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_— Parameterization of radiative transfer equation is
T necessary for operational remote sensing

e A class of techniques widely used in space-based remote sensing based on
McMillin and Fleming (1975) parameterizes the “effective layer optical depth”
for molecule m with profile-dependent predictors
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— Very efficient for radiance calculations, and the accuracy is generally better than the
sensor noise level
e Among the shortcomings of this method:
— Not practical for use with changing observer altitude (e.g., airborne remote sensing)

— Not amenable to multiple scattering atmospheres (e.g., cloud ice water path retrieval
from sub-millimeter measurements)

— Inefficient computation of Jacobians
— Accuracy depends on choice of predictors
+ Generally determined by trial and error and depend on the type of application
(viewing geometry, spectral band)
— Not directly applicable to sinc function
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OSS technique addresses the need for algorithm
speed, accuracy and flexibility
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Model must be applicable to a wide-range of remote sensing platforms
— Downlooking (satellite sensors)
— Uplooking (ground-based sensors)
— Aircraft or balloon (up or down looking with variable altitude range)
— Limb and line-of-sight
Ideal model has consistent physics throughout
— Microwave to visible
— Narrow-band and wide band applications

Both accuracy and speed are important

— Trade-off between accuracy and speed depending on the specifics of the
problem at hand

¢ Sensor noise level
¢ Science-grade versus operational code

Algorithm capable of calculating Jacobians necessary for inversion

— Able to consider any number of “fixed” or “variable” molecular species and
geophysical parameters
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OSS technique derived from ESFT and k-distribution
methods
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e The exponential sum fitting (ESFT) and k-distribution methods
approximate band transmittances in homogenous atmospheres as,

r )=y we™

e Weights w, can be interpreted in terms of the probability
dlstrlbutlon of the absorptlon coefficient over the spectral interval

W =Ag; = J. (k)dk ( 1 < ki)
and k; is a representatlve k-value for the interval [ki'_l, ki']

e Extension of this k-distribution method to non-homogeneous
atmospheres is based on observation that minima and maxima of
absorption in different layers coincide spectrally

e Correlated-k method vertically integrates RT equation by assuming
a correspondence between k’s in g-space in different layers, i.e.
minimal impact on results of re-arranging k, by ascending order in
individual layers
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OSS selects the frequencies and absorption
coefficients relevant to the calculation of radiance
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e Proper treatment of overlapping absorbers requires accurate
characterization of the multivariate probability distribution of absorption
coefficients for all layers and molecules

e High dimensionality of the problem makes it impractical to attempt to solve
directly for the k’s without appropriate constraints

e OSS solution
— Reduce the problem to a one-dimensional frequency search

— Require that the k 's correspond to actual values of absorption coefficient for all
molecules and layers at the selected frequencies

— Patent pending
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o OSS parameters generated from monochromatic
mm——— calculations

e Parameter generation starts from a set of uniformly spaced
monochromatic transmittances (or radiances)
— Compute with aline-by-line model (e.g. LBLRTM)
— Use aglobally representative ensemble (S) of atmospheres

e Search for the smallest subset of frequencies (nodes) and
associated weights for which the error is less than a prescribed
tolerance for all levels

Radiative
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selecting error
threshold

(search method described below)
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-oracnirt TSI Flow diagram for OSS parameter generation

Referen_ce Monochromatic transmittances
A heri line-by-line (uniform spectral grid)
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Model “training” done in terms of radiance and
iIncludes appropriate scene variability
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e Set of training scenes includes appropriate variability
— Viewing angle
— Surface emissivity and reflectivity
— Observer altitude
— Solar angles

Line-by-line
calculation

e Fitis donein radiances (or brightness temperatures), which is
not the search equivalent to weighting the transmittances at each level by the
time channel weighting function

s X od
=Y -y

e Scene stratification ensures model accuracy (threshold rms) is
maintained for a larger set of conditions
— “Global” ensemble includes all viewing angles, a wide range of
BNO) atmospheric profiles, and the full range of surface emissivity

parameter file — Stratified selection can be done for a subset of conditions (e.g. one view
angle)

Scene
stratification
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Example of OSS selection shows exploitation of
redundant information
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Species transmittance accuracy contributes only a

small part of the overall

radiance error
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Examination of Jacobians illustrates the technique
works well for both the forward and inverse problem
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Automated process for sequential search based on

Gl Rk :
o Wiscombe and Evans (1977)
e The procedure consists of starting with N=1 Find (v} such ha
and searching for the spectral location that )

produces the smallest error among the M

possible locations v
e Once v; and its associated weight have been S
determined, the fitting error is compared to

the prescribed tolerance

- If g <e&,, the procedure stops. Otherwise, N is '
incremented by one and the search for v, Find new node, v,, and
proceeds in the same fashion optimal s_etlofwe}:ights W, |

. . 1=1,..,n
— Weights are reevaluated for each trial such that &, is minimized

combination of nodes

e Weights are constrained (sumis 1.0 and all
weights positive)

— Pairs of nodes with almost identical absorption
characteristics results in ill-conditioned
solution (large negative weights) Jes

¢+ Occurs most often with large number of nodes
(search is on the wrong “path”)

+ Negative node eliminated and search restarted
using remaining weights

no

Drop negative node with
smallest index, i, and
replace with last selected
node, v,..

no—p|

Q&

94

yes

)

End
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Monte-Carlo search has advantages over other
search techniques
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e Random search can be slow due to non-unique solution

With any — Many combinations of nodes produce similar performance
method it is — Computational issues dominate with moderate number of candidates
il + 100 points at 0.0001 cm-! implies 0.01 cm-! channel

e Sequential search approach is faster than random search
— Non-optimal when number of nodes approaches or exceeds 10
— Not applicable to non-positive instrument functions (e.g., non-apodized
until senso interferometer ILS)
resor']L.'t'O”d'S e Monte-Carlo approach replaces a selected node by one randomly
e chosen from remaining candidates
— Acceptance depends on difference in rms errors
— Number of replacements is restricted
+ Pre-defined based on based on selected nodes and total available
+ Acceptance test adjusted if acceptance rate is low

13
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Use a subset of the sounding bands to examine OSS
node selection properties
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e Spectral region: 650-850 cm* (CO, band)

e Variable species: water vapor and ozone

e Surface emissivity set to unity

e Training set: AIRS/UMBC 48 profile set

e 5scan angles with corresponding secant=0,0.5,1,1.5 and 2
e Reference line-by line model: LBLRTM
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Training profiles provided by UMBC
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Examination of brightness temperature differences
Illustrates impact of H,O and O, in the CO, band
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Number of selected nodes varies depending on
number of atmospheric gases considered

Spectral
resolutionhas
minimal

impact on
number of
nodes
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Number of selected nodes increases as accuracy

Science Applications and Programs Division

threshold decreases

Larger
increase in

number of
points where
gases overlap

Murmber of Selected Modes
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Number of selected nodes depends on accuracy,
resolution, and spectrum complexity
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couracsict TN OSS has been applied to an “boxcar” instrument

e Three spectral bands: 600-1100 cm-, 1200-1750 cm! and 2150-2700 cm-1

e Boxcar instrument function
— Width: 1.25cm1, 2.5cmtand 5cm?

e Selection accuracy of 0.05K in brightness temperature
e Nadir only

o
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Model accuracy is very good when compared with
independent set of profiles
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_— OSS-based radiative transfer model developed for
mm—— sensor simulation and retrieval studies

e Radiative transfer is performed monochromatically from pre-
computed absorption coefficients (at each selected node) for the
fixed and variables constituents

e Gases are grouped into fixed (e.g. CO,, CO and CFC’s) and
variable category (e.g. H,0O, O3, CH,, N,O)
e Absorption coefficients are stored in each layer as a function of
temperature
— Absorption properties are linearly interpolated between temperature
entries to preserve computational efficiency
e Water vapor requires special treatment for self-broadening effect

— Total (self and foreign broadened) water vapor absorption coefficient
(in cm?/molecule) is stored as a function of both temperature and
water vapor (takes into account self-broadening effects in the near
wings; important for up-looking)

— Approximately linear in specific humidity or partial pressure (i.e. two
points are sufficient)

22
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_— Main strength of the OSS approach is the analytical
T computation of the Jacobians

e For an average of 4.5 nodes/channel (0.05K accuracy), OSS model should
be roughly two times slower than current fast models for AIRS

e Jacobian computation normally requires of the order of (m+1)L?
operations for computation of transmittance and radiance derivatives

(from 07, /0X, )
L
OR/0X, =—-0T,,, /X, B, + Z (0T, /oX, —aT,,/oX, B +0T, /oX, B,
y

=k+1
oT, /X, =1,0T_,/0X, +T_, 01, /0X,
e With monochromatic RT, Jacobian computation reduces to

oR/0X, =01, /0X, D,
where D, = EEk - i(TI _T|+1)§ _TLESH
i | SR71 i

Is independent of X and is derived in the process of adding layers
successively during radiance computation
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Minimal computational penalty for calculation of
radiance derivatives
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e Average number of operations per channel and per layer
— No derivative case: optical depth and radiance calculation only
— Temperature derivatives only: don’t consider change of twith T
— Molecular derivatives and temperature derivatives
— All derivatives, including temperature dependence of molecular

absorption
No Drv Dr/Dt Dr/Dq Dr/Dt+
oD 33.42 33.42 33.42 47.89
RT 30.25 50.15 64.78 69.25
Total 63.67 83.57 98.20 117.15

24



Science Applications and Programs Division R AR RN RN IIN A

aer
_— Direct application to Fourier interferometer (non-
T localized instrument function)

e Barnett (2000) and McMillin (2000) have devised approaches to
extend application of narrow band models to sinc functions

OSENLGEREl o Extended instrument functions can present problems for model
training
Instrument function is not positive, and negative weights cannot be used
to indicate the presence of close pairs (or ill-conditioning)

¢ Fix for OSS: use determinant control
Planck function and surface emissivity vary over the wavenumber span
of the sinc function

+ Center frequency approximation used for localized instrument

functions is non longer valid
¢ Fix for OSS: use additional parameters for training
— Accuracy may be enhanced by scene stratification

Overlapping node points exploited in radiative transfer calculation

Using the same selection points for multiple channels reduces the
overall number of radiative transfer calculations (application of channel
weights requires minimal amount of computation time)

— Duplication range of about 50% is typical

“functions .

25
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Number of selected nodes increases for non-
localized instrument function (nadir-only case)
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SINC instrument function, Threshold=0.05K

Must conside‘r
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o Examination of widely-spaced sinc functions
i ——— illustrates redundant node selection
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s OSS selection performs very well for sinc function
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OSS technique addresses the need for algorithm
speed, accuracy and flexibility
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e (OSS generation process is automated and unsupervised

— No tuning needed; no check for instabilities; able to adapt quickly to
changes in the instrument function or to update spectroscopy

e The method is robust with respect to training
— Scene stratification improves performance over range of scene types

e Radiative transfer is monochromatic:
— Accurate treatment of surface reflection
— Amenable to multiple scattering applications
— Flexible for use with varying observer levels or viewing geometries
e Model is both fast (especially when Jacobians are required) and
accurate

— Accuracy can be traded for speed depending on the sensor noise level
and computational requirements of the problem

e On-going development at AER for range of applications
— NPOESS CrlIS (IR) and CMIS (microwave)
— NAST-I (IR)
— AIRS (IR)
— Naval Post-Graduate School (microwave — visible)
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