EUMETSAT Satellite Programmes

Marianne König & many colleagues marianne.koenig@eumetsat.int

Slide: 1 MUG Meeting June 2009

EUMETSAT Space Segment – Current and Future

The "old" Meteosats: First Generation

Operational imager mission over the Indian Ocean 3-channel radiometer (VIS, IR, WV), image repeat cycle 30 minutes

Meteosat-7: Go East!

M7 Relocation (09 Jun - 04 Oct 2006)

Meteosat-6: An Interesting Case

Radiometric Anomaly needs correction through cross-calibration with e.g. MSG

MSG – Operational Service since 2004

Meteosat-8: stand-by satellite, over 10 E, currently in "rapid scan" mode

Meteosat-9: operational satellite, over 0 deg

Some MSG facts:

- 12-channel radiometer ("SEVIRI")
- 15 minute repeat cycle for full disk scans
- 3 km pixel sampling distance, 1 km for HRV
- Series of 4 MSG satellites planned

SEVIRI Overview

Slide: 7 MUG Meeting June 2009

HRV: A Special Case

High data rate allows only transmission of half a scan line. Two block of "half lines" can be selected.

EUMETSAT

Meteosat-8 in Rapid Scan

Coverage every 5 minutes

Slide: 9 MUG Meeting June 2009

Curious Incident Observed by Meteosat-8

MSG Benefits

Nowcasting severe convection, fog, etc. Input to NWP (mainly through AMVs) Airmass visualisation

Dust detection Volcanic ash detection

Detailed cloud information (microphysics)

Nowcasting Aspects

Big success of use of RGBs (set of "recommended RGBs")

Convection loop Europe

Fog over Alps

Airmass loop Europe

Special Events: Dust, Volcanic Ash

Dust outbreak over Sahara

Volcanic Eruption (Karthala)

Detailed Cloud Information

Meteosat Third Generation: Outlook

MTG IRS: Infrared Sounder Fourier Transform Spectrometer 0.625 cm⁻¹ spectral resolution, 700 – 2175 cm⁻¹ Spatial resolution 4 km

Aim: support of NWP, mesoscale models

MTG Lightning Imager (LI)

Detection of In-Cloud, Cloud-to-Cloud and Cloudto-Ground Lightning Events MTG UVN

(ultra-violet, visible and near-infrared radiometer)

Support of air chemistry

Provided as GMES Sentinel-4 instrument

MTG FCI

Flexible Combined Imager

16 spectral channels, 10/2.5 min repeat cycle, 0.5-2 km resolution

Current Status: Twin Satellite configuration – FCI/LI and IRS/UVN platforms, 4 FCI and 2 IRS platforms approved

Meteosat Third Generation: Outlook

MTG FCI: Flexible Combined Imager

16 spectral channels (8 solar, 8 thermal) Improved spatial resolution: 0.5 – 2km

> Full Disk Coverage: Scan Interval 10 min

Local Area Coverage: Scan Interval 2.5 min

EUMETSAT's Polar System: Metop (not MetOp!)

Metop-A in orbit 2007

TEVION

19 April 2007 223652 CEST

© Dieter Klaes

Global View!

EPS/Metop is part of the Initial Joint Polar System (IJPS)

Fairbanks, Alaska

Wallops Island, MD

Suitland, MD

Metop

Metop-A (in orbit) Metop-B (2012) Metop-C (2016) Svalbard, Norway

> Darmstadt, Germany

POES

NOAA-18 (in orbit) NOAA-N' (2009)

Sun-synchronous Orbit of 102 minutes 14.1 orbits per day

- EUMETSAT-NOAA coordinated programmes

- Exchange of instruments (ATOVS from NOAA, MHS from EUMETSAT)
- Coordinated operations, data and services
- Extended agreement in 2003 to include Metop-C

Instruments on Metop

AVHRR – traditional imaging (US, 1 km resolution)
HIRS/AMSU – traditional sounding (US)
MHS – Microwave Humidity Sounder (EUR)
GOME – UV instrument to support air chemistry (EU)
IASI – infrared sounder (EU)
GRAS – radio-occultation (sounding, EU)
ASCAT – active radar, scatterometer (EU)

Greenland seen by AVHRR

ATOVS and MHS: Vertical Sounding

Hyperspectral Sounding - IASI

IASI Spectral Coverage, 8461 spectral samples

IASI Trace Gas Retrievals

Credit M. Pommier/ P. Coheur/ D. Hurtmans, 2008

GOME Ozone Produce

Antarctic ozone "hole" 2008

GRAS Radio-Occultations

Ascat: Surface Radar Reflectivity

Ocean Surface Winds (KNMI)

Soil Moisture (EUMETSAT and University Vienna)

JASON: Oceanographic Data

JASON-2 was launched on 20 June 2008 NASA / NOAA / CNES / EUMETSAT satellite To be followed by JASON-3 and Sentinel-3

Main payload:

Poseidon altimeter (nadir viewing), 13.6 and 5.3 GHz Microwave instrument to correct for atmospheric humidity Orbit determination instruments (within 3 cm)

JASON Products

Altimeter measures

- Sea Surface Height
- Significant Wave Height
- Surface Wind Speed

JASON Products

	Products	Main Variables	Frequency	Application Class
1	Operational Sensor (Geophysical) Data Record (OSDR/OGDR)	Significant Wave Height (SWH) Surface Wind Speed (WIND) Sea Surface Height (SSH)	3 hours	Nowcasting Operational Wave Forecasting
2	Interim Geophysical Data Record (IGDR)	Sea Surface Height (SSH) Absolute Dynamic Topography (ADT) Ocean Geostrophic Velocities	Daily**	Medium-Range Forecasting Seasonal Forecasting Ocean Weather
3	Geophysical Data Record (GDR)	Sea Surface Height (SSH)	10 daily (one repeat cycle)	Climate Monitoring Sea level Rise Climate Modeling

JASON Product: Sea Level Rise

New Building – and new Office Cooling System

New Logo ;)

EUMETSAT

Slide: 35 MUG Meeting June 2009

The End!

Thank you!

Merci!

Danke!

