

Canada

Environnement Environment Canada



# Monitoring algal blooms using the **MERIS Maximum Chlorophyll Index**

**Caren Binding** 

&

Tracie Greenberg, Bob Bukata, Sue Watson, Shannah Rastin, Jess Gould

Workshop for Remote Sensing of Coastal and Inland Waters University of Wisconsin-Madison, June 20-22 2012

#### The MERIS Maximum Chlorophyll Index



MERIS MCI = 
$$L_{709} - L_{681} - \left[\frac{(709 - 681)}{(753 - 681)}(L_{753} - L_{681})\right]$$



#### The MERIS Maximum Chlorophyll Index



MERIS MCI = 
$$L_{709} - L_{681} - \left[\frac{(709 - 681)}{(753 - 681)}(L_{753} - L_{681})\right]$$



#### Lake of the Woods

Optically & hydrologically complex

Chlorophyll up to 300  $\mu g \; L^{\text{-1}}$ 

Very high DOC (a<sub>CDOM</sub> 2-3 m<sup>-1</sup>)

MERIS/MODIS Chl retrievals fail



Agust 27th 2008<br/>Environment Canada Aquatic Optics & Remote Sensing Group

#### Lake of the Woods

Optically & hydrologically complex

Chlorophyll up to 300  $\mu g \; L^{\text{-1}}$ 

Very high DOC (a<sub>CDOM</sub> 2-3 m<sup>-1</sup>)

MERIS/MODIS Chl retrievals fail



Agust 27th 2008<br/>Environment Canada Aquatic Optics & Remote Sensing Group

# **MERIS Rw during intense blooms**

All pixels flagged as turbid

→ Bright Pixel Atmospheric Correction

Large over-correction & negative L2 Rw

Non-zero NIR L1 R due to algae rather than mineral, with peak at 708 nm





# **MERIS Rw during intense blooms**

All pixels flagged as turbid

→ Bright Pixel Atmospheric Correction

Large over-correction & negative L2 Rw

Non-zero NIR L1 R due to algae rather than mineral, with peak at 708 nm





# **Assessing MERIS Algal Products**



|                     | Relationship with Chl <sub>i</sub> | <b>R</b> <sup>2</sup> | RMSE (%) |
|---------------------|------------------------------------|-----------------------|----------|
| L2 Algal_2          | $Chl_i = 0.375Chl_M + 7.363$       | 0.298                 | 100.17   |
| C2R Chl_conc        | $Chl_i = 0.664Chl_M + 7.133$       | 0.159                 | 80.18    |
| C2R w. ICOL Chl_con | $Chl_i = 1.892Chl_M - 4.787$       | 0.255                 | 77.70    |
| C2R Eutrophic Lake  | $Chl_i = -0.129Chl_M + 17.678$     | 0.188                 | 332.49   |
| C2R Boreal Lake     | $Chl_i = 0.444Chl_M + 7.566$       | 0.207                 | 85.15    |
| L1b MCI             | $Chl_i = 6.166MCI_1 + 6.347$       | 0.739                 | 39.24    |
| L1b MCI w. ICOL     | $Chl_i = 6.025MCI_1 + 6.087$       | 0.719                 | 40.71    |
| L2 MCI              | $Chl_i = 1457MCI_2 + 2.895$        | 0.720                 | 40.59    |
| L2 FLH              | $Chl_i = -2491FLH + 3.878$         | 0.571                 | 50.28    |



# **Assessing MERIS Algal Products**



|                     | Relationship with Chl <sub>i</sub> | <b>R</b> <sup>2</sup> | RMSE (%) |
|---------------------|------------------------------------|-----------------------|----------|
| L2 Algal_2          | $Chl_i = 0.375Chl_M + 7.363$       | 0.298                 | 100.17   |
| C2R Chl_conc        | $Chl_i = 0.664Chl_M + 7.133$       | 0.159                 | 80.18    |
| C2R w. ICOL Chl_con | $Chl_i = 1.892Chl_M - 4.787$       | 0.255                 | 77.70    |
| C2R Eutrophic Lake  | $Chl_i = -0.129Chl_M + 17.678$     | 0.188                 | 332.49   |
| C2R Boreal Lake     | $Chl_i = 0.444Chl_M + 7.566$       | 0.207                 | 85.15    |
| L1b MCI             | $Chl_i = 6.166MCI_1 + 6.347$       | 0.739                 | 39.24    |
| L1b MCI w. ICOL     | $Chl_i = 6.025MCI_1 + 6.087$       | 0.719                 | 40.71    |
| L2 MCI              | $Chl_i = 1457MCI_2 + 2.895$        | 0.720                 | 40.59    |
| L2 FLH              | $Chl_i = -2491FLH + 3.878$         | 0.571                 | 50.28    |



### **Inter-annual Bloom Monitoring**

Monitoring lake trophic status, and relating timing, intensity and extent of blooms to climate variables and loadings





### **Inter-annual Bloom Monitoring**

Monitoring lake trophic status, and relating timing, intensity and extent of blooms to climate variables and loadings







- Winter blooms of Diatom Aulacoseira on Lake Erie with chlorophyll concentrations up to 100  $\mu$ g L<sup>-1</sup>
- L1 MCI detects blooms within and surrounding surface ice





- Winter blooms of Diatom Aulacoseira on Lake Erie with chlorophyll concentrations up to 100  $\mu$ g L<sup>-1</sup>
- L1 MCI detects blooms within and surrounding surface ice





Extracted in situ ChI (mg  $m^{-3}$ )



Extracted in situ ChI (mg  $m^{-3}$ )

# **Sensitivity of MCI to Mineral Sediments**



First impressions – MCI not overly sensitive to mineral scattering



#### **Modelling Sediment Sensitivity**



 Hydrolight modelling to determine effects of sediments on MCI properties – peak and slope



### **Modelling Sediment Sensitivity**



- Hydrolight modelling to determine effects of sediments on MCI properties – peak and slope
- Exploring use of LUT with peak and slope to extract CHL under high MSPM





# **MERIS MCI Summary**

- Effective for Chl > 10 μg L<sup>-1</sup>, migration of peak to FLH bands at lower Chl
- Detecting only surface blooms because of low penetration depth
- Fairly insensitive to CDOM, bottom reflectance, and failures in atmospheric correction
- Limited influence of mineral scattering under intense bloom conditions - Influence of MSPM most pronounced in slope parameter



# **MERIS MCI Summary**

- Effective for Chl > 10 μg L<sup>-1</sup>, migration of peak to FLH bands at lower Chl
- Detecting only surface blooms because of low penetration depth
- Fairly insensitive to CDOM, bottom reflectance, and failures in atmospheric correction
- Limited influence of mineral scattering under intense bloom conditions - Influence of MSPM most pronounced in slope parameter

