

Relevance of Radiative Transfer Model in Physical Inversion

Xu Liu and Richard Lynch AER Inc.

Outline of the Presentation

- 1. Requirements on radiative transfer model for physical inversion
- 2. Overview of radiative transfer calculation in inhomogeneous atmosphere
- 3. Calculation of Analytical Jacobians
- 4. Transformation of variables using EOFs before physical inversion
- 5. Overview of how to model channel radiances
- 6. Application of OSS forward model to CrIS and NAST-I instruments
- 7. Conclusions

What is an idea Fast Radiative Transfer Model for Physical Inversion

$$R = F(x) + \mathcal{E}$$

 $\delta R = K \delta x$

- Accurate
 - Idea if the accuracy relative to LBL is controllable
- Physical parameterization
 - Accuracy and physical parameterization is closely coupled
 - Use least non-physical assumption
- Fast
 - Modern computer technology can accommodate large model parameters
 - ILS (SFR) convolution should be done during the training
- Perform RT calculation monochromatically
 - Calculates Jacobian efficiently
 - Calculates downwelling radiances efficiently
 - Be able to handle multiple scattering
- Treat Planck function and surface properties properly
 - Be able to model non-localized instrument line shape function efficiently
- Train the forward model under variety of conditions
 - Be able to handle variable observation altitude for aircraft instrument

Radiative Transfer Equation for Infrared Spectral Region

$$R_{\nu} \cong \mathcal{E}_{\nu} B_{\nu}(\Theta_{s}) T_{s,\nu} + \int_{p_{s}}^{0} B_{\nu}(\Theta(p)) \frac{\partial T_{\nu}(p,\theta_{u})}{\partial p} dp$$
$$+ (1 - \mathcal{E}_{\nu}) T_{s,\nu} \int_{0}^{p_{s}} B_{\nu}(\Theta(p)) \frac{\partial T_{\nu}^{*}(p,\theta_{d})}{\partial p} dp + \rho_{\nu} T_{s,\nu} T_{\nu}(p_{s},\theta_{sun}) F_{0,\nu} \cos \theta_{sun}$$

- The first term is the surface emission
- The second term is the upwelling thermal emssion
- The third term is the reflected downwelling radiation
- The last term is the reflected solar radiation

Defining Atmospheric Layering

• Schematic for atmospheric layer convention

Recursive Radiative Transfer Calculations

$$R_{v} = \sum_{i=1}^{N} (T_{v,i-1} - T_{v,i}) B_{v,i}^{+} + \varepsilon_{vs} T_{v,N} B_{v,s}^{+} + (1 - \varepsilon_{vs}) T_{v,N} \sum_{i=1}^{N} (T_{v,i}^{*} - T_{v,i-1}^{*}) B_{v,i}^{-} + \rho_{s} T_{v,N} T_{sun} (p_{s}, \theta_{sun}) F_{0,v} \cos \theta_{sun}$$

If we define: $T'_{\nu,l} = (1 - \varepsilon_{\nu s})T_{\nu,N}T^*_{\nu,l}$

$$R_{v} = B_{v,i}^{+} \sum_{i=1}^{N} (T_{v,i}^{'} - T_{v,i-1}^{'}) + \varepsilon_{vs} T_{v,N} B_{v,s}^{+} + B_{v,i}^{-} \sum_{i=N}^{1} (T_{v,i-1} - T_{v,i}) + \rho_{s} T_{v,N} T_{sun} (p_{s}, \theta_{sun}) F_{0,v} \cos \theta_{sun}$$

Calculation of Analytical Jacobians

 $\tau_l^0 = \tau_{fix}(\overline{p}_l, \Theta_l) + [k_{H2O}(\overline{p}_l, \Theta_l) + k_{H2O}^{self}(q_{H2O}, \Theta_l)\omega_{H2O}]\omega_{H2O} + k_{O3}(\overline{p}_l, \Theta_l)\omega_{O3} + \dots$

 $\frac{\partial R}{\partial X_{\cdot}} = \frac{\partial R}{\partial \tau_{\cdot}^{0}} \frac{\partial \tau_{l}^{0}}{\partial X_{\cdot}} + \frac{\partial R}{\partial B_{l}} \frac{\partial B_{l}}{\partial X_{\cdot}}$ $T_{l} = \exp\left(-\sum_{i=1}^{l} \tau_{i}^{0} \sec \theta_{obs}\right)$ $\frac{\partial T_i}{\partial \tau_i^0} = \frac{-T_i \sec \theta_{obs}}{0} \quad i \ge l$ $T_l^* = \exp\left(-\sum_{i=1}^N \tau_i^0 \sec \theta_d\right)$ $\frac{\partial T_i^*}{\partial \tau_i^0} = \frac{-T_i^* \sec \theta_d}{0} \quad i < l$ $\frac{\partial R}{\partial X_{i}} = -\frac{\partial \tau_{l}^{0}}{\partial X_{i}} \left\{ \left| -T_{l}B_{l}^{+} + \sum_{i=1}^{N} (T_{i-1} - T_{i})B_{i}^{+} + T_{N}\varepsilon_{s}B_{s}^{+} + \sum_{i=1}^{N} (T_{i}^{'} - T_{i-1}^{'})B_{i}^{-} \right| \sec \theta_{obs} \right\}$ $+ \left[-(1-\varepsilon_{s})T_{N}T_{l-1}^{*}B_{l}^{-} + \sum_{i=1}^{l-1}(T_{i}^{'}-T_{i-1}^{'})B_{i}^{-} \right] \sec\theta_{d} - R_{sol}(\sec\theta_{obs} + \sec\theta_{sun}) \right\}$ $+\frac{\partial B_{l}^{+}}{\partial X_{l}}(T_{l-1}-T_{l})+\frac{\partial B_{l}^{-}}{\partial X_{l}}(T_{l}^{'}-T_{l-1}^{'})$

Calculation of Jacobians

Atmospheric and Environmental Research, Inc.

$$\frac{\partial R}{\partial \Theta_{l}} = \frac{\partial R}{\partial \tau_{l}^{0}} \frac{\partial \tau_{l}^{0}}{\partial \Theta_{l}} + \frac{\partial R}{\partial \overline{B}} \frac{\partial \overline{B}}{\partial \Theta_{l}} \cong \frac{\partial \overline{B}_{l}}{\partial \Theta_{l}} (T_{l-1} - T_{l}) + \left[\frac{\partial R}{\partial \Theta_{l}}\right]_{d}$$

 $\delta \tau / \delta \Theta$ can be calculated from the lookup table easily

$$\frac{\partial R}{\partial \overline{B}} \frac{\partial \overline{B}}{\partial \Theta_{l}} = \frac{\partial \overline{B}_{l}}{\partial \Theta_{l}} (T_{l-1} - T_{l}) + \frac{\partial \overline{B}_{l}}{\partial \Theta_{l}} (T_{l}' - T_{l-1}')$$

$$\frac{\partial R}{\partial \omega_l^m} = \frac{\partial R}{\partial \tau_l^0} \times k_l^m, \quad m = 1, \dots, M \qquad \frac{\partial R}{\partial \tau_l^0} = (-\Sigma_l^+ + \overline{B}_l T_l) \sec \theta_{obs} + \left[\frac{\partial R}{\partial \tau_l^0}\right]_d + \frac{\delta R_{sol}}{\partial \tau_l^0}$$

$$\frac{\partial R}{\partial \Theta_s} = T_N \varepsilon_s \frac{\partial B_s}{\partial \Theta_s} \qquad \qquad \frac{\partial R}{\partial \varepsilon_s} = T_N B_s - \Sigma_N^- / (1 - \varepsilon_s)$$

$$\frac{\partial R}{\partial \rho_s} = T_N F_0 \cos \theta_{sun} \exp\left(-\sum_l \tau_l^0 \sec \theta_{sun}\right) = R_{sol} / \rho_s$$

Temperature and Moisture Jacobians

. . .

Temperature and Moisture Jacobians

Band 2 0.1 3.01 2.4 1.0 1.8 Pressure (mb) 10.0 1.2 100.0 0.6 1000.0 0.0 1300 1400 1500 1600 1700 Frequency (cm⁻¹)

Band 2

Transformation of variables

• The layer derivative can be converted to level derivative by:

$$\frac{\partial R}{\partial X_{lev}} = \frac{\partial R}{\partial X_{lay}^{above}} \frac{\partial X_{lay}^{above}}{\partial X_{lev}} + \frac{\partial R}{\partial X_{lay}^{below}} \frac{\partial X_{lay}^{below}}{\partial X_{lev}}$$

 The truncted EOF (U) obtained from background covariance can be used compress ∆X and K:

$$\Delta \widetilde{x} = U^T \Delta x \qquad \Lambda = U^T S_x U \qquad \Delta \widetilde{x}_{i+1} = (\widetilde{K}_i^T S_y^{-1} \widetilde{K}_i + \Lambda)^{-1} \widetilde{K}_i^T S_y^{-1} (y_0 - y_i + \widetilde{K}_i \Delta \widetilde{x}_i)$$

- If the full correlation of noise covariance S_y can be compressed using truncated EOF obtained from PCA of radiance spectra
 - The inversion of the transformed matrix will be more efficient

Difficulties of Modeling Channel Radiances or Transmittance

$$R_{\Delta v}(v) = \int_{\Delta v} \Phi(v - v') R(v) dv' \qquad T_{\Delta v}(v) = \int_{\Delta v} \Phi(v - v') T(v) dv'$$

- where Φ is normalized ILS (SFR)
- LBL calculation of monochromatic layer transmittances or TOA radiances is very time consuming
- Convolving monochromatic radiances or transmittances with ILS (SRF) is also time consuming
- The Beer's Law is no longer valid
 - It's difficult to handle inhomogeneous path and multiple gases

$$\int_{\Delta V} \phi(v) T_{gas1} T_{gas2} d\Delta v' \neq \int_{\Delta V} \phi(v) T_{gas1} d\Delta v' \int_{\Delta V} \phi(v) T_{gas2} d\Delta v'$$

$$\int_{\Delta v} \phi(v) T_{layer1} T_{layer2} d\Delta v' \neq \int_{\Delta v} \phi(v) T_{layer1} d\Delta v' \int_{\Delta v} \phi(v) T_{layer2} d\Delta v'$$

Comparison of Different Fast RT Model

Atmospheric and Environmental Research, Inc.

Model Type	Characterisitic	Limitations	
Band Model	Simple parameterization Fast Curtis Godson approximation can be used to handle inhomogeneous atmos.	Limited accuracy Not accurate to extend to multiple gases	
Neural net	Simple Fast	Jacobian calculations? Non-physical parameterization	
Correlated k Distributions (CKD)	Monochromatic (g-v mapping) Level to level k correlation is approximate Overlapping gases treatment is approximate	Not perfect for inhomogeneous path and overlapping gases	
Exponential Sum Fitting Transmissions (ESFT)	Monochromatic (select few k terms or v points) Level to level k correlation is approximate (methods exist to handle it) Overlapping gases treatment is approximate	Standard method is perfect for inhomogeneous path and overlapping gases	
Optran, RTTOV ,SARTA,Gastropd 	Polychromatic Smart way to treat overlapping gases Teat inhomogeneous path	Effective layer optical depth depends on layer above it	
Optimal Spectral Sampling (OSS)	Monochromatic Treat inhomogeneous path and overlapping gases well Parameterization is physical	Very good treatment of inhomogeneous path and overlapping gases	

• K distribution (KD)

$$T(\Delta v, \omega) = \int_{\Delta v} \phi(v - v') T(v, \omega) dv' \cong \sum_{i=1}^{N} \Delta g_i \exp[-k_i(g_i)\omega]$$
$$R(\Delta v, \omega) = \sum_{i=1}^{N} \Delta g_i \{B_i(\Theta, g) + [R_{0,i} - B_i(\Theta, g)] \exp[-k_i(g)\omega]$$
$$\sum_{i=1}^{N} \Delta g_i = 1$$

 Δg_i and k_i obtained by grouping k(v)

- Correlated-K distribution (CKD)
 - Correlation between the spectral shape and positions is different layers is approximate
 - KD made for a set of T,P, independently
 - Methods exist to correct this approximation
 - Use same g-v mapping for all layers (e.g Mlayer et al....)
 - Reference layer add-subtract method (e.g. Oinas, Edward)

Correlated-K distribution (Continued)

- Treatment of overlapping gases is approximate
 - Assume gases are uncorrelated:

$$T(\Delta v, \omega_1, \omega_2) = \int_{\Delta v} \phi(v - v') T(v, \omega_1) T(v, \omega_2) dv'$$

$$\cong T(\Delta v, \omega_1) T(\Delta v, \omega_2) = \sum_{i=1}^N \Delta g_{1,i} \exp[-k_{1,i}(g_{1,i})\omega_1] \sum_{i=1}^M \Delta g_{2,i} \exp[-k_{2,i}(g_{2,i})\omega_2]$$

 Introduce ω_i (or functions of ω_i i=gas1, gas2....) as additional factor when generating k k(g,p,T,ω)

Exponential Sum Fitting of Transmissions (ESFT)

$$T(\Delta v, \omega) = \int_{\Delta v} \phi(v - v') T(v, \omega) dv' \cong \sum_{i=1}^{N} w_i \exp[-k_i(v_i)\omega]$$
$$R(\Delta v, \omega) = \sum_{i=1}^{N} w \{B_i(\Theta, v) + [R_{0,i} - B_i(\Theta, v)] \exp[-k_i(g)\omega]$$
$$\sum_{i=1}^{N} w_i = 1$$

- w_i and the spectral location of k_i obtained by a selection/regression process
- Treatment of inhomogeneous atmosphere
 - Use w_i and v_i obtained for a reference layer and scale exponential term with appropriate function of P and T
 - Include all layers in the regression and selection process (Armbruster and fisher 1996)

$$T_L^{TOA}(\Delta v, p_L, \omega) \cong \sum_{i=1}^N w_i(v_i) \exp[-\sum_{l=1}^L k_i(v_i, p_l)\omega(p_l)]$$

- ESFT (continued)
 - Treatment of mixing gases
 - Similar to CKD (assume uncorrelated)

$$T(\Delta v, \omega_1, \omega_2) = \int_{\Delta v} \phi(v - v') [\overline{T_1} + \delta T_1(v, \omega_1)] [\overline{T_2} + \delta T_2(v, \omega_2)] dv'$$
$$= \overline{T_1} \overline{T_2} + \sum_{i=1}^N w_i \delta T_{1,i}(v, \omega_1) \delta T_{2,i}(v, \omega_2)$$
$$\overline{T_1} \overline{T_2} = \int_{\Delta v} \phi(v - v') T_1(v, \omega_1) dv' \int_{\Delta v} \phi(v - v') T_2(v, \omega_2) dv'$$

- Equivalent extinction (Ritter and Geleyn, Edwards...)
- Additional interpolation variable as a function of ω_i (or functions of $\omega_{i,}$ i=gas1, gas2....)
- Frequency sampling method or radiance sampling method (Sneden et al. 1975, Tjemkes and Schmetz, 1997)

Overview of the OSS forward model

 Optimal Spectral Sampling (OSS) approximates channel radiances (or transmittances) according to:

$$R_{\Delta \nu}(\nu) = \int_{\Delta \nu} \Phi(\nu - \nu') R(\nu) d\nu' = \sum_{i} w_{i} R_{\nu_{i}} + \varepsilon$$

- Channel radiances are a linear combination of monochromatic radiances at pre-selected frequencies
- Spectral locations/weighting coefficients are obtained through a selection/regression process
- The computational gain is more than 3 orders of magnitude relative to the line-by-line calculations
- RT is done monochromatically
 - Monochromatic lookup table is used to calculate the transmittance for various gases and different atmospheric layers (no approximates need to be made)
 - Calculates Jacobian analytically (very efficient)
 - Treats reflected radiance accurately
 - Can be easily coupled with multiple scattering codes

Application of OSS to NAST-I

Atmospheric and Environmental Research, Inc.

Expanded View of the RMS of the Forward Model

Environmental Research, Inc.

Number of Points Per Channel

• Average of 2.59 monochromatic spectral calculations are needed for each NAST-I channel

NAST-I Spectral Band	Number of Channels	Number of Monochromatic Points	Average Points per Channel
LWIR	2718	7464	2.75
MWIR	2946	7283	2.47
SWIR	2968	7569	2.55

SINC Accuracy Ming set, Variable Emissivity from 0.85 to 0.98 Accuracy

• The radiance errors derived from independent profile set follow a Gauss distribution

Observed and Modeled NAST-I Radiances for 7/14/01 CLAM Campaign

aer

Atmospheric and

Environmental Research, Inc.

aer

Observed vs. Calculated NAST Radiance for Crystal-Face AIRS Underflight

Observed Vs Calculated (Miami, 7/26/02, 18 GMT)

Retrieved Profiles For the CAMEXIII Campaign Near Andros Island

CrIS Retrieval Algorithm was used

Retrieved Temperature Profiles from NAST-I Instrument

Conclusions

- Jacobian provides sensitivity of radiance with respect to the retrieved parameters
 - Recursive RT calculation gives insights
 - Most terms needed for the radiances calculation can be used for Jacobian calculation (time saving)
- Transformation of variable accelerate inversion process
 - It also provides stability to the inversion
- The fast radiative transfer model is best done at monochromatic frequencies
 - Physical parameterization

Atmospheric and Environmental Research, Inc.

- Efficient in calculating Jabcobian matrix needed for inversion
- Can include multiple scattering calculations
- It's best to train all atmospheric layers and all major gases
 simultaneous
- OSS model has been developed to model NAST-I radiances and was incorporated into NASA's retrieval algorithm
- OSS has been used to simulate the CrIS EDR retrieval performance and the retrieval algorithm has been validated using NAST-I data