Non-linear estimation of carbon dioxide concentrations using the spectral information from the Atmospheric Infrared Sounder (AIRS)

Youri Plokhenko, W. Paul Menzel, Robert Knuteson, and Henry Revercomb SSEC/CIMSS, University of Wisconsin-Madison

4th HSR Workshop, Darmstadt, 15 Sept 2008

Talk Outline

- Statement of Objectives (CO2 Retrieval but also T, WV, O3, Clouds, Surface)
- Methodology (Processing Stages)
- Retrieval Equations
- Sensitivity Study
- CO2 channel selection
- Vertical layering
- Residuals Analysis
- Dynamic Bias Tuning
- CO2 weighting functions
- Unique method for handling first guess dependence.
- Case Study near Mauna Loa, Hawaii
- Conclusions

Objectives: Study properties of non-linear estimate of carbon dioxide spatial-temporal distribution

Approach & problem statement

- Geophysical parameters at cloud free pixels are retrieved with a non-linear radiative transfer formulation. The radiative transfer model for a cloud free atmosphere includes spectral reflection at the lower boundary. A modified UMBC SARTA code is used for atmospheric spectral transmittance calculations. The physical parameters included in the model are:
- (1) surface emissivity spectrum (13 spectral parameters),
- (2) surface temperature,
- (3) atmospheric temperature vertical profile (35 vertical parameters),
- (4) atmospheric moisture vertical profile (22 vertical parameters),
- (5) atmospheric ozone vertical profile (17 vertical parameters)
- (6) atmospheric CO2 vertical profile (16 vertical parameters).
- In all 104 variables are estimated with each spatial pixel. A solution is derived from minimization of the spatial integral of a weighted absolute difference (measurement – model).

18 granules of AIRS measurements from Oct 2002 – Jan 2004 over Hawaii were processed and analyzed

Information flow chart

Non-linear spectral filtering using statistics of second spatial differential of AIRS radiative fields

Physical interpretation: *Cloud identification* Initialization: ECMWF data for atmospheric parameters and surface temperature and pressure

е

е

d

h

а

С

k

Spatial smoothing at cloud free pixels

Physical interpretation: *Estimation of geophysical parameters of surfaceatmosphere system at cloud free pixels*

Initialization: fixed CO2 vertical profile 365 ppmv at each level and ECMWF data for atmospheric parameters and surface temperature and pressure

Radiative transfer model tuning

Measurement model

$$\tilde{\mathbf{J}}(\theta) = \varepsilon(\theta) B[\mathbf{T}_{s}] \tau_{s}^{\uparrow}(\theta) + \int_{\tau_{s}^{\uparrow}(\theta)}^{1} B[\mathbf{T}(\mathbf{p})] d\tau^{\uparrow}(\mathbf{p},\theta) + (1 - \varepsilon(\theta)) \tau_{s}^{\uparrow}(\theta) \int_{\tau_{0}^{\downarrow}(\mathcal{G}^{*})}^{1} B[\mathbf{T}(\mathbf{p})] d\tau^{\downarrow}(\mathbf{p},\mathcal{G}^{*}) + \xi$$

 $\hat{J}(\theta) = F[\tilde{J}(\theta)]$

 $A[\varepsilon, \mathbf{T}_{s}, \mathbf{T}(\mathbf{p}), \tau(\gamma(\mathcal{G}^{*}), H_{2}O(p), O_{3}(p), CO_{2}(p))](t) = \hat{\mathbf{J}}(t, \theta)$

$$\left(\varepsilon, \mathbf{T}_{s}, \mathbf{T}(\mathbf{p}), H_{2}O(p), O_{3}(p), CO_{2}(p)\right)(t) = A^{-1}[\hat{\gamma}(t-1,\theta), \hat{\mathbf{J}}(t,\theta)]$$

 $\hat{\gamma}(t) = \eta \hat{\gamma}(t-1) + (1-\eta) \arg \min_{\gamma} \left| \hat{J}(t) - A[\gamma, A^{-1}[\hat{\gamma}(t-1), \hat{J}(t)] \right|$

AIRS measurement response to changing the CO2 vertical profile +5ppmv at each level from 365 to 370 ppmv

Location of spectral channels used for CO2 estimation are shown in RED. The CO2 signal is small ~.2K. There are ~150 spectral channels in SW+LW sensitive to 5ppmv CO2 changes and not contaminated by signals from atmospheric moisture and ozone variations.

AIRS measurement response to changing the CO2 (+5 Purple), H2O (+15% Blue) and O3 (+15% Green) vertical profiles at each levels

Imaginary part of cloud particles refraction index

Imaginary part of refraction index CO2 Channels 0.6 Ice 13.3 – 14.4 µ 0.5 0.4 Water 0.3 0.2 0000008.008 0.1 00000 0 15 3 9 11 13 5 7 wavelength [microns]

Spectral distribution of imaginary part of cloud particle refraction index indicates strong spectral absorption in the LW CO2 channels

Selection spectral channels for CO2 retrievals

$$v(CO_{2}): \begin{cases} \left| \delta T_{\nu} [\delta Q(+5 \ CO_{2})] \right| > .098K \\ \left| \delta T_{\nu} [\delta Q(+15\% \ O_{3})] \right| < .075K \\ \left| \delta T_{\nu} [\delta Q(+15\% \ H_{2}O)] \right| < .075K \end{cases}$$

Spectral distribution of average of the absolute (measurement – estimate) residual (in degrees K)

Black – 365 ppmv Blue – 1st iter Red – 3rd iter

Purple – response to 5 ppmv

Green – normalized spectrum

Basis functions for parameterization CO2(p)[16] and

T(p)[35] profiles

Variations of atmospheric temperature and CO2 profiles are represented by a linear expansion in the inverse problem solution Temperature parameterization has to be sufficient to estimate and remove the temperature signal from measurements

Change in y fit from 6 Jan to 9 Jan 04

Change in fit from 6 Jan to 9 Jan 04

Change in fit from 6 Jan to 9 Jan 04

CO2 weighting functions (converted with solution basis functions) within atmospheric layer 150 -600 hPa for soundings in LW and SW bands. Model also shows spectral effect of CO2 variations in stratosphere

Estimating CO2 concentrations by minimizing residuals between AIRS measured radiances versus SARTA radiative calculations

Initial first guess CO2 concentrations of 365 ppmv are alternated from 5 ppmv too high for one fov to 5 ppmv too low for the next (referred to as a checkerboard initialization).

Measurements provide adequate information from 150 to 350 hPa.

01 Jan 2003 CO2 @ 151 hPa

2003.01.01 CO2 estimate [ppmv] at 151mb

01 Jan 2003 CO2 @ 212 hPa

2003.01.01 CO2 estimate [ppmv] at 212mb

01 Jan 2003 CO2 @ 273 hPa

2003.01.01 CO2 estimate [ppmv] at 273mb

01 Jan 2003 CO2 @ 344 hPa

2003.01.01 CO2 estimate [ppmv] at 344mb

01 Jan 03

Active Volcanoes in Hawaii

01 Jan 2003 CO2 @ 273 hPa

2003.01.01 CO2 estimate [ppmv] at 273mb

SO2 signature is flat

Summary of Oct 02 – Jan 04 CO2 seasonal values

Conclusion

- Results of geophysical interpretation of AIRS hyperspectral measurements from 18 granules (18 days) (from Oct 2002 – Jan 2004) show that estimate of vertical CO2 profile provide physically meaningful information at atmospheric layer 150-350 hPa
- Observed CO2 fields demonstrate spatial consistency with noticeable horizontal and vertical variations
- Temporal (seasonal) variations of the estimated average CO2 concentration at atmospheric layer 150-350 hPa demonstrate excellent correlation with temporal variations of direct CO2 measurements over Hawaii