Utilizing Python as a scripting
language for the McIDAS-V
visualization package

Mike Hiley

(and the McIDAS-V Team)
SSEC/CIMSS, University of Wisconsin-Madison

2013 McIDAS User’s Group Meeting
September 10, 2013
Madison, WI

Quick Overview of McIDAS-V

* Free, open-source 3D visualization package under
active development at SSEC/CIMSS

 Focused on meteorological data, but not limited
to it
e User support provided by the McIDAS User Group

(MUG) — anyone can create an account on the
forum and get help!

e Java-based architecture; easy to install on
Windows/OSX/Linux

e Based on several components (details coming)

McIDAS-V Supported Data

e Many supported data types:
— Point data

— Numerical weather model output in various formats
(GRIB2, netCDF, GEMPAK, and more)

— Satellite imagery, including hyperspectral via HYDRA
— Radar (especially NEXRAD)

— netCDF files that conform to CF conventions

— Remote data access via ADDE, THREDDS

— Lots more

McIDAS-V Functionality

 Data choosers let the user put any
combination of these data into a display, then
manipulate the display interactively

e Display is fully three-dimensional — especially
useful for conventional radar as well as cross
sections from e.g., CloudSat and CALIPSO

Example Image produced by McIDAS-V: putting
the A-train in a single display!

e CloudSat vertically
pointing cloud
radar

e 89GHz vertically
polarized
brightness
temperatures from
AMSR-E

e 0.65um
reflectance from
MODIS

Thanks to Prof. Ralf Bennartz
(Vanderbilt/SSEC) for help
producing this image

Quick History of McIDAS-V

e “Fifth-generation McIDAS” — the successor to McIDAS-
X (though codebase is almost completely unrelated)

e Based on several components:

— VisAD: Java component library for visualization of virtually
any numerical dataset, developed at SSEC

— Integrated Data Viewer (IDV): Extension of VisAD
providing support for meteorological data sources and
adding a GUl interface, developed at Unidata

— HYperspectral-viewer for Development of Research
Applications (HYDRA): Extension of VisAD focused on
visualization of hyperspectral satellite data, developed at
SSEC

In a nutshell, McIDAS-V is an extension of the IDV and
VisAD that incorporates HYDRA and adds other features
like Suomi NPP support, a dedicated support team,
and...

* A new Jython scripting API !
e Under active development at SSEC
 MCcIDAS-V previously had some scripting
capabilities, but:
e limited functionality
e “Un-Pythonic”
e New APl is designed from ground up to ease
automation of common workflows in McIDAS-V via
a user friendly and well documented API.

Current status of scripting API

e MCcIDAS-V version 1.2, released in April 2012, included the
first version of this new scripting functionality.

— So far we have focused primarily on access to satellite imagery
via ADDE

— Extensive tutorials and documentation available on McIDAS-V
website
e Scripting framework continues to be heavily developed. 1.3
and 1.4 releases include some new functionality:

— listADDEImages (find out what is on the server without
downloading images)

— Jython Shell improvements (keyboard shortcuts, easier to run
scripts that are on disk)

— Numerous stability improvements

MCcIDAS-V scripting
overview

e Users write scripts in the Python programming
language
e Python scripts are interpreted in the Java-based

McIDAS-V system via Jython, an implementation
of the Python programming language in Java

* |n addition to our new API, advanced users can
call any piece of Java code in the McV/IDV/VisAD
library. (Without having to actually write Java
code).

Users can run scripts in two modes:

e Interactively:in a
normal session of YR s
McIDAS-V by
typing commands
in the “Jython
Shell”

e |nthe | : S
“background”: iere soopie oo oo a2 plederaaty iy ne Coomlows tay 1o 0 sn
from a terminal e ST P s
session. McIDAS-

V boots, runs a
script, and closes

better

enough to break the rules.

Interactive mode

Simple example script

Use the “getADDEImage” function™ to get some
satellite imagery.

Put the data in a display.

Add a descriptive label using metadata from
ADDE.

Change the map projection.
Write out the image as a PNG.

*(ADDE: Abstract Data Distribution Environment. Used heavily in
McIDAS-X world. Main advantage: can get exactly the part of an
image you need, nothing more.)

m| austin_ir.py {~/Desktop/hiley_amspython_vscripting) - VIM
| 31 # specify the properties of the desired image.
30 params = dict(
29 # some ADDE-specific terminology is used here.
28 server="adde.ucar.edu’,
27 dataset="RTIMAGES',

Example 26 descriptor='GE-IR', # GOES-EAST IR.
script. 25 location=(30.2, -97.7),
24 place=Places.CENTER, # specify lat/lon of the center of the image.
'+ 23 size=(158, 332), # number of pixels we want in x,y direction.
. 22 mag=(-3, -2), # the "magnification”, to skip pixels
21 position=0, # gets the latest image
. 20 band=4,
19)
- 18

17 # get a new 800x600 window.
- 16 window = buildWindow(height=600, width=800)[0]
.15
. 14 # get the satellite image.

13 data = getADDEImage(**params)

12
. 11 # put the satellite image in the window.
10 layer = window.createlLayer('Image Display', data)

9

8 # add a layer label using satellite metadata using Python dictionary syntax.
7 label = "%s %s" % (data['sensor-type'], data['nominal-time'])
6 layer.setlLayerLabel(label, size=32, color="orange')

5

4 # change the projection.

3 window.setProjection('US>States>N-Z>Texas")

2

1 # save the image.

@ window.captureImage('/Users/mhiley/austin_IR.png")

laustin_ir.py 32,6 All

API| Design - principles

e Functions and methods should be named well
so they have a predictable result

 Anywhere an arbitrary string is required - for
example when specifying display type (image,
contour, streamlines, etc.) — the user should
be able to use the same strings found in the
GUI labels

 Pythonic syntax wherever feasible

AP| design — key classes

e Data: a piece of data, e.g. u and v model winds
— Key metadata can be accessed via Python dictionary syntax
— Can perform statistical analysis, do arithmetic operations, etc.
e Layer: A piece of data that has been displayed (e.g. a
streamline display of the model winds)
— Can change some key layer properties like enhancement table
e Window: A combination of multiple layers, e.g. wind
streamlines plotted on top of a satellite image

— Some key per-display properties you can set:
* Display size
e Lat/lon center point of image
* Map projection
— Can add text annotations and write image to disk

m| austin_ir.py {~/Desktop/hiley_amspython_vscripting) - VIM
| 31 # specify the properties of the desired image.
30 params = dict(
29 # some ADDE-specific terminology is used here.
28 server="adde.ucar.edu’,
27 dataset="RTIMAGES',

Example 26 descriptor='GE-IR', # GOES-EAST IR.
script. 25 location=(30.2, -97.7),
24 place=Places.CENTER, # specify lat/lon of the center of the image.
'+ 23 size=(158, 332), # number of pixels we want in x,y direction.
. 22 mag=(-3, -2), # the "magnification”, to skip pixels
21 position=0, # gets the latest image
. 20 band=4,
19)
- 18

17 # get a new 800x600 window.
- 16 window = buildWindow(height=600, width=800)[0]
.15
. 14 # get the satellite image.

13 data = getADDEImage(**params)

12
. 11 # put the satellite image in the window.
10 layer = window.createlLayer('Image Display', data)

9

8 # add a layer label using satellite metadata using Python dictionary syntax.
7 label = "%s %s" % (data['sensor-type'], data['nominal-time'])
6 layer.setlLayerLabel(label, size=32, color="orange')

5

4 # change the projection.

3 window.setProjection('US>States>N-Z>Texas")

2

1 # save the image.

@ window.captureImage('/Users/mhiley/austin_IR.png")

laustin_ir.py 32,6 All

Challenges — Implementation of new
scripting API

e The foundation of the McIDAS-V codebase,
the IDV, was built primarily as a GUI-based
system. For us developers, providing
scripting-based access to IDV features can be
challenging.

e But —this is precisely why our work is
important — to shield end users from these
complications!

Challenges — Jython limitations

e Current “final” release is only Jython 2.5.3;
Jython 2.7 is under development and it is
unclear if we will see a Jython 3. (Current
stable CPython is version 3.3).

e No NumPy!

e Jython code significantly slower than native
Java code.

Challenges — facilitating data analysis

 In McIDAS-V, all data is internally represented using the
“VisAD Data Model”: a generic way of representing
virtually any scientific dataset

e We want scientists to do data analysis and algorithm
development in McIDAS-V, but that means scientists need
to learn this “VisAD Data Model”, which can be seen as a
pro or a con:

— PRO: VisAD provides a powerful way to manipulate/analyze a
huge variety of data types in a uniform way.

— CON: The VisAD learning curve can be steep (VisAD lingo can
seem strange to scientists coming from a MATLAB/IDL world)

* Part of our work will be to fill the gap between VisAD and
traditional science code however we can... solid
documentation, helper functions, boilerplate scripts, user
forum support

Conclusion

 New MCcIDAS-V scripting API promises to provide
consistent access to a wide variety of meteorological
data sources using the Python programming language.

e First edition of this scripting framework was
introduced in version 1.2, and heavy development has
continued since, and will continue for the foreseeable
future.

e McIDAS-V already has a wide variety of powerful
tools available for both visualization and data
analysis. Access to these tools via scripting will get
better with every release.

Things you can do right now!!!

e [nstall McIDAS-V; it’s easy and works on
Windows/OSX/Linux; available for free at:

— http://www.ssec.wisc.edu/mcidas/software/v/

e Create an account on the McIDAS-V support
forum to get help from the developers,
support team, and other users!:

— http://dcdbs.ssec.wisc.edu/mcidasv/forums/

Thanks for listening!

Acknowledgements:

e MCcIDAS-V core “scripting team”
e Becky Schaffer
e Jonathan Beavers
e Rick Kohrs
e Bob Carp
e The rest of the McIDAS team:
e Tom Rink
e Tom Whittaker
* Tommy Jasmin
e Dave Santek
e Jay Heinzelman
e Barry Roth
e Users that keep pushing the
boundaries of McV scripting:
e Joleen Feltz
* Hans-Peter Roesli
(EUMETSAT)

	Utilizing Python as a scripting language for the McIDAS-V visualization package
	Quick Overview of McIDAS-V
	McIDAS-V Supported Data
	McIDAS-V Functionality
	Example Image produced by McIDAS-V: putting the A-train in a single display!
	Quick History of McIDAS-V
	In a nutshell, McIDAS-V is an extension of the IDV and VisAD that incorporates HYDRA and adds other features like Suomi NPP support, a dedicated support team, and…
	Current status of scripting API
	McIDAS-V scripting overview
	Users can run scripts in two modes:
	Simple example script
	Slide Number 12
	Slide Number 13
	API Design - principles
	API design – key classes
	Slide Number 16
	Challenges – Implementation of new scripting API
	Challenges – Jython limitations
	Challenges – facilitating data analysis
	Conclusion
	Things you can do right now!!!
	Thanks for listening!

