Scripting McIDAS-X in a Python environment

Kevin Hallock SSEC Datacenter Programmer September 10, 2013

2013 McIDAS Users Group Meeting

What problems are we trying to solve?

- Running a mcenv instance within a bash script requires redirection of stdin (i.e. "<< 'EOF'")
- Parsing text in bash can be clumsy, requires piping commands together to extract useful information.
- Manipulating dates in bash is messy, code can often depend on having a particular version of GNU date installed, for example.

What is Python?

- Python is a general-purpose interpreted programming language that supports multiple programming paradigms, including both objectoriented and procedural programming.
- Python is very flexible and can be used to write anything from simple scripts to an entire application with a fully graphical interface.
- Because of the flexibility it provides, Python has been one of the most popular programming languages over the past 10 years.

What makes Python a good alternative?

Position Aug 2013	Position Aug 2012	Delta in Position	Programming Language	Ratings Aug 2013	Delta Aug 2012	Status
1	2	t	Java	15.978%	-0.37%	Α
2	1	Ļ	С	15.974%	-2.96%	Α
3	4	t	C++	9.371%	+0.04%	Α
4	3	Ļ	Objective-C	8.082%	-1.46%	Α
5	6	t	PHP	6.694%	+1.17%	Α
6	5	Ļ	C#	6.117%	-0.47%	Α
7	7	=	(Visual) Basic	3.873%	-1.46%	Α
8	8	=	Python	3.603%	-0.27%	Α
9	11	tt	JavaScript	2.093%	+0.73%	Α
10	10	=	Ruby	2.067%	+0.38%	A
11	9	11	Perl	2.041%	-0.23%	Α
12	15	111	Transact-SQL	1.393%	+0.54%	Α
13	14	t	Visual Basic .NET	1.320%	+0.44%	Α
14	12	11	Delphi/Object Pascal	0.918%	-0.09%	A
15	20	11111	MATLAB	0.841%	+0.31%	A
16	13	III	Lisp	0.752%	-0.22%	Α
17	19	tt	PL/SQL	0.751%	+0.14%	Α
18	16	#	Pascal	0.620%	-0.17%	A-
19	23	tttt	Assembly	0.616%	+0.11%	В
20	22	tt	SAS	0.580%	+0.06%	В

Position Sep 2013	Position Sep 2012	Delta in position	Programming language	Share in Sep 2013	Twelve month trends	
1	1		Java	27.0 %	<mark>-1.2 %</mark>	
2	2		РНР	13.9 %	-0.0 %	
3	3		C#	10.0 %	+0.4 %	
4	6	ተተ	Python	9.9%	+1.7 %	
5	4	*	C++	9.0 %	-0.7 %	
6	5	*	С	8.5 %	<mark>-1.4 %</mark>	
7	7		Javascript	7.1 %	+1.3 %	
8	8		Objective-C	5.6%	+0.4 %	
9	9		Visual Basic	3.1 %	-0.6%	
10	10		Ruby	3.0 %	+0.2 %	
© 2013 Pierre Carbonnelle						

https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language

http://www.tiobe.com/index.php/conte nt/paperinfo/tpci/index.html

Where is bash?

28	Bash	0.491%
----	------	--------

What makes Python a good alternative?

- Existing Python modules such as NumPy and SciPy offer advanced mathematical/scientific analytical tools comparable to MATLAB or R.
- As implied by the name, Python modules are modular, allowing a user to import whichever modules they deem necessary for their project.
- Because of the nature of Python modules, code implementing the McIDAS-X module can easily be added to an existing project; similarly, any McIDAS-X Python script can be extended to use other modules.

What makes Python a good alternative?

Python is multi-platform

How our solution works

- The Python 'subprocess' module is used to spawn an instance of the mcenv shell in the backround
- mcenv shell commands are passed to the mcenv session using pseudo-native python functions, as in the following examples:
 - bash:
 - imglist.k DATA/SET FORM=ALL
 - python:

mcenv.imglist("DATA/SET FORM=ALL")

• In this case, the imglist method is not explicitly defined, but rather is interpreted such that the example bash command is run in the mcenv sub-shell.

bash example

#!/bin/bash

PATH=/home/mcidas/bin:\$PATH MCPATH=\$HOME/mcidas/data:/home/mcidas/data export PATH MCPATH

mcenv << 'EOF'

logon.k ABC 1234 dataloc.k ADD GROUP SERVER.DOMAIN imglist.k GROUP/DESCRIPTOR TIME=12:00

EOF

Python example

#!/usr/bin/env python import mcidasx

import os

os.environ['PATH'] = "%s:%s" % ('/home/mcidas/bin', os.environ['PATH']) os.environ['MCPATH'] = '%s/mcidas/data:~mcidas/data' % os.environ['HOME']

m = mcidasx.mcidas.mcenv()

m.logon('ABC 1234') m.dataloc('ADD GROUP SERVER.DOMAIN') m.imglist('GROUP/DESCRIPTOR TIME=12:00') Setting environment variables could be further abstracted into the module import step in order to simplify code.

GOES East Full Disk over a range of days

#!/usr/bin/env python
import mcidasx
import os
Import sys
from datetime import datetime
from mcidasx.utilities import date range

mcidas_home = '/home/mcidas'
os.environ['PATH'] = "%s:%s" % (mcidas_home + '/bin', os.environ['PATH'])
os.environ['MCPATH'] = '%s/mcidas/data:%s/data' % (os.environ['HOME'], mcidas_home)

def main(start_date, end_date):
 mcenv = mcidasx.mcidas.mcenv(frame_size='900x1200')

```
mcenv.logon("ABC 1234")
mcenv.dataloc("ADD AGOES13 GEOARC.SSEC.WISC.EDU")
```

```
for day in date_range(start_date, end_date):
    d = day.strftime('%Y%j')
    mcenv.imgdisp("AGOES13/FD MAG=-10 -20 BAND=1 DAY=%s TIME=17:45" % d)
    mcenv.frmsave("1 test-%s.jpg" % d)
```

if __name__ == "__main__":
 start_date = datetime.strptime(sys.argv[1], '%Y-%m-%d')
 end_date = datetime.strptime(sys.argv[2], '%Y-%m-%d')
 main(start_date, end_date)

Relevant python modules

- NumPy
- SciPy
- netCDF4
- GDAL
- matplotlib
- PyTables
- pandas

How can users install the McIDAS-X python module?

- Care was taken to ensure that the McIDAS-X python module could be installed and imported just like any other python module.
- <u>ftp://ftp.ssec.wisc.edu/pub/mug/mug_meeting/2013/</u> python/mcidasx-python.tar.gz
- Decompress the archive, and run 'python setup.py install --user' in the new directory (or use a Python tool such as pip or easy_install to install the .tar.gz directly).
- Now, within python, add the command 'import mcidasx', and all of the functionality of this module should be available.

Future work

- Additional modules which offer more direct access to underlying McIDAS-X commands
 - For example, the imglist command could return a Python object with callable methods and accessible attributes, rather than returning a multi-line string (which needs to be manually parsed to be useful).
- Additional specialized/specific utility functions
 - Perhaps functions that generate commonly used McIDAS time/date formats
- Although we are giving this "McIDAS-X/Python" presentation at the MUG meeting, this project is not currently funded by MUG.
 - Funded by another project at SSEC where the use of Python was necessary
- Disclaimer This project was initially designed as a proof-ofconcept, and as such has not been thoroughly tested for every McIDAS-X command.

Questions?