McIDAS – XCD Replacement Update

2016 McIDAS Users' Group Meeting

Rewrite Team

 Kevin Baggett, Jonathan Beavers, Dan Forrest, Jay Heinzelman, Dave Parker, Jerrold Robaidek, Becky Schaffer, Clayton Suplinski

McIDAS XCD

McIDAS X

Conventional Data

Decoder

McIDAS-XCD files, decodes and indexes the NOAAPORT data stream into formats that can be served by McIDAS-X ADDE servers.

Output formats include McIDAS MD files, Text files, McIDAS GRID files, GRIB Version 1 and 2 files, NEXRAD files, and BUFR files.

NOAAPORT Data

 The NOAAPORT broadcast system provides a one-way broadcast communication of NOAA environmental data and information in near-real time to NOAA and external users. This broadcast service is implemented by a commercial provider of satellite communications utilizing C-band.

NOAAPORT Channels

The following NOAAPORT channels supply data to be decoded by McIDAS-XCD:

- NCEP/NWSTG Channel (<u>NWS</u> <u>Telecommunications</u>
 <u>Gateway</u>)
 - model output from the National Centers for Environmental Prediction (NCEP)
 - observations, forecasts, watches and warnings from NWS Forecast Offices
 - WSR-88D radar products
 - most observational data over North America
- NCEP/NWSTG2 Channel
 - supplements the NWSTG channel

NOAAPORT Data flow into SSEC

Users generally get NOAAPORT data in two ways:

- 1. Directly from DOMSAT (101° W)
- 2. Over the Internet via LDM

Why Replace -XCD?

- Installation is difficult
- Upgrades are difficult
- System is overly complex, large learning curve for operators, and very large learning curve for new programmer
- System was written for a mainframe then ported to UNIX
- A powerful system is needed to run -XCD, otherwise data can be lost
- A data format change can mean bad data, and a fix can be difficult to implement, and is only effective for future data

Goals

- Replace 4 parts of -XCD filing and decoding:
 - GRIB
 - NEXRAD
 - Text
 - POINT/MD serving
- Utilize LDM direct filing
- Reduce or eliminate compiled code
- Remove legacy mainframe complexity
- Utilize simple open-source database, SQLite
- Match or exceed current filing and serving performance on existing hardware

-XCD Replacement: GRIB Data

- LDM files GRIB messages to a temporary directory
- A GRIB daemon written in Python watches for data, extracts information and files metadata into a SQLite database
- SQLite databases are separated by model and date
- Volume of GRIB data has increased greatly over the last several years increasing the challenge

-XCD Replacement: NEXRAD Data

- LDM files NEXRAD files (WSR and TDWR) into a directory structure similar to the existing -XCD Decoder
- Data served by NEXRAD server

-XCD Replacement: Text Data

- LDM files data directly to disk
- A bash script running as a daemon watches for new data and files data into a daily *.XCD file as data comes in
- The bash script extracts metadata for insertion into a daily SQLite database
- Text servers (wxtgserv and obtgserv) query SQLite databases to find data and return information to client
- Commands:WXTLIST,WWLIST,WWDISP,
 *RPT

-XCD Replacement: Point Data

- RTPTSRC datasets
- Uses certain text data identified by WMO headers filed in the database (e.g. SA and SP for SFCHOURLY)
- No MD files are created, but structure created on the fly when serving via ADDE
- Commands such as PTLIST, PTDISP and PTCOPY get metadata from the SQLite database, then extract data from the *.XCD file created by the text filer
- At the start of each UTC day, a Station Database table (equivalent to STNDB.CORE) is created
- Station Database is retained for archived data

Point Data Improvements

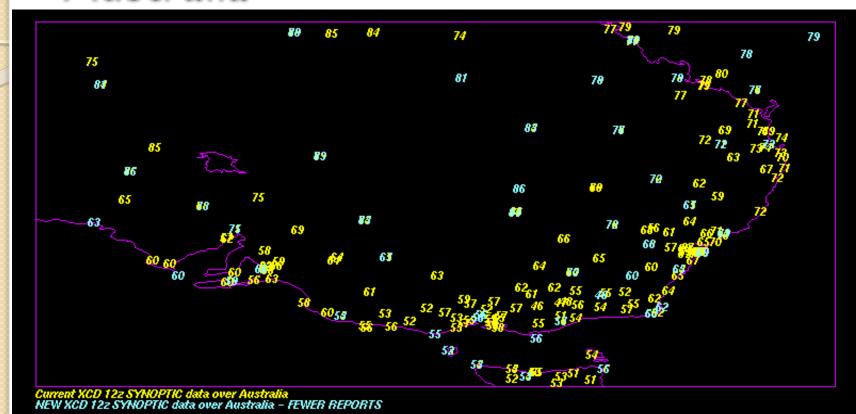
- Replacement –XCD captures more surface hourly data than existing –XCD
- Existing –XCD: Hourly & 2 Specials

```
DAY[CYD] TIME[HMS] HMS[HMS]
                                                  TD[K] SPD[MPS] DIR[DEG] WX1
  2016314
             200000
                       195100 KEKN
                                       280.96
                                                 279.86
                                                              4.1
                                                                         310 R-F
                       203600 KEKN
                                                              5.7
  2016314
             200000
                                       281.16
                                                 280.16
                                                                         310 R-F
             200000
                       203800 KEKN
                                                 280.16
                                       281.16
Number of matches found = 3
```

Replacement –XCD: Hourly & All Specials

	TSRC/SFCHO TIME[HMS]						TIME HMS ID T DIR[DEG] WX1	TD SPD DIR I TYPE	WX1 TYPE NUM=ALL
2016314	200000	194700	KEKN	281.16	280.16	5.1	310 R-F	1	
2016314	200000	195100	KEKN	280.96	279.86	4.1	310 R-F	0	
2016314	200000	201600	KEKN	280.96	279.86	4.6	320 RF	1	
2016314	200000	202400	KEKN	280.96	279.86	4.6	320 RF	1	
2016314	200000	203000	KEKN	280.96	279.86	4.1	310 R+F	1	
2016314	200000	203600	KEKN	280.96	279.86	5.7	310 R-F	1	
2016314	200000	203800	KEKN	280.96	279.86	4.6	310 RF	1	
Number of	matches fo	und = 7							

Point Data Improvements


 Synoptic Data in current –XCD is stored every 3 hours

	'	II O GI (
							DIR SPD NUM=ALI
DAY[CYD]	TIME[HMS]	IDN	T[K]	TD[K]	DIR[DEG]	SPD[MPS]	
2016315	•	94102	305.36	297.96	250	8.2	
2016315	3000ŏ	94102	305.96		260	7.7	
2016315	60000	94102	305.56	298.36	260	9.7	
2016315	90000	94102	303.06	297.96	260	10.8	
2016315	120000	94102	302.76		250	11.3	
2016315	150000	94102	302.46		250	10.8	
2016315	180000	94102	302.16		250	9.7	
2016315	210000	94102	303.06	296.76	230	8.2	
	matches fo	und = 8					
PTLIST: Do	one						

Replacement –XCD can store every hour

	TLITE/SYNO TIME[HMS]	PTIC SEL='CO IDN	AU; IDN T[K]	94102' PA TD[K]		E IDN T TD SPD[MPS]	DIR SPD NUM=ALL
2016315	•	94102	304.96	298.06	260	6.6	
2016315	10000	94102	305.36	297.96	250	8.2	
2016315	30000	94102	306.16	297.86	250	7.7	
2016315	40000	94102	305.96	297.96	260	7.7	
2016315	60000	94102	305.56	298.16	270	9.7	
2016315	70000	94102	305.56	298.36	260	9.7	
2016315	90000	94102	303.66	297.76	260	10.8	
2016315	100000	94102	303.06	297.96	260	10.8	
2016315	120000	94102	302.86	297.96	250	11.8	
2016315	130000	94102	302.76	297.86	250	11.3	
2016315	150000	94102	302.36	297,66	250	10.8	
2016315	160000	94102	302.46	297.56	250	10.8	
2016315	180000	94102	302.36	297.46	240	10.2	
2016315	190000	94102	302.16	296.56	250	9.7	
2016315	210000	94102	302.56	297.46	240	8.7	
2016315	220000	94102	303.06	296.76	230	8.2	
Number of	matches for	und = 16					
PTLIST: Do	one						

Point Data Case: Synoptic over Australia

PTDISP RTPTSRC/SYNOPTIC.ALL PAR=T[F] FORMAT=12 SEL='TIME 12;DAY 2016316' DEC=NO
 PTDISP RTPTLITE/SYNOPTIC.ALL PAR=T[F] FORMAT=12 SEL='TIME 12;DAY 2016316' DEC=NO COL=2

Point Data Case: Synoptic Over Australia

 PTDISP RTPTSRC/SYNOPTIC.ALL PAR=T[F] FORMAT=I2 SEL='TIME 12;DAY 2016316' DEC=NO PTDISP RTPTLITE/SYNOPTIC.ALL PAR=T[F] FORMAT=I2 SEL='TIME 12 14;DAY 2016316' DEC=NO COL=2

Point Data Issues

- Number of hourly records of PTCOPY for SFCHOURLY data needs to be increased
 - Up to 10 specials per hour?
- Number of possible records of PTCOPY for SYNOPTIC data needs to account for the hourly availability

BUFR Data (Binary Universal FoRmat)

- Filed directly using LDM
- No operational McIDAS-X server exists
- A prototype server was created but has not been updated in several years
- Individual files can be loaded into McIDAS-V if they follow the standard BUFR tables
- We aim to be ready as BUFR implementation proceeds

Local Data

- A couple -XCD sites have local (non-NOAAport) feeds of data
- We have contacted those sites in the past
 - So far, no core -XCD decoder dependencies are known i.e. sites have written their own decoders
- If there is local data that do depend on -XCD libraries, sites will be able to continue to use -XCD libraries, or may link to McIDAS-X libraries as needed. Contact Jerry Robaidek or Becky Schaffer if you have concerns.

Hardware Specs

- Development hardware (~\$4K in 2013)
 - 2-AMD Opteron 4180 CPUs 6 core each
 - 32 GB ram
 - 7.2k rpm SAS disks
- Briefly tested GRIB on a sub \$1K desktop
 - Intel i5-3570 3.4 GHz (quad core)
 - 16 GB memory
 - 7.2k rpm SATA drives (6 Gb/s)

Serving performance (Text)

TEXT lists

- WXTLIST (no parameters)
 - Current -XCD: fastest=.092 s slowest=.105 s
 - New -XCD: fastest=.014 s slowest=.35 s
- WXTLIST WMO=SA
 - Current -XCD: fastest=.019 s slowest=.259 s
 - New -XCD: fastest= 1.654 s slowest= 1.890 s

Serving performance (SFCRPT)

SFCRPT

SFCRPT KGRB 9 (Current –XCD)

```
• Fastest : ~.02 | s
```

Slowest : ~.419 s

SFCRPT KGRB 9 (New –XCD)

```
• Fastest : ~.017 s
```

Slowest : ~. 122 s

Serving performance (PTLIST)

PTLIST

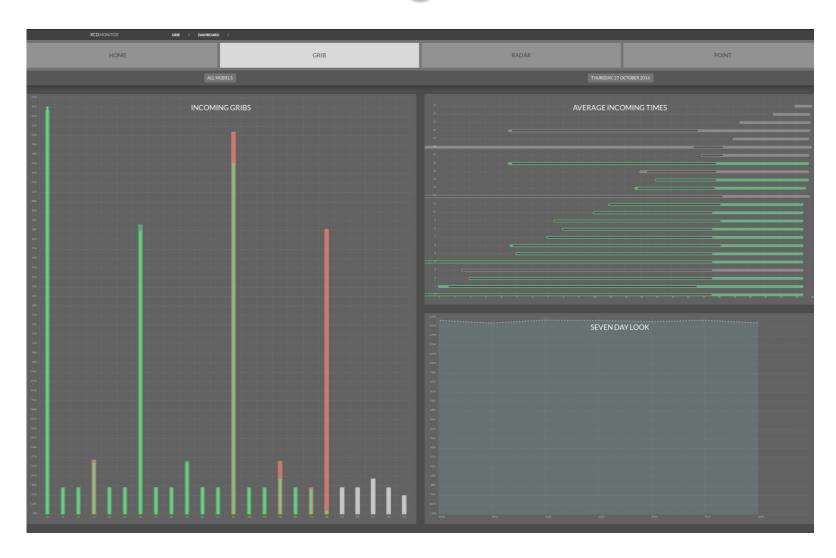
- PTLIST RTPTSRC/SFCHOURLY SEL="DAY 2016312;
 TIME 12; ID KMSN"
 - Current –XCD: fastest=.022 s slowest=.074 s
 - New –XCD: fastest=.023 s slowest=.167 s
- Remove ID: PTLIST RTPTSRC/SFCHOURLY
 SEL="DAY 2016312; TIME 12"
 - New –XCD slows to: ~0.3 s
- Remove ID and Time: PTLIST
 RTPTSRC/SFCHOURLY SEL="DAY 2016312"
 - New –XCD slows to: ~3.8 s

Server performance (GRID)

- GRID lists (GRDLIST)
 - RTGRIDS/GFS-USLC DAY=2016312 TIME=6:00 PAR=U NUM=10
 - Current -XCD: ~.45 s
 - New -XCD : ~.07 s
- GRID display (GRDDISP)
 - RTGRIDS/GFS-USLC DAY=2016312 TIME=6:00 PAR=U FHOUR=12 LEV=500
 - Current -XCD: ~.185 s
 - New -XCD : ~.105 s
- GRID copy (GRDCOPY)
 - RTGRIDS/NAM-USPS G/G.5700 DAY=2016312 TIME=0:00 PAR=T FHOUR=9 LEV=500
 - Current -XCD: ~.125 s
 - New -XCD: ~.052 s

Monitoring

- Command line
 - Idmadmin watch
 - gribadmin
- Graphical
 - HTML based
 - Does not require apache to be installed


Monitoring


Point Monitoring

GRIB Monitoring

Radar Monitoring

Packaging and installation

- Existing servers and decoders (compiled code) will be migrated into McIDAS-X
- We plan to have -XCD replacement beta GRIB software (Python) and text software (bash) packaged as Linux containers using Docker
- Docker will simplify the process of building, running, and upgrading the containers
- Docker is a relatively new platform and we are working through issues
- Goal is to simplify the installation process for system administrators

Schedule

- All ingest and serving components are in testing
- Monitoring development and testing in progress
- Operations testing in progress
- Beta release early 2017
- Version I.0 of the -XCD replacement will be packaged with McIDAS-XCD 2017.1