McIDAS: The First True GIS Mashup

Tommy Jasmin

UW / CIMSS / SSEC McIDAS Users' Group Meeting June 9, 2015

Except GIS means many things

So let's assume we mean "geospatial data"

Geospatial Data:

- •Data with "when" and "where"
- •Must be able to find and retrieve that data
- •Must be able to visualize and analyze that data

Turning Earth-located data into useful information

Mashup Defined

Originally, pertained to music (circa early 1990s)

Wikipedia: A song or composition created by blending two or more pre-recorded songs, usually by overlaying the vocal track of one song seamlessly over the instrumental track of another.

In a GIS context: The process of combining multiple sources of data into one integrated spatial display to create something that none of the individual data sources could provide on their own.

Considered a very early GIS mashup

1995: World Wide Earthquake Locator

- 1. Used Xerox PARC mapping system
- 2. Provided real-time earthquake data with tectonic plate boundaries

Well wait a minute...

Dr. John Snow cholera map, London, 1854

A True Historical Mashup in McIDAS

Satellite image with temperature contours

Another early McIDAS Mashup

Satellite image with radar data overlay

And then came Dimensions 3 and 4

4D Visualization of Presidents' Day Storm, 19 Feb 1979

VisAD gave us interoperability, 3D, 4D, 5D

Abstract Data Model hides file format details

Satellite, Lidar, and Radar Data Together

CALIPSO Lidar, CloudSat Radar, and MODIS Infrared Satellite data Credit: Kris Bedka, NASA Langley

Why is interoperability so important?

1. The current accumulation rate of geospatial data

We have accumulated more geospatial data in the last 10 years than in **all of history**.

Most of us are now walking consumers **and** producers of geospatial data

Think sampling rates (e.g. flux measurements, lidar)

1 sub-meter full Earth satellite image = 1 PB

Why is interoperability so important?

2. Creation and distribution of geo data is becoming much easier

VIIRS DNB Global Composite generated entirely from April 2015 data

- 1. At present, 0.1 degree spatial resolution (much lower than best possible)
- 2. Many false positives from auroras and moon illumination

A framework for automatic VIIRS image compositing

Study Period: April 1 - April 30 2015 (~1.3 TB) For each 12 hour period, fetch all nighttime DNB granules, and VIIRS CM granules. Process, delete, repeat. ~45 GB / day, ~2,200 files

Completely automated, in a single extensible script!

Full granule

Clip each edge of swath

Generate cloud mask

Data passed on to final product

Using McV to tune DNB algorithm

Ex 1) Why not mash this up?

Random VIIRS SST granule

Ex 2) Why not mash this up?

What if we intersect a tornado track with US Census Data?

Going forward

SOA: Service Oriented Architecture

The notion that any computer application can be broken down into components, many of them provided by services distributed on the Internet

sunshine:~ tommyj\$ cat /etc/services | grep mcidas mcidas 112/udp # McIDAS Data Transmission Protocol mcidas 112/tcp # McIDAS Data Transmission Protocol

For SOA to work:

- 1. Need standards, so systems can be interoperable
- 2. Need easy way to search for services that meet specific requirements

OGC: Open Geospatial Consortium

WMS: Geo-referenced map image layers (what RealEarth uses) WFS: Vector data, e.g. map outlines (disputed areas, reefs, etc.) WCPS: Similar to ADDE, sensor data with processing and **standards**

An Obligation to Collaborate

