \alpha_i}{(v - v_i)^2} + \sum_i \frac{1}{\pi} \frac{S_i [y_i (v - v_i)]}{(v - v_i)^2}$$

let $V_i = V_o + \delta_i$ *far from band center with* $(V - V_o) >> \delta_i$

$$= \frac{1}{\pi} \frac{1}{(\nu - \nu_o)^2} \sum_{i} S_i \alpha_i + \frac{1}{\pi} \frac{1}{(\nu - \nu_o)^2} \sum_{i} S_i y_i \delta_i$$

New Definition for Continuum Function

Wavenumber

(cm-1)

Q-Branch

8

CO2 Continuum Symmetrized Power Spectral Density Function

CO2 Continuum Symmetrized Power Spectral Density Function

Introduction

IASI

٠	Scan Rate	8 secs
•	Scan Type	Step and dwell
•	Pixel IFOV	0.8225°
•	IFOV size at Nadir	12 km
•	Sampling at Nadir	18 km
•	Earth View Pixels / Scan	2 rows of 60 pixels each
•	Swath	± 48.98°
•	Swath	± 1066 km
•	Spectral Range	645 to 2760 cm-1
•	Resolution (hw/hh)	0.25 cm-1
•	Lifetime	5 years
•	Power	210 W
•	Size	1.2 m x 1.1 m x 1.3 m
•	Mass	236 kg
•	Data rate	1.5 Mbps
•	Radiometric Calibration	< 0.1 K

- The IASI programme is led by
- Centre National d'Études Spatiales (CNES) in association with EUMETSAT.
- Alcatel Alenia Space is the instrument Prime Contractor.

Joint Airborne IASI Validation Experiment

JAIVEx 19 Apr 2007 CART-site (03:35 UTC)

IASI JAIVEx 19 April

IASI/LBLRTM Validation

IASI

SONDE

RETV

Temperature

$CO_2 v_3$ spectral region

Radiance O - C (W/m2/sr/cm-1)

'Bandhead' $CO_2 v_3$ spectral region

Water Vapor Retrievals

- Water Vapor
 - Variability: Horizontal / Vertical / Time
 - Residuals are consistently greater than IASI noise
 - Coudert et al. Line Strengths
 - Line Widths
 - Continuum
 - Provides the extra absorption previously provided by the 'super Lorentzian' chi factor
 - Based on dipole allowed transitions with widths ~ 50 cm-1
 - Same line shape is used for every line from the Microwave to UV
 - Implications from downwelling spectra at the ARM NSA site.

Water Vapor v₂ Region

Water Vapor v_2 Region : Impact of Coudert Intensities

IASI 19 April Water Vapor

Detail of Band Center

AERI Downwelling Radiances ARM NSA Site

SRF file: srftables_031115v3.hdf

METHANE

Summary

- Carbon Dioxide:
 - Line Coupling is the key!
 - Relaxation Matrix needs adjustment and/or
 - Duration of Collision Effects need to be included
 - CO₂ Continuum requires modification
 - v₂ and v₃ approaching consistency
 - Tashkun v_3 line parameters to be evaluated
 - $-v_2$ Q-Branch not yet consistent

Summary

- Water Vapor:
 - Line Intensity Issue Coudert Line Parameters being adopted Internal consistency is not necessarily conclusive
 - Residuals are too large (much larger than IASI noise)
 - Line Coupling, Widths and Shifts ?
- xx Simultaneous retrieval of Temperature and Water Vapor xx
- Retrievals for other species are generally excellent
- Updated Code and Line Parameters are available
 - Separate Line Coupling file (Hartmann) available: aer_v2.1
- Spectral Residuals are a CRITICAL validation criterion

C'est Incroyable !

AIRS/model comparisons

- Mean residuals for 36 "clear-sky" cases
 - ARM TWP Phase 1 AIRS validation
 - Layer profiles, AIRS and SARTA radiances supplied by L. Strow and S. Hannon

Impact of CO₂ Line Coupling in the Infrared

Temperature: CO₂ Spectral Regions

 $CO_2 v_2$

 $CO_2 V_3$

SRF file: srftables_051118v4.hdf

$CO_2 v3$ line parameters

V. H. Poyne (AER) 04 Sep 08 16:01

CO₂ v3 line parameters

V. H. Poyne (AER) 05 Sep 08 16:11

Profile from IASI JAIVEx case

Water Vapor

IASI/LBLRTM Validation

IASI

SONDE

RETV

RETV

Status of Two Key Elements of the Forward Model in the Longwave: Carbon Dioxide Spectroscopy and the Water Vapor Continuum

Tony Clough

Atmospheric & Environmental Research, Inc.

EGU, Vienna 16 April 2007

Carbon Dioxide Spectroscopy

Mark Shephard and Vivian Payne

Observations

- Tropospheric Emission Spectrometer (TES)
- Scanning High Resolution Interferometric Sounder (SHIS)
- Atmospheric InfraRed Spectrometer (AIRS)

Acknowledgments

- University of Wisconsin
 Hank Revercomb, Bob Knuteson and Dave Tobin
- **TES Team** Linda Brown, Aaron Goldman, Curtis Rinsland, Helen Worden, etc., etc.
- Creteill Jean Michel Hartmann's Group

TES - SHIS Radiance Comparison

- TES Convolved to SHIS ILS
- {TES LBLRTM(TES Geometry)} {SHIS LBLRTM(SHIS Geometry)}

Aura Validation Experiment (AVE) 11/07/04 2298_0003_10

40

SHIS Analysis from AURA Validation Experiment Persistent Spectral Residuals

LBLRTM Approach for Carbon Dioxide (up to this point)

Lorentz Impact

$$k_{i}(v) = \frac{1}{\pi} \frac{S_{i}}{\left(v - v_{i}\right)^{2} + \alpha_{i}^{2}} \qquad \left[\chi(v - v_{i})\right]$$

χ_i : line coupling and duration of collision effects

Line Coupling Parameters for the 5 < 2 Band

SHIS Analysis from AURA Validation Experiment Gulf of Mexico - no sonde

AIRS Analysis ARM Tropical Western Pacific site - sonde

Summary 1

- Forward Model for Temperature Retrievals significantly improved
 - P-R line coupling is a key element
- Carbon Dioxide:
 - χ factor and continuum strongly influenced by line coupling
 - need to introduce small χ factor for duration of collision effects
 - CO₂ Continuum has been reduced by 25% for best fit at bandhead
- v_2 and v_3 are apparently not yet fully consistent
- Line Coupling for N₂O
- Updated Code and Line Parameters to be made public
 - separate Line Coupling file (Hartmann) available: TAPE2
- Spectral Residuals will likely become the validation criterion

MT_CKD Water Vapor Continuum Model

- Definition: Continuum is that absorption with slow spectral dependence which, when added to the line by line absorption, provides agreement with measurement.
- Scaling: Dependence on pressure, temperature and mixing ratio must be correct
- The model is based on contributions from two sources:
 - 1. Allowed line contribution
 - Line wing formalism constrained by the known physics with relevant parameters (~2) determined from laboratory and atmospheric Measurements
 - Same line shape is used for every line from the Microwave to 20,000 cm-1
 - 2. Collision-Induced contribution
 - Provides the extra absorption previously provided by the 'super Lorentzian' chi factor
 - Based on dipole allowed transitions with widths ~ 50 cm-1
 - Same line shape is used for every line from the Microwave to UV
- The model includes both self and foreign continuum
- Spectral region: 0 20,000 cm⁻¹

AIRS Analysis ARM Tropical Western Pacific site - sonde

Summary 2

- Issues with water vapor continuum have become remarkably muted
- Collision induced component addresses measurement issues
 - No direct validation of mechanism is apparent
- Self and Foreign each use a single separate line shape for all lines to construct the respective continua over full frequency domain
- Self Continuum (line wing component) dominant between bands
- Foreign Continuum (collision induced) dominant within bands
- Well Validated in 0-10 cm-1 (microwave); 400-500 cm-1; 800 -1300 cm-1; and 2500-2700 cm-1 (SST)
- Validations needed 10-400 cm-1 and Shortwave
- Temperature Dependence! Laboratory Measurements (Lafferty)
- MT_CKD Water Vapor Continuum is publicly available
 - http://rtweb.aer.com