

Radiative Transfer Models and their Adjoints

Paul van Delst

Overview

- Use of satellite radiances in Data Assimilation (DA)
- Radiative Transfer Model (RTM) components and definitions
- Testing the RTM components.
- Advantages/disadvantages

Use of satellite radiances in DA

- Adjust the model trajectory with data.
- Iteratively minimise the difference between a model prediction and data using a cost/penalty function, e.g.

 $J(\mathbf{X}) = (\mathbf{X} - \mathbf{X}_b)^T \mathbf{B}^{-1} (\mathbf{X} - \mathbf{X}_b) + (\mathbf{Y}_m - \mathbf{Y}(\mathbf{X}))^T (\mathbf{O} + \mathbf{F})^{-1} (\mathbf{Y}_m - \mathbf{Y}(\mathbf{X})) + J_c$

- X, X_b : Input state vector and background estimate
- Y_m , Y(X): Measurements and forward model
- B, O, F: Error covariances of X_b , Y_m , and Y(X)
- Iteration step direction is determined from Y(X) linearised about X_{b} ,

$$\underbrace{\mathbf{Y}(\mathbf{X})}_{Lx1} = \underbrace{\mathbf{Y}(\mathbf{X}_{b})}_{Lx1} + \underbrace{\mathbf{K}(\mathbf{X}_{b})}_{LxK} \underbrace{(\mathbf{X} - \mathbf{X}_{b})}_{Kx1}$$

• Where the $K(X_b)$ are the Jacobians (K-Matrix) of the forward model for the background state X_b ,

$$K^{l}\left(X^{k}\right) = \frac{\partial Y^{l}}{\partial X^{k}}\Big|_{X=X_{b}}$$

RTM components and definitions (1)

• Forward (FWD) model. The FWD operator maps the input state vector, *X*, to the model prediction, *Y*, e.g. for predictor #11:

$$P_{11} = \frac{W}{T^2}$$

• Tangent-linear (TL) model. Linearisation of the forward model about X_b , the TL operator maps changes in the input state vector, δX , to changes in the model prediction, δY ,

$$\delta P_{11} = \frac{\partial P_{11}}{\partial W} \delta W + \frac{\partial P_{11}}{\partial T} \delta T$$
$$= \frac{1}{T^2} \delta W - \frac{2W}{T^3} \delta T$$

Or, in matrix form:

$$\begin{bmatrix} \delta P_{11} \\ \delta W \\ \delta T \end{bmatrix}^n = \begin{bmatrix} 0 & \frac{1}{T^2} & -\frac{2W}{T^3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \delta P_{11} \\ \delta W \\ \delta T \end{bmatrix}^{n-1}$$

RTM components and definitions (2)

Adjoint (AD) model. The AD operator maps in the reverse direction where for a given perturbation in the model prediction, *δY*, the change in the state vector, *δX*, can be determined. The AD operator is the transpose of the TL operator. Using the example for predictor #11 in matrix form,

$$\begin{bmatrix} \delta^* P_{11} \\ \delta^* W \\ \delta^* T \end{bmatrix}^{n-1} = \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{T^2} & 1 & 0 \\ -\frac{2W}{T^3} & 0 & 1 \end{bmatrix} \begin{bmatrix} \delta^* P_{11} \\ \delta^* W \\ \delta^* T \end{bmatrix}^n$$

Expanding this into separate equations:

$$\delta^* T^{n-1} = -\frac{2W}{T^3} \delta^* P_{11}^n + \delta^* T^n$$
$$\delta^* W^{n-1} = \frac{1}{T^2} \delta^* P_{11}^n + \delta^* W^n$$
$$\delta^* P_{11}^{n-1} = 0$$

RTM components and definitions (3)

• K-Matrix (K) model. Consider a channel radiance vector, R, computed using a single surface temperature, T_{sfc} . For every channel, l,

$$R_{l} = B(v_{l}, T_{sfc}) \qquad \text{FWD}$$

$$\delta R_{l} = \frac{\partial B(v_{l}, T_{sfc})}{\partial T_{sfc}} \delta T_{sfc} \qquad \text{TL}$$

$$\delta^{*} T_{sfc} = \frac{\partial B(v_{l}, T_{sfc})}{\partial T_{sfc}} \delta^{*} R_{l} + \delta^{*} T_{sfc} \qquad \text{AD}$$

• This is not what you want for DA/retrievals since the sensitivity of each channel is accumlated in the final surface temperature adjoint variable. Simple solution:

$$\delta^* T_{l,sfc} = \frac{\partial B(v_l, T_{sfc})}{\partial T_{sfc}} \delta^* R_l \qquad K$$

 So in the RTM, the K-matrix code simply involves shifting all the channel independent adjoint code inside the channel loop. That's it.

Testing the RTM components – FWD/TL

- Start with the assumption that the FWD component is in good shape (e.g. validated with observations, radiosonde matchups, etc).
- TL test against the forward model. Run the TL model with δX inputs varying from $-\Delta X \rightarrow 0 \rightarrow +\Delta X$ to give δY_{TL} . Run the FWD model with $X+\delta X$ inputs and difference from the zero perturbation case to get the non-linear result δY_{NL} .
- Inspect δY_{TL} and δY_{NL} as a function of δX . TL must be linear (d'oh) for all δX and tangent (d'oh²) to the NL result at $\delta X=0$.
- Linearity of the TL result can be checked by numerical differentiation to give a constant for all δX . Numerical differentiation of NL result should give same value as TL at δX =0. But accuracy of numerical derivative is an issue if the perturbation resolution is low.

Testing the RTM components – TL/AD

• Assume the FWD model input vector, *X*, has *K* elements and the output vector has *L* elements,

$$\mathbf{X} = [X_1, X_2, X_3, \cdots, X_K]$$
$$\mathbf{Y} = [Y_1, Y_2, Y_3, \cdots, Y_L]$$

• Run the TL model j = 1 to K times with input,

$$\delta X_i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

saving the δY vector output each run to give a LxK matrix, **TL**.

• Run the AD model j = 1 to L times with input,

$$\delta^* Y_i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \qquad \delta^* \mathbf{X} = \mathbf{0}$$

saving the δ^*X vector output each run to give a KxL matrix, **AD**. Then, to within numerical precision,

$$\mathbf{T}\mathbf{L} - \mathbf{A}\mathbf{D}^T = \mathbf{0}$$

Input: *T*²*P*² Output: P

- View	Predictors Test					
File						
Select TestType				File: Pred	ictor_Test.bin 2: Output: 1	
	Select predicto	are:	2005	IIL - A	Di residual	
÷1	⇒H/1*2	- DRY P++	1.º F			
₽	⇒HET T+	- DRY T+++				
⇒T^2	⇔HET P¥	- DRY P***	0.8			
⇒ P*2		⇔ 020 T•	-			
	HET P++	~ 020 P+	0,6			
⇒1^2,P	⇔HET T+++	-> DZO T++	9			
⇒T.P*2	⇔HET P×××	~ 020 P**	4			
+1^2.Ρ	12 ⇔IRY T×	∽0Z0 T***	Ë 0.*			
P*1/4	⇔IRY P+	~ 020 P***				
÷.	4 IRY 1++		0.2			
	Select AD outp	ut				40:
*P ->1	T -\$H		all			
when at	bs. ⇔DRY abs.	⇒020 abs.	- ec			
Salac	t Ploliges		To all	69 A		
+ Borfac	ce Dufference			2 40 V		BO BOURY
-Leser	Dufference			NO NO	20 40	oriotale
-LASAF	Esepter Lauto				A 164	
wProfil	le Difference					
*Profil	Le Commarison					
	ielest leger					
Party and		100				
Select -20	t perturbetion .	t				
NU LI LI LI		_				
						140

THE W

Input: Wet *P*^{*} Output: *P*

Inthe Discontine Room

File			
Select TestType ~FXD/TL AD/TL			File: Predictor_Test.bin Input: WET P*; Output: P ITL - ADI residual
	Select predict	tor	6-
-	~ H/1~2	- DRY P++	
₽	⇒HET T+	-> DRY T+++	6
-⇒T^2	→HET P*	- DRY P***	
		⇔ 020 T∙	Ê
T.P	HET P++	~ 020 P+	
⇒1^2,P	VIET T***	-> DZD T++	
⇒T.P*2		-> 020 P**	
⇒1*2.P*3	2 ⇔IRY T×	⇒020 T***	2 , 1 h
P*1/4	⇔IRY P+	020 P***	
-≎H	⇔DRY T++		
	Select AD out WH DRY abs. Plottype Plottype Plottype Dufference Cooperises EDIFference	. ⇒020 abs.	
* Profile	e Conparison		
54 (10)	alaht Ježan	100	
Select -20	per luvest ser		

Input: Ozo P^{**} Output: Ozo A

View	Predictors Test				
ile					
Select 1	restType		Input:	File: Predictor_Te: 0Z0 P*;Outpu	st.bin t: OZO abs.
	Select predict	or		IIL - ADI resid	ual M
÷1	⇒H/1*2	-DRY P++	1.#E		
⇒ P	WHET T+	~ DRY T+++	1.2		
	WHET P*	-DRY P***			1 n
~ P*2	⇒HET T××	⇒020 T•	a 1.0	2	
-1.P	-HET P++	~ 020 P+	1		
-1^2,P	VIET T***	~ DZD T++	0.01		
⇒T.P*2		* 020 P**	× 0.6		
⇒ T*2.P*	2 ⇔IRY T×	~020 T***	8	1	LI L
~P^1/4	⇔IRY P+	~020 P+++	0.4		
≥R:	IRY T++	~	E		
	Select AD out	put	0.4		ly ffr
-PT	⇒H		9.8 mm		
- WET ab	o. ⇔DRY abs.	≁020 abs.	2 40 C		add a faire
Select	PLOTING		to a constant		Satellite
- Sorfac	e Bufference		Ser.		BO BO AN
Laser	Dufference			20 20 20	40 ronoble
Lasart	Enargian Lawren			0 14	
Front	e Differences				
+ Profile	e Comarison				
s	allast legar				
_		100			
201					
-20	Participat 161+	4			
Sullar.					

Advantages/Disadvantages

- Advantages
 - Adjoint method produces Jacobians fully consistent with the forward model.
 - Well defined set of rules for applying method to code.
 - Code tests are straightforward and definitive particularly for the TL/AD test.
 - Easy to incorporate model changes, improvements, additions, etc.
 - Good for sensitivity analyses. TL used to investigate impact of small disturbances, AD can be used to investigate origin of the anomaly.
- Disadvantages
 - Complexity. Compared to finite differences (if one can live with using them), adjoint coding can be a bit of a brain teaser.
 - Very easy to produce code slower than a snail in a straitjacket. Up front code design is an important step.
 - Have to be careful when vectorising and optimising code.