
McIDAS-X Shell Scripting
McIDAS Training Workshop

Madison, WI

November 14
th

, 2016

McIDAS-X commands can be run interactively using the McIDAS-X text window or using Unix shell scripts to create a background McIDAS-X

environment. This workshop will introduce you to setting up a McIDAS-X environment and running commands using a UNIX shell script. Further

documentation can be found in the McIDAS User’s Guide: http://www.ssec.wisc.edu/mcidas/doc/users_guide/current/app_h-1.html

Why Run McIDAS-X using UNIX Shell Scripts?

McIDAS-X is a powerful tool that can process and display data. Users may want to do this processing outside of an interactive session.

 The concepts for setting up a “mcenv” environment are similar to that of an interactive session.

o PATH

o MCPATH

o Other environment variables

 ADDETIMEOUT

 MCCOMPRESS

 mcenv is core supported.

 mcenv works well with cron.

 mcenv is ideal for saving graphics to a web page

Basic Concepts

As with an interactive session, the mcenv environment needs to be defined. Arguments are passed to mcenv using standard Unix command line

conventions. The following are valid arguments that can be used by mcenv:

mcenv –f framespec -e bytes -g graphics_levels -i image_levels prog

-f framespec specifies a set of frames to include in the McIDAS environment (default=one, 480x640 frame)

-e bytes specifies a memory pool for the frames

-g number specifies the number of graphics color levels (default=8)

-i number specifies the number of image display levels (default=48)

prog specifies a program, script or command to run; see Using Unix Conventions for the correct format to enter McIDAS commands

Example: mcenv -i 220 -g 32 -f 3@1200x1800

 Page 2 of 16

McIDAS-X Scripting in Python November 2016

Defining Unix Specific Environment

When a user runs a McIDAS-X session interactively, environmental variables are usually defined at login. When running mcenv using a shell script

these environmental variables must also be defined.

#!/bin/bash

export PATH=$HOME/mcidas/bin:/home/mcidas/bin:$PATH

export MCPATH=$HOME/mcidas/data:/home/mcidas/data

To avoid conflicts between the user’s mcidas/data directory, a good practice is to specify a unique directory to write the McIDAS files. An additional

good practice is to direct the output to a log file. Make sure all the directories are created prior to running the scripts!

#!/bin/bash

export PROJECT=workshop

export PATH=$DATA_DIR:/home/mcidas/bin:$PATH

export MCPATH=$HOME/$PROJECT/mcidas/data:/home/mcidas/data

export DATA_DIR=$HOME/$PROJECT/mcidas/data

- This is just for the workshop!

rm -rf $HOME/$PROJECT

mkdir $HOME/$PROJECT

mkdir $HOME/$PROJECT/logs

mkdir $HOME/$PROJECT/mcidas

mkdir $HOME/$PROJECT/mcidas/data

LOG=$HOME/$PROJECT/logs/workshop.log

exec >$LOG

exec 2>>$LOG

cd $DATA_DIR

In the above example a DATA_DIR was also defined. This is convenient for accessing files created from the mcenv session later in the script.

 Page 3 of 16

McIDAS-X Scripting in Python November 2016

Running a mcenv Session

Now that the Unix environment is created, the mcenv session is ready. Here's a simple example that defines the dataset TORNADO to be located on

the server PAPPY.SSEC.WISC.EDU
#!/bin/bash

export PROJECT=workshop

export PATH=$DATA_DIR:/home/mcidas/bin:$PATH

export MCPATH=$HOME/$PROJECT/mcidas/data:/home/mcidas/data

export DATA_DIR=$HOME/$PROJECT/mcidas/data

- This is just for the workshop!

rm -rf $HOME/$PROJECT

mkdir $HOME/$PROJECT

mkdir $HOME/$PROJECT/logs

mkdir $HOME/$PROJECT/mcidas

mkdir $HOME/$PROJECT/mcidas/data

LOG=$HOME/$PROJECT/logs/workshop.log

exec >$LOG

exec 2>>$LOG

cd $DATA_DIR

mcenv -i 220 -g 32 -f 3@480x640 << 'EOF'

 dataloc.k ADD TORNADO PAPPY.SSEC.WISC.EDU

 imglist.k TORNADO/GOES13-IR.ALL

EOF

exit 0

The << 'EOF' instructs the mcenv to run all commands until it encounters EOF. List the contents of workshop.log to see the output from the

DATALOC and IMGLIST commands.

 Page 4 of 16

McIDAS-X Scripting in Python November 2016

Exercise 1

Edit the script <local-path>/Data/mcidasx/ python_examples/example-mcenv.bash that that includes a frame size of 1000 lines and 1000

elements, uses 240 images levels and 8 graphics levels. The script should display the 23:45Z image from Julian day 2011142. Center the image on

Springfield, MO (KSGF). Save the image as $USER-joplin.gif. Check the log file for any errors. Send the image to SSEC's ftp site:

cd $HOME/workshop/mcidas/data

ftp ftp.ssec.wisc.edu

user anonymous

password e-mail address

cd pub/incoming

bin

mput *joplin.gif

Use a browser to check the image. An example script is located at the end of this document, but we encourage you try to write the script before

viewing the solution.

Oddities

McIDAS-X can use characters which may cause confusion within the Unix environment. Generally, the problem can be rectified by escaping the

character using a backslash (\). Use pairs of double (") and single quotes (') to escape groups of characters. Double quotes escape all characters except

other double quotes and dollar signs ($). Single quotes escape all characters except other single quotes. The characters below have special meaning

in Unix and require an escape character when entered as part of a McIDAS-X command.

 ampersand (&)

 semicolon (;)

 parentheses ()

 pipe (|)

 less than and greater than symbols (< >)

 unpaired double quotation marks (")

 unpaired single quotation marks (')

 backslash (\)

 pound sign (#)

 asterisk (*)

 question mark (?)

 dollar sign ($)

ftp://ftp.ssec.wisc.edu/

 Page 5 of 16

McIDAS-X Scripting in Python November 2016

Solution to Exercise 1

export PROJECT=workshop

export DATA_DIR=/home/username/$PROJECT/mcidas/data

export PATH=$DATA_DIR:/home/mcidas/bin:$PATH

export MCPATH=/home/username/$PROJECT/mcidas/data:/home/mcidas/data

LOG=/home/username/$PROJECT/logs/workshop.log

exec >$LOG

exec 2>>$LOG

cd $DATA_DIR

mcenv -i 240 -g 8 -f 1@1000x1000 << 'EOF'

 dataloc.k ADD TORNADO PAPPY.SSEC.WISC.EDU

 imgdisp.k TORNADO/GOES13-IR TIME=23:45 DAY=2011142 STA=KSGF

 frmsave.k 1 $HOME/$PROJECT/mcidas/data/$USER-joplin.gif

EOF

exit 0

 Page 6 of 16

McIDAS-X Scripting in Python November 2016

McIDAS-X Scripting in Python

McIDAS Training Workshop
Madison, WI

November 14
th

, 2016

McIDAS-X can be used interactively using the McIDAS-X text window or scripts can be written to run McIDAS-X commands. These scripts can

take several forms including McBASI scripts, batch files, or shell scripts. This workshop will introduce you to using McIDAS-X commands in a

Python script.

This workshop assumes that you have some knowledge of McIDAS-X commands and basic Python syntax. McIDAS-X must be installed prior to

taking advantage of python scripts. This workshop utilizes Centos 7.0 with Python 2.6 and McIDAS-X 2016.2.

Why Run McIDAS-X in a Python Environment?

The advantages of running McIDAS-X in a Python environment include but are not limited to:

 Setting up the “mcenv” environment is simpler and removes the shell scripting concepts of EOF and exit 0.

 Users can take advantage of Python’s superior text handling capabilities.

 Users can take advantage of Python’s superior date/time functionality.

 Python has many libraries for doing math, image manipulation and other data transformations.

 Python is more like a programming language than other traditional McIDAS scripting languages.

Setting up the Environment

1. Open up your ssh application and login to the host dcprod-dev.

2. Download the mcidasx-python module using wget command.

wget ftp://ftp.ssec.wisc.edu/pub/mug/mug_meeting/2016/python/mcidasx-python_0.6dev.tar.gz

ftp://ftp.ssec.wisc.edu/pub/mug/mug_meeting/2016/python/mcidasx-python_0.6dev.tar.gz

 Page 7 of 16

McIDAS-X Scripting in Python November 2016

3. Install the mcidasx-python module using the following commands:

tar zxvf mcidasx-python_0.6dev.tar.gz

cd mcidasx

python setup.py install --user

or

easy_install --user mcidasx-python_0.6dev.tar.gz

pip install --user mcidasx-python_0.6dev.tar.gz

Later in this workshop we will be using both netCDF and matplotlib libraries. Some of these libraries do not come standard with the system installed

version of Python. Both libraries are distributed with miniconda or anaconda. Enter the following to create the correct python environment:

module load miniconda/2.7-base

How McIDAS-X Python Works

The Python 'subprocess' module is used to spawn an instance of the “mcenv shell” as a background process. McIDAS commands are started via the

“mcenv” session using Python functions. Command line parameters passed as a single string. For example:

mcenv.logon('WKSP 1234')

mcenv.dataloc('ADD DATASET SERVER.DOMAIN')

Neither logon() nor dataloc() are explicitly defined functions. When an implicit function mccmd(‘arg1 arg2 arg3’) is called, the mcenv instance

searches the PATH environment variable for a mccmd.k McIDAS command/program (which corresponds to the “MCCMD” McIDAS-X command),

and then runs mccmd.k arg1 arg2 arg3 in the mcenv shell subprocess.

Note: logon WKSP and project number 1234 will only work for these servers during the workshop. You will need to change these in your own

scripts when the workshop is complete.

 Page 8 of 16

McIDAS-X Scripting in Python November 2016

Syntax Rules and Examples

1. To use a Python module in a Python program/script, the module must be “imported”:

import mcidasx

2. To begin using the mcidasx module’s mcenv “session”, create an instance of the mcenv() object and assign it to a local variable (“mc” in this

example):

mc = mcidasx.mcidas.mcenv()

3. The -f (frame size), -i (image colors), and -g (graphics colors) mcenv options can be passed as arguments to the mcenv() object’s

instantiation:

mc = mcidasx.mcidas.mcenv(f=['3@1000x2000', '4@500x500'], i=150, g=16)

The argument passed to f= can be either a list of strings (above), or just an individual string:

mc = mcidasx.mcidas.mcenv(f='10@480x640')

4. To run the mcenv command logon.k WKSP 1234 (equivalent to LOGON WKSP 1234 in McIDAS-X), call the logon() method of our

mcenv() instance “mc”, passing the entire set of parameters (“arguments and keywords”) “WKSP 1234” as a single string:

mc.logon('WKSP 1234')

Oddities

The mcenv executable must be found in the PATH environment variable, otherwise the mcenv() instantiation will fail. Existing PATH and

MCPATH environment variables may be sufficient for some uses, but defining these explicitly within a script may be desirable:

import os

os.environ['PATH'] = '/path/to/mcidas/dir/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '/path/to/project/data/dir:/path/to/mcidas/data'

 Page 9 of 16

McIDAS-X Scripting in Python November 2016

McIDAS-X and mcenv generally write files to the first writeable path in MCPATH, although certain situations may arise where this does not occur.

This behavior is maintained in mcidasx-python.

Double quotation marks (") are not handled well when passed to the mcenv shell subprocess. Curly brackets should be used for comments in

DSSERVE commands, for example:

mc.dsserve(“ADD A/A AREA 1 9999 {comment}”)

Single quote marks (') do not currently work.

Stdout, Stderr, and Return Codes

When a mcenv command is run, a named tuple containing values for “stdout”, “stderr”, and “retcode” is returned. It is not necessary to capture this

tuple unless one of these values is needed.

For example, we might want to add a new remote dataset using dataloc(), and then print the output of an imglist() call if the dataloc() command was

successful:

dataloc_result = mc.dataloc('ADD GROUP server.domain')

if dataloc_result.retcode == 0:

 imglist_result = mc.imglist('GROUP/DESCRIPTOR FORM=ALL')

 print imglist_result.stdout

Some commands might not produce meaningful output, and thus there is no need to capture the output:

mc.logon('WKSP 1234')

mc.eg('1')

 Page 10 of 16

McIDAS-X Scripting in Python November 2016

IMGLIST Example

The following is a simple example of the use of the command IMGLIST. This script can be found in <local-path>/Data/mcidasx/

python_examples/imglist_example.py.

#!/usr/bin/env python

import mcidasx

import os

os.environ['PATH'] = '/home/mcidas/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '%s/workshop/mcidas/data:/home/mcidas/data' % os.environ['HOME']

mcenv = mcidasx.mcidas.mcenv()

mcenv.logon('WKSP 1234')

mcenv.dataloc('ADD EASTL eastl.ssec.wisc.edu')

result = mcenv.imglist('EASTL/ALL')

print result.stdout

print result.stderr

print result.retcode

In this example MCPATH is still set as it is in other McIDAS-X scripts. Initializing the McIDAS environment is done differently than in other

scripts. Rather than starting a mcenv subshell, and then running commands in that subshell, the McIDAS environment is started with the command:

mcenv = mcidasx.mcidas.mcenv()

Also note that standard out is captured in the variable result and needs to be explicitly written to standard out.

The next example is a slightly more advanced version of the previous IMGLIST example that takes advantage of Python text handling and date

manipulation capabilities. This script can be found in <local-path>/Data/mcidasx/python_examples/imglist_advanced.py.

#!/usr/bin/env python

import datetime

import mcidasx

import os

user = 'WKSP' # only necessary for restricted datasets

 Page 11 of 16

McIDAS-X Scripting in Python November 2016

proj = 1234 # only necessary for restricted datasets

group = 'EASTL'

descriptor = 'ALL'

server = 'eastl.ssec.wisc.edu'

os.environ['PATH'] = '/home/mcidas/bin:%s' % os.environ['PATH']

os.environ['MCPATH'] = '%s/workshop/mcidas/data:/home/mcidas/data' % os.environ['HOME']

mc = mcidasx.mcidas.mcenv()

mc.logon('%s %d' % (user, proj))

mc.dataloc('ADD %s %s' % (group, server))

image_date = datetime.date(2015, 6, 4)

result = mc.imglist('%s/%s.ALL DAY=%s TIME=%s FORM=ALL' % (group, descriptor, image_date.strftime('%y%j'), '12 18'))

print result.stdout

Exercise 1: Write a short Python script that displays data in a background McIDAS-X window and saves the image as a GIF image.

 Please use dataset EASTL/CONUS on EASTL.SSEC.WISC.EDU.

 Please use logon WKSP and project number 1234.

 An example solution is available on page 14 as well as in the <local-path>/Data/mcidasx/python_examples/bash_vs_python.py script.

However, before checking the solution, it is recommended that you try to complete the exercise on your own.

 Hint: here is a bash script that does this:

#!/bin/bash

PATH=$PATH:/home/mcidas/bin

MCPATH=$HOME/workshop/mcidas/data:/home/mcidas/data

export PATH MCPATH

mcenv << 'EOF'

logon.k WKSP 1234

dataloc.k ADD EASTL EASTL.SSEC.WISC.EDU

imgdisp.k EASTL/CONUS.-1 1 BAND=1 LAT=43 90

frmsave.k 1 wisconsin_vis_bash.gif

exit 0

EOF

exit

Exercise 2: Run the python script <local-path>/Data/mcidasx/python_examples/sfclist.py. Update the script to print out the dew point depression

for 0Z. An example solution is available on page 15 as well as <local-path>/Data/mcidasx/python_examples/dewpt.py

 Page 12 of 16

McIDAS-X Scripting in Python November 2016

Advanced Example

Now for a more advanced example. In this example, we will IMGCOPY an archived Meteosat-9 image to a local netcdf dataset, then use netCDF4

and numpy to perform a Normalized Difference Vegetation Index (NDVI) calculation, display the NDVI imagery using matplotlib.pyplot, and finally

save the output to a PNG file. This script can be found in <local-path>/Data/mcidasx/python_examples/ndvi.py.

#!/usr/bin/env python

import matplotlib.pyplot as pyplot

import mcidasx

import netCDF4

import numpy

import os

import sys

mcidas_dir = os.path.expanduser('~mcidas')

path = [os.environ['PATH'],

 os.path.join(mcidas_dir, 'bin')]

mcpath = [os.path.dirname(__file__),

 os.path.join(os.environ['HOME'], 'workshop/mcidas/data'),

 os.path.join(mcidas_dir, 'data')]

os.environ['PATH'] = ':'.join(path)

os.environ['MCPATH'] = ':'.join(mcpath)

mcenv = mcidasx.mcidas.mcenv()

mcenv.logon('WKSP 1234')

result1 = mcenv.dataloc('ADD AMET09 geoarc.ssec.wisc.edu')

if result1.retcode != 0:

 sys.exit(result1.stdout)

mcenv.dsserve('ADD N/A NCDF 1 9999 TYPE=IMAGE')

msg_ndvi_bands = [1, 2]

imgcopy_string = 'AMET09/FD N/A.{band} SIZE=SAME BAND={band} MAG=-8 DAY=2011/08/31 TIME=12 UNIT=REFL'

for band in msg_ndvi_bands:

 imgcopy_result = mcenv.imgcopy(imgcopy_string.format(band=band))

 print imgcopy_result.stdout

try:

 # open the NetCDF files

 Page 13 of 16

McIDAS-X Scripting in Python November 2016

 redBand = netCDF4.Dataset('A0001.nc', 'r')

 nirBand = netCDF4.Dataset('A0002.nc', 'r')

 # read data into numpy arrays

 redData = numpy.array(redBand.variables['data'][0])

 nirData = numpy.array(nirBand.variables['data'][0])

 check = numpy.logical_and(redData != 0, nirData != 0)

 ndvi = numpy.where(check, (nirData - redData) / (nirData + redData), 0)

 pyplot.imshow(ndvi, cmap=pyplot.get_cmap('PRGn'), vmin=-1, vmax=1)

 pyplot.savefig('ndvi.png')

 pyplot.show()

except:

 sys.exit('An error occurred.')

Other Python Modules

These Python modules may offer interesting possibilities in combination with McIDAS-X:

 numpy - package for scientific computing

 netCDF4 - python/numpy interface to netCDF

 basemap - library for plotting 2D data on maps

 cartopy - cartographic tools

 gdal - Geospatial Data Abstraction Library bindings

Integrating McIDAS-X into an existing script or workflow involving any of these modules is now very straight-forward.

Disclaimers and Afterthoughts

This package is NOT supported by MUG, McIDAS-X, or any group within SSEC. The software is currently used internally by the SSEC Data

Center for experimental use, with operational usage planned for the near future. Hopefully this workshop has inspired you to use McIDAS-X and

Python scripting in creative new ways!

 Page 14 of 16

McIDAS-X Scripting in Python November 2016

Exercise 1: A Python Solution

#!/usr/bin/env python

import mcidasx

import os

os.environ['PATH'] = "%s:/home/mcidas/bin" % os.environ['PATH']

os.environ['MCPATH'] = "%s/workshop/mcidas/data:/home/mcidas/data" % os.environ['HOME']

mc = mcidasx.mcidas.mcenv()

mc.logon('WKSP 1234')

mc.dataloc('ADD EASTL EASTL.SSEC.WISC.EDU')

mc.imgdisp('EASTL/CONUS.-1 1 BAND=1 LAT=43 90')

frmsave_result = mc.frmsave('1 wisconsin_vis_python.gif')

print frmsave_result.stdout

 Page 15 of 16

McIDAS-X Scripting in Python November 2016

Exercise 2: A Python Solution

#!/usr/bin/python

import mcidasx

import os

import sys

def main(argv):

 if len(argv) < 3:

 print ' Must specify a station and time'

 return

 else:

 station = argv[1]

 time = argv[2]

 os.environ['PATH'] = "%s:%s/mcidas/bin:/home/mcidas/bin" % (os.environ['HOME'],os.environ['PATH'])

 os.environ['MCPATH'] = "%s/workshop/mcidas/data:/home/mcidas/data" % os.environ['HOME']

 mcOutput = run_mcidas(station,time)

 dewPTdepression = get_dewPT(mcOutput)

 dewPTdepression = "{:6.2f}".format(dewPTdepression)

 print ' '

 print 'Dew point depression for ' + station + ' = ' + dewPTdepression

def run_mcidas(station,time):

Create McIDAS environment and run commands

 mcenv = mcidasx.mcidas.mcenv()

 mcenv.logon('CKMK 6999')

 datalocString='ADD RTPTSRC NOAAPORT.SSEC.WISC.EDU'

 datalocOut = mcenv.dataloc(datalocString)

 sfclistString = station + ' TIME=' + time

 sfclistOut = mcenv.sfclist(sfclistString)

Break output into list

 sfclistOutput = mccmdout2list(sfclistOut.stdout)

 return sfclistOutput

def mccmdout2list(mcoutput):

 Page 16 of 16

McIDAS-X Scripting in Python November 2016

Inputs output from a McIDAS command and creates a list of lines

 line = ''

 count = 0

 lineList = []

 for char in mcoutput:

 if char != '\n':

 line = line + char

 else:

 lineList.append(line)

 count = count + 1

 line = ''

 return lineList

def get_dewPT(outputList):

Remove header and use only hourly observation

 outputList.pop(0)

 outputList.pop(0)

 outputList.pop(0)

 recCount = 0

 runningTot = 0

 for line in outputList:

 record = line.split()

 if 'Number' in record[0]:

 break

 elif 'S' in record[0]:

 pass

 else:

 temperature = float(record[4])

 dewPT = float(record[5])

 print temperature, dewPT

 dewPTdepression = temperature - dewPT

 return dewPTdepression

if __name__ == "__main__":

 main(sys.argv)

