

Regression Retrieval Overview

Larry McMillin

Climate Research and Applications Division National Environmental Satellite, Data, and Information Service Washington, D.C. Larry.McMillin@noaa.gov

L.M. McMillin NOAA/NESDIS/ORA

Pick one - This is

- All you ever wanted to know about regression
- All you never wanted to know about regression

Overview

- What is regression?
- How correlated predictors affect the solution
- Synthetic regression or real regression?
- Regression with constraints
- Theory and applications
- Classification
- Normalized regression
- AMSU sample
- Recommendations

- Obtain the estimate with the lowest RMS error.
- Or
- Obtain the true relationship

Which line do we want?

Considerations

- Single predictors
 - Easy
- Multiple uncorrelated predictors
 - Easy
- Multiple predictors with correlations
 - Assume two predictors are highly correlated and each has a noise
 - Difference is small with a larger noise than any of the two
 - And that is the problem
- Theoretical approach is hard for these cases
 - If there is an independent component, then you want the difference
 - If they are perfectly correlated, then you want to average to reduce noise

Considerations continued

- Observational approach using stepwise regression
- Stability depends on the ratio of predictors to the predictands
- Stepwise steps
 - 1. Find the predictor with the highest correlation with the predictand
 - 2. Generate the regression coefficient
 - 3. Make the predictands orthogonal to the selected predictor
 - 4. Make all remaining predictors orthogonal to the selected predictor
- Problem
 - When two predictors are highly correlated and one is removed, the calculation of correlation of the other one involves a division by essentially zero
 - The other predictor is selected next
 - The predictors end up with large coefficients of opposite sign

Considerations continued

- Consider two predictands with the same predictors
 - Stable case (temperature for example)
 - The correlation with the predictand is high
 - Unstable case (water vapor for example)
 - The correlation with the predictand is low
- Essentially when a selected predictor is removed from the predictand and the predictors
 - If the residual variance of the predictand decays at least as fast as the residual variance of the predictors, the solution remains stable

Considerations continued

- Desire
 - Damp the small eigenvectors but don't damp the regression coefficients
 - $C = YX^{T}(XX^{T})^{-1}$
 - But when removing the variable want to use $(XX^T + \gamma I)^{-1}$
- Solutions
 - Decrease the contributions from the smaller eigenvectors
 - This damps the slope of the regression coefficients and forces the solution towards the mean value
 - Alternatives
 - Increase the constraint with each step of the stepwise regression
 - But no theory exists

Regression Retrievals

- $T = T_{guess} + C(R R_{guess})$
- R is measured
- R_{guess}
 - Measured
 - Apples subtracted from apples (measured measured)
 - Calculated
 - Apples subtracted from oranges (measured calculated)
 - This leads to a need for bias adjustment (tuning)

Synthetic or Real

- Synthetic regression use calculated radiances to generate regression coefficients
 - Errors
 - Can be controlled
 - Need to be realistic
 - Sample needs to be representative
 - Systematic errors result if measurements and calculations are not perfectly matched
- Real regression uses matches with radiosondes
 - Compares measured to measured no bias adjustment needed
 - Sample size issues sample size can be hard to achieve
 - Sample consistency across scan spots different samples for each angle
 - Additional errors match errors, "truth" errors

Regression with constraints

- Why add constraints?
 - Problem is often singular or nearly so
- Possible regressions
 - Normal regression
 - Ridge regression
 - Shrinkage
 - Rotated regression
 - Orthogonal regression
 - Eigenvector regression
 - Stepwise regression
 - Stagewise regression
 - Search all combinations for a subset

Definitions

- Y = predictands
- X = predictors
- C = coefficients
- C_{normal} = normal coefficients
- C_0 = initial coefficients
- C_{ridge} = ridge coefficients
- C_{shrinkage} = shrinkage coefficients
- C_{rotated} = rotated coefficients
- C_{orthogonal} = orthogonal coefficients
- $C_{eigenvector} = eigenvector coefficients$

Definitions continued

- γ = a constant
- ε = errors in y
- δ = errors in x
- $X_t = true value when known$

Equations

- Y = C X
- $C_{normal} = YX^T (XX^T)^{-1}$
- $C_{ridge} = YX^T (XX^T + \gamma I)^{-1}$
- $C_{\text{shrinkage}} = (YX^T + \gamma C_0)(XX^T + \gamma I)^{-1}$
- $C_{\text{rotated}} = (YY^{T}C_{0}^{T} + YX^{T} + \gamma C_{0})(C_{0}^{T}YX^{T} + XX^{T} + \gamma I)^{-1}$
- $C_{orthogonal}$ = multiple rotated regression until solution converges
- Note many of these differ only in the directions used to calculate the components
 - The first 3 minimize differences along the y direction
 - Rotated minimizes differences perpendicular to the previous solution
 - Orthogonal minimizes differences perpendicular to the final solution

L.M. McMillin NOAA/NESDIS/ORA

Constraint summary

- True relationship Y = 1.2 X Guess Y = 1.0 X ss = 17.79
- Ordinary Least Squares
 - Y = 0.71 X ss = 13.64
- Ridge gamma = 2 - Y = 0.64 X ss = 13.73
- Shrinkage gamma = 2
 Y = 0.74 X ss = 13.65
- Rotated gamma = 4 (equivalent to gamma = 2) - Y = 1.15 X ss = 16.94 ss = 7.35 in rotated space
- Orthogonal gamma = 4
 - Y = 1.22 X ss = 18.14 ss = 7.29 in orthogonal space

L.M. McMillin NOAA/NESDIS/ORA

- Two regression can be replaced by a single one
- Y = C X
- X = D Z
- Y = E Z
- Then Y = C D Z and E = C D
- True for normal regression but false for any constrained regression
- In particular, if X is a predicted value of Y from Z using an initial set of coefficients and C is obtained using a constrained regression, then the constrain is in a direction determined by D. If this is iterated, it becomes rotated regression.

Regression with Classification

- Pro
 - Starts with a good guess
- Con
 - Decreases the signal to noise ratio
 - Can get a series of means values
 - With noise, the adjacent groups have jumps at the boundaries

normalized regression

- Subtract the mean from both X an Y
- Divide by the standard deviation
- Theoretically makes no difference
- But numerical precision is not theory
- Good for variables with large dynamic range
- Recent experience with eigenvectors suggests dividing radiances by the noise

Example - Tuning AMSU on AQUA

- Predictors are the channel values
- Predictands are the observed minus calculated differences

Measured minus calculated

The predictors

Ordinary Least Squares

Ridge Regression

Rotated Regression

Orthogonal Regression

Results Summarized

- Maximum means maximum absolute value
- Ordinary least squares max coefficient = -2.5778
- Ridge regression max coefficient = 1.3248
- Shrinkage max coefficient = 1.3248
 - Shrinkage to 0 as the guess coefficient is the same as ridge regression
- Rotated regression max coefficient = 1.1503
 - Rotated to the ordinary least squares solution
- Orthogonal Regression 7.5785

Recommendations

- Think
- Know what you are doing