Use of Advanced Infrared Sounder Data in NWP models Roger Saunders (Met Office, U.K.) Why use advanced sounder data? How do we use advanced sounders in NWP? Radiative transfer Demonstrate Cloud detection with AIRS data Bias tuning Real time data monitoring Data assimilation Impacts of sounder data Workshop for Soundings from High Spectral Resolution Observations

Why Do We Need Satellite Data for NWP ?

- Global coverage main source of data over oceans and remote land areas.
- Measurements closer to scale of models grids.
- Has greater impact than radiosonde data on N. Hemisphere forecasts.
- Model validation (using data not assimilated) used for assessing impact of changes made and errors of the model analyses/forecasts.

Global Coverage Plot: radiosondes

Global Coverage Plot: Aircraft

IASI vs HIRS

HIRS 19 channels vs IASI 8461 channels

Expected Retrieval Performance

Resolving Atmospheric Features

Met Office NWP Models

Figure 2: The grids used by the global and UK Mesoscale forecast systems.

	Horizontal Resolution	Horizontal Grid EW x NS	Vertical Levels
Global Forecast	0.83°π0.56°	432 x 325	30
UK Mesescale	12km	14 6 π 182	38
HADAM4	2.50° x 3.75°	96 π 73	38

Table 1: Resolutions used by main UM atmospheric configurations.

Model formulation:

Exact equations of motion in 3D, non-hydrostatic effects included, semi-Langrangian scheme, hybrid-eta in height.

Data Assimilation: 3DVar, FGAT, 6 hourly cycle 3hr cut-off with update runs for next cycle

Provides model background from 6 hour forecast

Observations Required for NWP

Primary	METOP	Current status	
Wind	Sea Surface	Sea surface	
Тетр	Yes (1km vertical)	Yes (3km vertical)	
Surface Pressure	Indirect	Indirect	
Humidity	Yes (1km vertical)	Yes (3km vertical)	
Secondary			
Ozone	Yes (profile)	Yes (total column)	
Cloud Cover	Yes	Yes	
Height	Yes	Yes	
LWC/IWC	Yes	Yes	
Surface SST/LST	Yes	Yes	
Ice/snow	Partially	Partially	
Vegetation	Yes	Yes	
Soil Moisture	No	No	

Polar Satellites for NWP

Period	1978-2006	2006-2020
U.S. satellites and	NOAA-6-17	NPP+NOAA-N/N'
sensors	HIRS,AMSU-A/B, (MSU, SSU), AVHRR, SBUV	HIRS, AMSU-A, MHS, AVHRR, SBUV, CrIS, ATMS
U.S. military	DMSP F8-F17	DMSP/NPOESS
	SSM/I, SSMI(S)	SSMI(S), CMIS, VIRSS, ATMS, CrIS
European satellites	ERS-1/2, Envisat	METOP-1
and sensors	Scat, ATSR, GOME, AATSR, Schiamachy	HIRS, AMSU-A, MHS, IASI, AVHRR, GOME, ASCAT, GRAS

IR Advanced sounders for NWP

Name	AIRS	IASI	CrIS	GIFTS
Instrument	Grating	FTS	FTS	FTS
Spectral range	649 –1135	Contiguous	650 - 1095	685-1130
(cm-1)	1217–1613	645-2760	1210 - 1750	1650-2250
	2169 – 2674		2155 –2550	
Unapodized spectral resolving power	1000 – 1400	2000 - 4000	900 – 1800	2000
Field of view (km)	13 x 7	12	14	4
Sampling density per 50 km square	9	4	9	144
Platform	Aqua	METOP	NPOESS	GIFTS
Launch date	May 2002	2005	2005 (NPP)	2008

How do we use advanced sounders in NWP?

- 1. Radiative transfer
- 2. Cloud detection
- 3. Bias tuning
- 4. Real time data monitoring
- 5. Data assimilation

Fast radiative transfer model used

- RTTOV-7 developed by EUMETSAT NWP SAF
 - Line database: HITRAN-96
 - LbL model GENLN2 at 0.001cm⁻¹
 - Water vapour continuum: CKD2.1
 - 43L fixed pressure level parametrisation
 - T, q, O₃ and surface from NWP model
 - Masuda for sea surface emissivity, 0.98 for land
 - Jacobians also computed essential for radiance assimilation

What is a fast RT model? (cont)

- Used to simulate top-of-atmosphere radiances as would be measured by infrared and microwave satellite radiometers within a few msecs.
- Also provides layer to space transmittances
- Also optionally provides jacobians
- Not part of model radiation scheme which provides SW/LW fluxes & heating and cooling rates (e.g. Edwards & Slingo UM-5)

Fast Model Approaches (profile \Rightarrow TOA radiances)

• Linear regression (profile \Rightarrow optical depth)

- On fixed pressure levels
- On fixed absorber overburden layers (OPTRAN)
- Physical method
- Look up tables
- Neural nets

Predictor	Fixed gases	Water vapour	Ozone	
X _{j,1}	$sec(\theta)$	$sec^2(\theta)W_r^2(j)$	$sec(\theta)O_r(j)$	
Х ј,2	$sec^{2}(\theta)$	$(sec(\theta)W_w(j))^2$	$\sqrt{sec(heta) O_r(j)}$	
Х ј,3	$sec(\theta)T_r(j)$	$(sec(\theta)W_w(j))^4$	$sec(\theta) O_r(j) \delta T(j)$	
$X_{j,4}$	$sec(\theta)T_r^2(j)$	$sec(\theta)_{W_r}(j) \delta T(j)$	$(sec(\theta)O_r(j))^2$	
X j,5	$T_r(j)$	$\sqrt{sec(\theta)}W_r(j)$	$\sqrt{sec(\theta)O_r(j)} \delta T(j)$	
X	$T_r^2(j)$	$\sqrt{\sec(\theta)}W_r(j)$	$sec(\theta) O_r(j)^2 O_w(j)$	
Х ј,7	$sec(\theta)T_w(j)$	$sec(\theta) W_r(j)$	$rac{O_r(j)}{O_w(j)}\sqrt{\sec(\theta_{r})O_r(j)}$	
X	$sec(\theta)rac{{T}_w(j)}{{T}_r(j)}$	$(sec(\theta)W_r(j))^3$	$sec(\theta)O_r(j)O_w(j)$	DTTOV 7
Х ј,9	$\sqrt{sec(\theta)}$	$(sec(\theta) W_r(j))^4$	$O_r(j) \sec(\theta) \sqrt{(O_w(j) \sec(\theta))}$	
X j,10	$\sqrt{sec(\theta)} {}^4 \sqrt{T_w(j)}$	$sec(heta) {W}_r(j) \delta T(j)/\delta T(j)/\delta$	$T(j)/$ sec(θ) $O_w(j)$	predictors
X j,11	0	$(\sqrt{sec(\theta)}W_r(j))\delta T$	$(j) \qquad (sec(\theta) O_w(j))^2$	
X _{j,12}	0	$\frac{(sec(\theta)W_r(j))^2}{W_w}$	0	
X j,13	0	$\frac{\sqrt{(sec(\theta)W_r(j)}W_r(j)}}{W_w(j)}$	$d_{i,j} = d_{i,j}$	$_{j-1} + \sum_{k=1}^{k} a_{i,j,k} X_{k,j}$
X _{j,14}	0	$sec(\theta) \frac{W_r^2(j)}{T_r(j)}$	0	
X _{j,15}	0	$sec(\theta) \frac{W_r^2(j)}{T_r^4(j)}$	0	MetOffice

Jacobian matrix

RT model validation

RT model validation

Effect of bad Jacobians

Effect of error correlation

Example of bad wv jacobian

To Prepare for Advanced IR sounders Aqua Has Been Launched!

- Aqua was launched from Vandenburg AFB, USA at 10.55am BST on 4th may 2002.
- It carries the AIRS spectrometer. The Met Office started to receive AIRS data in October 2002 to enable us to assimilate these data in NWP models.

How do we use advanced sounders in NWP?

- 1. Radiative transfer
- 2. Cloud detection
- 3. Bias tuning
- 4. Real time data monitoring
- 5. Data assimilation

Cloud detection

- Currently can only simulate accurately clear sky IR radiances as representation of clouds in NWP models and their radiative properties requires improvement.
- Therefore must identify those sounder fields of view which have significant cloud within them and screen them out.
- Several techniques developed to do this:
 - Inter-channel tests + SST check
 - Local spatial variance
 - Variational O-B checks cloud cost

Var cloud cost (English et al., 1999)

$$J_{C} = (\Delta y)^{T} \left\{ H(x^{b}) BH(x^{b})^{T} + R \right\}^{-1} (\Delta y)$$

Principal Component Analysis (PCA) of the cloud cost

$$J_{C} = (\Delta y)^{T} S^{-1} (\Delta y)$$

$$= (\Delta y)^{T} U X^{-1} U^{-1} (\Delta y)$$

$$J_{Ci} \left[= (\Delta y_{i}')^{2} \right]$$

$$\sum_{i=1}^{N} (\Delta y_{i})^{2}$$
The i-th partial cloud cost of the integration of the

$$=\sum_{i=1}^{N} \left(\Delta \mathbf{y}_{i}\right)^{2}$$

The i-th PCA components of Δy

$$\Delta \mathbf{y}_{i}^{\prime} \left(= \sum_{j=1}^{N} \left(\Delta \mathbf{y}_{j} \right)^{\mathrm{T}} \mathbf{U}_{ji} / \sqrt{\mathbf{X}_{ii}} \right)^{\mathrm{T}}$$

Var scheme uses simple summation of all partial cloud cost

S depends on profile by profile, then ...

PCA of simulated O-B difference

S is constructed from clear O-B statistics

Principal Component Analysis (PCA) of the cloud cost

$$S_{CLR} = (\Delta y_{CLR}) (\Delta y_{CLR})^{T}$$
$$= U_{CLR} X_{CLR} U_{CLR}^{-1}$$

The i-th PCA components of Δy for each profile

$$\Delta \mathbf{y}_{CLR}' = (\Delta \mathbf{y}_{CLR})^{\mathrm{T}} \mathbf{U}_{CLR} \sqrt{\mathbf{X}_{CLR}}$$
$$\Delta \mathbf{y}_{CLD}' = (\Delta \mathbf{y}_{CLD})^{\mathrm{T}} \mathbf{U}_{CLR} \sqrt{\mathbf{X}_{CLR}}$$

AIRS channel selection for cloud detection

LW-IR, SW-IR, AMSU-A ch.3,15 are used for cloud detection

1) SOUND02 AIRS ch.261 13.80micron, ch.453 12.61micron, ch.672 11.48micron, ch.787 10.90micron, ch.843 10.66micron, ch.914 10.35micron, ch.1221 8.96micron, ch.1237 8.90micron AMSU-A ch.3 50.3GHz, ch.15 89.0GHz

2) MIX02 SOUND02 +

AIRS ch.2328 3.83micron, ch.2333 3.82micron

PCA components of O-B difference

PCA components of O-B difference

PCA components of O-B difference

Higher components are no use for cloud detection !!

Cloud detection: Validation

20°S

3075

Case study - Australia-

Cloud detection results

Blue Jc<2 Green Jc>2 Red Jc>20

SOUND02 (without SW-IR)

Var

How do we use advanced sounders in NWP?

- 1. Radiative transfer
- 2. Cloud detection
- 3. Bias tuning
- 4. Real time data monitoring
- 5. Data assimilation

Bias tuning

- There are several potential sources of bias in the measured or simulated radiances due to:
 - i Instrument related biases (e.g. poor calibration)
 - ii Radiative transfer model biases (e.g. due to fast model, errors in spectroscopy....)
 - iii Biased NWP model temperature, water vapour or ozone values
- Should remove biases from (i) and (ii) but not necessarily (iii)
- Variational theory assumes observations are unbiased with gaussian error distribution

Bias tuning for AIRS

- To remove biases, predictors from NWP model
- fields and/or instrument parameters are used.
- Predictors for RS being used are:
- Scan angle
- Model T_{skin}
- Model Thickness 850-300 hPa
- Model Thickness 200-50 hPa

Simulated brightness temperature

Example of AIRS bias tuning

Corrected biases

Uncorrected biases

AIRS channel 227 Peaks at 700 hPA

Example of AIRS bias tuning

Uncorrected biases

AIRS channel 1574 Upper trop wv

How do we use advanced sounders in NWP?

- 1. Radiative transfer
- 2. Cloud detection
- 3. Bias tuning
- 4. Real time data monitoring
- 5. Data assimilation

NWP Radiance Monitoring Observed minus Simulated

- Continuous <u>global</u> view of data
- Good for spotting sudden changes in instruments

Can compare with other satellites and in situ obs

But NWP model has errors: (LST, water vapour, ozone, clouds, stratosphere) so bias correction and cloud detection important and care in interpretation

STARCH Met Office

Home - Research - NWP - Satellite Applications - Infrared - Advanced Sounders
 AIRS Monitoring - Plots
 NWP | Climate | Seasonal forecasting | Atmospheric processes | Oceanography | Projects | The
 stratosphere

AIRS Monitoring Plots

AIRS Monitoring Plots

These plots are considered experimental. The Met Office accepts no responsibility for actions taken on the basis of these monitoring plots.

Diserved BT for Channel 123 679.992 cm-1 (ivol = 56)

Monitoring web page

Available to the AIRS team in mid-December via password protected page on Met Office site. http://www.metoffice.com/research/ nwp/satellite/infrared/sounders/airs /index.html Userid: airspage Passwd: &Graces

Time series of observations

Tartan Plots: O-B clear mean bias

Global Observations

O-B difference

- Large positive bias in the SW-IR in the day-time due to Non LTE effect in upper sounding chs and sunglint in window

How do we use advanced sounders in NWP?

- 1. Radiative transfer
- 2. Cloud detection
- 3. Bias tuning
- 4. Real time data monitoring
- 5. Data assimilation

Data assimilation

For variational assimilation we want to minimise a cost function *J*:

 $J(X) = 0.5(y^{o} - H(X)) (O + F)^{-1} (y^{o} - H(X))^{T} + 0.5(X - X^{b}) B^{-1} (X - X^{b})^{T}$

To minimise equation above, assuming the observations y^{o} to be linearly related to X then the minimum value for J(X) is when:

 $X = X^{b} + BH^{T} \cdot (H.B.H^{T} + O+F)^{-1} \cdot (y^{o} - H(X^{b}))$ H is derivative of *H* wrt X often called jacobian matrix $\partial y = H(X^{b}) \cdot \partial X$

Observation errors: AIRS channel covariance

AIRS Net Meeting, 24th February 2003

Forward model error correlation matrix for RTIASI

Met Office

Background errors and correlation matrix for T and q

Options for Data Assimilation (1- type of observation)

Assimilation of retrievals

- T(p), q(p), O₃(p) Lowest cost but inconsistent FG and no control of retrieval process. Must also have retrieval error covariance.
- Assimilation of 1DVar retrievals
 - T(p), q(p), $O_3(p)$ More optimal but radiances used in isolation
- Direct radiance assimilation in 3DVar or 4DVar
 - Radiances for limited number of channels Most expensive but most optimal and is current operational use of ATOVS but only limited use of data
- Use combination of channels
 - pseudo channels or EOFs Possible for 'day-2' assimilation, needs more research

Options for Data Assimilation (2 - coverage)

- Initially:
 - clear sky, tropospheric radiances over sea
 - stratospheric radiances globally
- Medium Term:
 - cloudy radiances over uniform low cloud
 - more radiances over land and sea-ice
- Longer term:
 - include cloud fully in state vector and provide cloud variables back to model

Measuring Impact of Satellite Data on Forecasts

We can run experiments where satellite data are not used and observe the consequent degradation in the forecast skill relative to a system which has used all data (observing system experiment or OSE).

But.

Can only do this using today's satellite data + processing and current data assimilation + forecast model systems.

N.B. In 1995 OSE's suggested satellite data had a negative impact on forecast skill.

Satellite Vs Conventional: NH Height

Met Office

Conventional Vs Satellite: SH Height

Advanced sounder data volumes

Summary of Current Status(1)

- The ATOVS sounder data has led to a significant improvement in forecast skill over the last 4 years
- Satellite data now have a larger impact than radiosondes in N. Hemisphere.
- New variational data assimilation techniques allowing direct use of satellite radiances has contributed enabling better use to be made of satellite data.
- Advanced IR sounder data show promise to improve the temperature, water vapour and ozone fields in the model.

Summary of Current Status(2)

- Cloud and surface parameters should also be updated by using these data.
- AIRS is providing an excellent test bed for use of advanced IR sounder data.
- Data volumes will remain a challenge for NWP centres (e.g. only 324 channels used from AIRS).
- More research on using compressed forms of data and cloud affected data.

