

Advanced Satellite Products Branch, NOAA/NESDIS/STAR/CoRP Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin – Madison

CONCEPT

Construct a re-locatable, easy to implement, numerical weather prediction package capable of generating reliable weather forecasts in real-time, initialized with **locally generated IMAPP parameters.**

> A version of the CIMSS Regional Assimilation System (CRAS) was configured to assimilate total precipitable water and cloud parameters retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) using **IMAPP** software.

Since 1996 CRAS development has been guided by validating forecasts using information from the GOES imager and sounder, making it "satellite friendly".

Design Requirements for Direct Broadcast CRAS

- Free distribution with the IMAPP Package
- Execution via simple shell scripts on Linux 32 or 64 bit platforms
- Medium bandwidth internet connection
- One time install; User specified lat/lon center of grid (near antenna) Automated identification and download of ancillary input data
- Backup server provided by SSEC for ancillary input data
- 72 hour forecasts of standard meteorological fields, grib2 format
- Simulated forecast satellite imagery
- Option to generate graphics using McIdas-V

Note: DBCRAS requires 200Mb of forecast grids for boundary conditions. 12 hours of MODIS passes generates ~ 2Gb of retrievals. With limited bandwidth it makes sense to.....

Implement forecast model on site at local ground station.

DBCRAS Specification – Version 1.0

Grids:	48km outer grid, 16km re-locatable nest (optional), Ara
Map:	Polar stereographic
Grid size:	220x150
Levels:	38 sigma levels, floating top
Time step:	240 sec
BCs:	¹ / ₂ degree GFS, 6-hourly to 72 hours
Initial:	12-hr spin-up using 5-7 Aqua/Terra passes
	SSTs and snow cover from NESDIS analysis
Dynamics:	Semi-implicit time scheme, 3 rd order
	Advective form - Leslie, et.al.,1985
	Pseudo-non-hydrostatic, Raymond and Aune, 1998
	3 rd order Time filter - Raymond, 1991
	6 th order tangent - Raymond, 1988
Physics:	Radiation – Ackerman and Stephens, 1987
	Turbulence – Raymond, 1999
	Precip/Clouds – modified Kessler, 1974, Tiedke, 1993
	Convection – Raymond and Aune, 2002
Platform:	Dual-quad core Intel Xeon, 4Gb memory

IMAPP Direct Broadcast CIMSS Regional Assimilation System (DBCRAS)

Contact: Robert.Aune@noaa.gov

NEXT GENERATION DBCRAS

A new release of DBCRAS is nearly complete. The release is in response to feedback obtained from DBCRAS users around the globe. The release is expected to occur late in FY2013.

Scheduled Changes to DBCRAS – Version 2.0

12-hr spin-up using additional parameters from IMAPP

Shown above is a 24-hour DBCRAS forecast sky cover from a polar stereo grid covering Alaska. Sky cover is computed using predicted cloud mixing ratio to estimate cloud coverage on the celestial dome centered on each model grid point.

> At left is a 24-hour DBCRAS forecast 11*u* image demonstrating the advantage of using a Mercator projection in low latitudes. The 11*u* DBCRAS images are estimated using predicted water vapor and cloud mixing ratios, cloud-top temperature and surface skin temperature.

Additional DBCRAS forecasts are available at: http://cimss.ssec.wisc.edu/cras

POSSIBLE ADDITIONS

• A self-cycling option is being considered to allow DBCRAS forecasts to continue when boundary condition grids are unavailable due to internet outages. DBCRAS would continue to cycle for two - three days using satellite data to update model

Include routines to assimilate parameters from additional satellites processed