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Organizations That Have Contributed to AIRS

AIRS-AMSU-HSB

Atmospheric Infrared Sounder

Advanced Microwave Sounding Unit

Humidity Sounder for Brazil
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Overview of This Talk

• Brief Introduction to the AIRS, AMSU, HSB instruments

• Overview of the GSFC Algorithm

– Cloud Clearing Philosophy in an Integral Component

– Minimization Approach is Optimized for Cloud Clearing

• Post-launch issues

– Microwave side-lobe corrections

– Tuning versus Error Term Experiments

• Trace Gas Retrievals - The new frontier of remote sounding?

• Future Work
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Brief Introduction to the

AIRS, AMSU, HSB Instruments
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AQUA was Launched on May 4, 2002
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Illustration of the AIRS/AMSU Field-of-Regard (FOR)
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NE∆T at Tr=250 K for AIRS 1.1◦ FOV

All noise values are per AIRS spectral channel for a 250 K scene.
72% of the 2378 channels meet or exceed the specification.
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Summary of Geophysical Products

T (p) vertical temperature profile
q(p) vertical water vapor profile (≈ 8 g/kg @ surface)
L(p) vertical liquid water profile (f/ AMSU/HSB)
O3(p) vertical ozone profile (≈ 8 ppmv @ 6 mb)
Ts surface temperature
ε(ν) spectral surface emissivity, (e.g., 0.95 @ 800 cm−1)
ρ�(ν) spectral surface reflectivity of solar radiation
Pcld cloud top pressure for ≤ 2 cloud levels
αcld,fov cloud fraction for ≤ 2 cloud levels and 9 FOV’s
CO2 total column carbon dioxide (≈ 363 ppmv)
CH4(p) methane profile (≈ 1.65 ppmv)
CO(p) carbon monoxide profile (≈ 0.11 ppmv)

Ancillary Information Needed for Retrieval
Ps surface pressure (f/ forecast)
θ satellite zenith angle
θ� solar zenith angle
εcld,ν spectral cloud emissivity for ≤ 2 cloud levels
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Constraints on Algorithm Development

• Weather Products must exist within 3 hours of data acquisition
(including 1.5h orbit & down-link)

– Execute quickly

– Minimal ancillary information

• Climate Products should exist with 48 hours of data acquisi-
tion

– Obtain “best” answer using all useful ancillary information

– Minimize first guess dependence (i.e., minimal a-priori infor-
mation)

– Minimize changes in methodology to avoid discontinuities in
record (i.e, minimize “training” files).

– Usually implies reprocessing of data.
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Overview of AIRS

Cloud Clearing Methodology
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Cloud Clearing Methodology

This cloud clearing methodology has a long heritage starting
from the original papers (Smith, 1968, Chahine, 1974), Chahine,
1975, Chahine, 1977, Chahine et al. 1977, McMillin and Dean
1982, Smith et al. 1992, and work performed at GSFC (Susskind,
et al. 2003; Joiner and Rokker 2002, Susskind, et al. 1998). The
fundamental features of the AIRS cloud clearing algorithm are

• Use the 9 AIRS cloud scenes without any a-priori constraint
such as preferential grouping.

• Compute both CCR’s and error estimates for the CCR’s, specif-
ically taking into account the noise amplification induced by
the linear extrapolation and the spectrally correlated compo-
nent of the error.

• Compare the clear state estimate with the AIRS retrieval
products and reject cases that violate any of the assumptions
of cloud clearing.
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Example of Cloud Clearing in 2 FOV’s

For two FOV’s and one cloud formation the cloudy radiances,
Ri(n), in the two FOV’s can be written in terms of an effective
cloud fraction, α, in each FOV.

R1(n) = (1 − α1) · Rclr(n) + α1 · Rcld(n) (1.1)

R2(n) = (1 − α2) · Rclr(n) + α2 · Rcld(n) (1.2)

Using a clear radiance estimate, Rest � Rclr, an extrapolation
parameter, η, can be determined by least squares (LSQ) fitting

Rest(n) = R1(n) + η · (R1(n) − R2(n)) (1.3)

The parameter η can also be solved for directly from the cloud
fractions by substituting Eqn.1.1 & 1.2 into Eqn. 1.3

η =
α1

α2 − α1

(1.4)
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Real Cloud Formations Are More Complex

In general, the use of the effective cloud fraction, α, to determine
the value of η is problematic.

• Cloud optical depth is a strong function of wavenumber.

• If cloud fractions are taken from a different instrument (e.g.,
AIRS visible channels), the instrument FOV, time, location
of observation, and spectral characteristics are all significant
factors.

• For multiple cloud formations the problem is ill-posed.

Instead we use a “CO2 slicing” approach:

• Use many AIRS channels with weighting functions spanning
the troposphere.

• Use all nine cloudy FOV’s to determine # of cloud types.

• Solve for a minimum number of η’s.
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Example of the Transformation of FOV’s

For example, imagine a set of 9 FOV’s where the first five are
nearly clear and the last four are almost 100% cloudy. We can
transform these FOV’s and solve for a single parameter, which
we will call ζ.

R̂k(n) = Uk,i · Ri(n) (1.5)

Uk,i =




1
5

1
5

1
5

1
5

1
5

0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4


 (1.6)

Rclr(n) = U1,i · Ri(n) + ζ̂1 · (U1,i · Ri(n) − U2,i · Ri(n)) (1.7)

The ζ’s can be transformed to the traditional η parameters

ηi ≡ UT
i,k · ζk (1.8)
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Transformation of FOV’s

In the operational AIRS code the transformation matrix, Uk,i is
determined by singular value decomposition of the cloudy radi-
ances using 78 AIRS channels in the 15 µm and 4.3 µm bands
that span the troposphere. We have shown (Susskind et al. 2003)
that the transformed formulation has other advantages as well.

• The number of cloud formations can be determined.

• We solve for up to 4 ζ’s, Rest(n) = R(n)+ζk·(R(n) − Uk,i · Ri(n))

• Estimate of the complexity of cloud formations.

• Compute an error estimate for CCR’s consisting of

– A noise amplification factor

– A error covariance which includes as strong case dependent
spectral correlation component from the errors in ζ.

• Cloud clearing step is repeated as geophysical knowledge and,
therefore, the clear estimate is improved during retrieval steps.
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Example AIRS CLEAR Scene

An example of a clear AIRS measurement made in the Pacific Ocean on
Sep. 6, 2003 (Granule 100, AMSU Scan #28 FOV #14). The upper panel
shows the average of nine AIRS FOV’s (RED) and brightness temperature
computed from the ECMWF analysis (BLUE). The lower panel shows the
difference. Agreement in window regions indicates there are NO clouds.
Other differences are probably meteorological.
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Example AIRS Cloud Cleared Scene

An example of a scene 330 km away with about 30% cloudiness (9/6/02
AMSU Scan #32, FOV #8). The top two panels are the same as the
previuous figure. The lower panel shows the AIRS cloud cleared product
(BLACK) has same agreement as clear scene (GREEN).

17



Cloud Clearing Radiance (CCR) RMS Statistic, 1 Granule

RED curves are CLEAR scenes, BLUE curves have CLOUDS. Top panel is
R(ECMWF) - <R(AIRS)>9. Middle panel is the R(ECMWF)-R(CCR).
Bottom panel is R(CCR) minus the R(RETRIEVAL).
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Cloud Clearing BIAS Statistic, 1 Granule

Same previous figure, but the BIAS of the differences between AIRS ra-
diances and radiances computed from ECMWF or the RETRIEVAL are
shown.
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Example Yield of Cloud Clearing

The AIRS effective cloud fraction is a proxy for the difficulty of cloud
clearing, that is, large amounts of clouds require more extrapolation.
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Example Yield of Cloud Clearing

Total precipitable water from ECMWF (upper left panel) from a AIRS
retrieval (upper right panel) and the difference (lower left panel). The
differences as a function of the effective cloud fraction (previous figure)
are shown for each color domain.

21



Overview of AIRS

Science Team Algorithm
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Philosophy of AIRS Team Algorithm

• Utilize microwave products (MIT maximum likelihood algo-
rithm) to estimate the infrared state for initial cloud clearing
and microwave liquid water and emissivity products.

• Utilize statistical regression (NOAA/NESDIS) to provide the
initial first guess state for the physical algorithm. This solution
contains the fine vertical structure information.

• Utilize a physical retrieval (NASA/GSFC) to improve the state.

1. Microwave and infrared observations are used in each step.

2. Use microwave observations and products to reject cases
with poor cloud clearing.

– Reject if O-C(couple retrieval) is too large

– Perform microwave-only ret using coupled ret as first guess. Reject if

∆T (p) is too large.
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Overview of the GSFC Multi-spectral Physical Retrieval System
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Philosophy of GSFC Physical Algorithm

• Embed an information content analysis into each step to de-
termine the optimal damping (regularization) for each case.

1. Cloud cleared radiances are both case and iteration dependent.

2. Propagate a formal geophysical error estimate through each step.

3. Compute an estimate of the a-priori covariance at each step.

• Assume certain parameters are separable.

1. For example, we can solve for Tsurf holding all other variables, e.g.,

water) constant, since Tsurf is quite linear.

2. BUT, if a step is repeated (e.g., when an error estimate has been im-

proved) NEVER use the products from the previous step.

• Select channels that are “spectrally pure”, that is

1. Have a high sensitivity to what is being solved for.

2. Have a low sensitivity to the parameters held constant.

• Minimize the number of vertical and spectral parameters to
solve by using vertical and spectral functions. (i.e., impose
smoothness constraints).
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Channels used in the AIRS retrieval algorithm
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Specification of Vertical and Spectral Functions

• A fine vertical grid is required for accurate computation of the
absorption coefficient, κi(ν, p(z), X, θ) and radiances.

• But, we do not have enough vertical information to solve for
that many parameters.

• Functions, FL,j, and parameters, ∆As,i
j , are chosen in a trade-

off between resolution and stability (analygous to Backus &
Gilbert trade-off, (Hanel, 1992).

Xs,i
L = Xs,i−1

L +
∑
j

FL,j ·
(
∆As,i

j ⊗ ∆Â−1
j

)
(2.1)

• Vertical functions are overlapping trapezoids.

• Spectral functions are overlapping triangles.

• Sub-sets of vertical and spectral functions must sum to unity.

∑
j
(FL,j) = 1 (2.2)
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Example of functions, FL,j, for T (p(L)) retrieval
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TUNING and ERROR TERMS

For discussion, assume a retrieval equation looks like

∆Xi =
[
S′

i,n′ · Wn′,n · Sn,i + Hi,i

]−1 · S′
i,n′ · Wn′,n

·
[
O − C(n) − Ψs,i

n + T (n)
]

(2.3)

• Sn,i is the sensitivity of channel n to parameter i,

• O − C(n) is the observed radiances minus the radiances com-
puted from the current state of X.

• Ψs,i
n is the background term derived from a-priori contribution.

• T (n) is radiance tuning, if applied.

The weighting matrix, Wn′,n is derived from the cloud cleared ra-
diance error and a-priori covariance, Nn′,n. In addition, we could
have other error sources, such as rapid transmittance algorithm
(RTA) and spectroscopy errors, En′,n.

Wn′,n = [Nn′,n + En′,n]
−1 (2.4)
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Information Content in Parameter Covariance Matrix

λs,i
k ≡ Us,i′

k,j ·

Ss,i′

j,n′
(
Ns,i

n′,n
)−1

Ss,i
n,j


 · Us,i

j,k (2.5)

Us,i
j,k, can be thought of as a linear transformation of the original

functions to a new set of orthogonal functions,

Gs,i
L,k ≡

(
FL,j ⊗ ∆Âj

)
· Us,i

j,k (2.6)

We can analyze the eigenvalue, λs,i
k , to determine how much

this transformed function should be believed, if at all.

• The regularization operator, Hi,i, tends to remove higher ver-
tical frequencies and is sometimes called a smoothing operator.

• In the GSFC algorithm, λk is used to determine Hi,i therefore,
high Nn′,n or En′,n results in high Hi,i.

30



Example of GSFC Regularization

For temperature functions, the new set of vertical functions, FL,j ·Us,i
j,k are

shown for the AIRS temperature retrieval information content analysis.
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Estimation of LSQ Errors

Geophysical functions, Xs
L are constructed from the changes at

each iteration and the functions (Eqn. 2.1).

Xs,i
L = Xs,i−1

L +
∑
j

FL,j ·
(
∆As,i

j ⊗ ∆Â−1
j

)
(2.7)

The errors in the parameters are estimated from the formal least
squared fitting errors (see PHYS640 notes).

(
δÃs,i

j

)2
=

(
δÃs−1,0

j

)2
+


Ss,i′

j,n′
(
Ns,i

n′,n
)−1

Ss,i
n,j + Hj,j


−1

(2.8)

The errors in the geophysical products are computed in the root-
sum-squared (RSS) sense from parameter errors:

(
δXs,i

L

)2
=

(
δXs,i−1

L

)2
+

∑
j

(
FL,j ·

(
δÃs,i

j ⊗ ∆Âj

))2
(2.9)

These error estimates can be used to compute
(
Ns,i

n′,n
)−1

and,
therefore, propagated into the next retrieval step.
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Some Post-Launch

Issues
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Issues with AMSU’s Estimate of CLEAR State

• Microwave side-lobe corrections (SLC’s) for the Aqua platform
are more complex than the POES platforms and have NOT
been applied to date.

• A large microwave tuning has been employed to mitigate SLC
issues.

• A poor AMSU first guess has a negative impact on cloud clear-
ing and, therefore, all AIRS products.

• To understand the impact to AIRS products, we are using a
model analysis as a first guess state:

1. To assess the impact of AMSU SLC issues on the AIRS
products.

2. To assess the need for tuning and/or RTA improvements.

• The logic comparing to the same model used as a first guess
is quite CIRCULAR, but illustrative. Future work will be to
compare to AIRS over-pass sondes and LIDAR measurements.

34



Illustration of Impact of AMSU Problems - RMS

The RMS difference for those cases that were accepted by both an experi-
ment in which ECMWF was used to estimate Rest and AMSU was NOT
used versus the baseline system with AMSU used to estimate Rest. Only
complete removal of AMSU improves results.

35



Illustration of Impact of AMSU Problems - BIAS

Same as previous figure except the BIAS of the difference is shown. AIRS
T(p) retrievals appear to be un-biased w.r.t. ECMWF.

36



Example Yield of Cloud Clearing using fg=ECMWF

Total precipitable water from ECMWF (upper left panel) from a AIRS
retrieval (upper right panel) and the difference (lower left panel). The
differences as a function of the effective cloud fraction (previous figure)
are shown for each color domain.
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O-C’s Used in the Tuning Experiments

Top 2 panels are AIRS NE∆T and RTA errors respectively. Lower panels
show O-C(n) w.r.t. ECMWF. Red curves are O-C(n) derived from ≈ 1000
clear cases on 09/02/2002. Black curves are O-C’s derived from ≈ 200,000
clear cases in Oct. 2002.
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Impact of Tuning - RMS

RMS of the fg=ECMWF experiment versus ECMWF for Sep. 6, 2002
with TUNING (MAGENTA); using the ERROR term (RED); and using
NO TUNING and NO ERROR term (BLACK).

39



Impact of Tuning - BIAS

Same as previous figure except BIAS is shown. The reduction of errors in
the 500 mb region appears to be a spectroscopy issue that will be resolved
by our UMBC colleagues.
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AIRS 15 µm Kernel Function
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Status of

AIRS Trace Gas Retrievals
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Instruments Co-temporal with AIRS

Existing Instruments

instrument band(s) FOV carbon ancillary
launch name platform (µm) (km) products products

12/99 MOPITT TERRA 2.2 22 CO & CH4 none
3/02 MIPAS ENVISAT 2.2, 7.7 (16)3x30 CO, CH4, CO2 O3, H2O

3/02 SCIAMACHY ENVISAT 2.2 0.6x25 CO, CH4, CO2 O3, H2O
5/02 AIRS AQUA 3.7 → 15 45 CO, CH4, CO2 T(p), O3, H2O

Funded Instruments in Development

1/04 TES AURA 3.3 → 15 (16)0.5x8.3 CO, CH4, CO2 O3, H2O

3.3 → 15 (16)2.3x23 CO, CH4, CO2 O3, H2O
12/05 IASI METOP-1 3.7 → 15 45 CO, CH4, CO2 T(p), O3, H2O

6/06 CrIS NPP 3.7 → 15 45 CH4, CO2 T(p), O3, H2O
7/07 OCO ESSP 1.58 1 CO2 none

• AIRS has sensitivity to CO, CH4, and CO2 in mid-troposphere.

• BUT, modelers NEED measurements of these gases in the
boundary layer.

• CH4 and CO2 boundary-layer products are VERY difficult and
a thermal sounder is NOT the ideal choice.

• The AIRS product is a low cost “path-finder” product.
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Bands used for CO2 and CH4 Sounding
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AIRS Trace Gas Simulation Experiments

Trace gas retrievals for CO (left panel), CH4 (middle panel), and CO2

(right panel). The black dashed lines in each panel is the RMS of the
error in the first guess state. The BLUE lines is the ability of the delivery
algorithm. The RED curve is the ability of research algorithm.
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CO2 Kernel Functions

The vertical sensitivity to CO2 of selected AIRS channels.
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Trace Gas Retrieval Approaches

• Statistical Regression:

– An excellent possibility or providing a first guess CO2 profile
for the physical algorithm.

– Should retrieve a realistic shape and a shape-preserving phys-
ical retrieval for CH4 and CO2.

• Residual Minimization:

Originally proposed by Chahine (1972). Residuals of a large
number of channels are computed as a function of CO2. The
the minimum of a smoothed function is the retrieved CO2.

• Traditional Retrieval:

A physical retrieval using the same methods employed by the
AIRS Science Team algorithm (Susskind et al., 2003).

• Simultaneous Retrieval:

A simultaneous physical retrieval of CO2 and T(p) eliminates
sensitivity to errors in T(p) and improves both products.
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Preliminary Look at CO Product

Intercomparison of AIRS retrievals (RED=clearest and GREEN=nearest)
with CMDL aircraft measurements of CO. CMDL data ( “+” symbols and
black solid line) provided by Peter Bakwin and Paul Novelli, NOAA/OAR.
The dotted black curve is our CO first guess (a constant profile).
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Preliminary Look at CO Product

Example of the fire counts (left) and the preliminary AIRS CO product
(right) for a day with low (top) and high (bottom) fire counts.
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Future Directions

• Improve AMSU Clear Estimate

A technique employed at NOAA (Goldberg et al., 2003) in
which the off-axis AMSU FOV’s are statistically corrected to
an AMSU FOV at nadir will be investigated soon.

• Investigate Use of MODIS and/or Models to Improve Rest and
products.

• Characterization of the AIRS products and error estimates.

– Work with AIRS validation groups and concentrate on in-situ measure-

ments during AIRS over-passes to understand tuning and retrieval sta-

bility issues.

– Improve error estimates of CCR’s and products for modelers.

• Generate A Large Volume of Trace Gas Product

1. Look for CO2 domes in large cities caused by an accumulation of auto-

mobile exhaust during meteorological inversions.

2. Look for CH4 emissions from agriculture, land-fills, gas-leaks.

3. Work with Modeling Collaborator to Search for CO2 Sources & Sinks.
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Backup

Slides
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Current Collaboration Acivities

Joan Alexander (NWRA) Grav. Waves
Aryln Andrews (GSFC) CO & CO2 Inversion Modeling

Robert C. Balling, Jr. (ASU) CO2 Domes
Roberto Calheiros (INPE) T(p), q(p)

Randy Kawa (GSFC) CO2 Inversion Modeling
Changsheng Li (UNH) CH4

Wallace McMillan (UMBC) CO, CH4, CO2,fire
Ken Minschwaner, (NMIMT) UTH & T(p)

Steve Pawson (GSFC) CO2 Assimilation
Dave Tobin (UW/SSEC) T(p), q(p)
Dave Whiteman (GSFC) UTH
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Remote Sounders Really Measure
Absorbing Properties (Transmittance) of Gases

All remote sounding concepts rely upon measurement of the
atmospheres effect on atmospheric transmittance, τ . For exam-
ple, to compute layer-to-space transmittance, τ ↑

τ ↑
ν (p, X, θ) = exp


−

∞∫
z′=z(p,X)

∑
i

κi(ν, p(z′), X, θ) · dz′

 (2.10)

where,

ν frequency in GHz (µW) or wavenumber (IR)
X geophysical state (T (p), H2O(p), O3(p), . . . , CH4(p))
κi absorption coefficient for species i
θ angle of observation from nadir
z(p, X) altitude as a function of pressure, p
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Channel Radiance

To compute radiances measured by an instrument, Rn(X), we
must integrate the monochromatic “forward” computation with
the instrumental channel spectral response function (CSRF) for
channel n, Φ(ν, ν0(n)), which has an effective frequency ν0(n)
and is defined as follows

Rn(X) =
∫
ν

Φ(ν, ν0(n)) · R(ν, θ, X) (2.11)

Thus, the retrieval of geophysical quantities, such as the atmo-
spheric water from satellite radiances, is highly non-linear, re-
quiring inversion of the equations of the form

Rn(X) � ∫
ν

Φν

∫
p

B(T (p)) ·
∂ exp


− z(p)∫

z′=∞
∑
i
κi(X, . . .)dz′




∂p
· dp · dν

(2.12)
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Statistical Method

A statistical retrieval (a.k.a., regression) relates observations,
θ̃n,k for a channel n and FOV k with the geophysical state, XL,k,
specified as L parameters, as follows

XL,k− < XL,k >k = AL,n ·
[
θ̃n,k− < θ̃n,k >k

]

= AL,n · ∆θ̃n,k (3.1)

• <>k indicates an averaged over the “training” ensemble of K
cases and removes the large scale structure.

• The matrix AL,n is computed via least squares solution of Eqn.
3.1 from a large ensemble of observations where the “truth”
state, XL,k, is known.

• A(L) tends to look a lot like weighting functions for a given
channel, n, and geophysical parameter set (e.g., XL = T (L)).
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Statistical Method

An example of the matrix components are

∆XL ≡




∆Ts

∆ε(ν1)

∆ε(ν2)

∆T (1)

. . .

∆T (L)

∆ log(q(1)/qs(1))

. . .

∆ log(q(L)/qs(L))




I

=




A11 . . . A1N

A21 . . . A2N

. . . . . . . . .

AI1 . . . AIN




·




∆θ̃1

∆θ̃2

. . .

∆θ̃N




(3.2)

Advantages Disadvantages
Very fast Requires knowledge of “truth”

NO modeling of observations AL,n needs stabilization
Incorporates Geo-statistics Only linear relationships
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The Least Squares Solution

The change required to the parameters can be solved in a
weighted least-squares sense. If there were no damping then
the solution would be given by

∆As,i
j (0) =


Ss,i′

j,n′
(
Ns,i

n′,n
)−1

Ss,i
n,j


−1

·Ss,i′
j,n′·

(
Ns,i

n′,n
)−1·

[
Rs

n,CCR − Rn(X
s,i−1
L )

]

(3.3)
This solution is usually highly unstable, given the under-determined
nature of atmospheric retrievals. Traditional solutions regularize
Eqn. 3.3. There are many methods but we can write most of
them with a stabilizing matrix of the form, Hj,j

∆As,i
j =


Ss,i′

j,n′
(
Ns,i

n′,n
)−1

Ss,i
n,j + Hj,j


−1

·Ss,i′
j,n′·

(
Ns,i

n′,n
)−1·

[
Rs

n,CCR − Rn(X
s,i−1
L )

]

(3.4)
Using Hj,j tends to make the solution “stick” to the first guess
and, therefore, make the retrieval first guess sensitive.
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The Background Term

If the solution is iterated the difference between Eqn. 3.3 and
Eqn. 3.4 is due to not believing a part of the

[
Rs

n,CCR − Rn(X
s,i−1
L )

]

residual. We can determine this part of the residual, which is
called the background term, Ψs,i

n . The background term can be
computed using the parameter changes that weren’t made, as
follows

Ψs,i+1
n = Ss,i

n,j ·
(
∆As,i

j (0) − ∆As,i
j

)
(3.5)

And then the background term is removed from subsequent steps
of the minimization as follows,

∆Ãs,i
j = Us,i

j,k·
Us,i′

k,j · Ss,i′
j,n′ ·

(
Ns,i

n′,n
)−1

λk + ∆λk

·
[[
Rs

n,CCR − Rn(X
s,i−1
L )

]
− Ψs,i−1

n

]

(3.6)
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