

Application of IMAPP at East China Normal University

Yan'an Liu^{1, 2}, Wei Gao¹, Runhe Shi¹, Allen Huang², Kathy Strabala², Liam Gumley², Yunzhu Chen¹, Xiaoyun Zhuang¹

1. East China Normal University, Shanghai, China

2. CIMSS/SSEC, University of Wisconsin- Madison, WI, USA

Outline

Localization of profile retrieval

Data fusion of AOD

Evaluation of DBCRAS

Site Location

Onsite installation

Lifting of positioner

Lifting of reflector

Onsite installation

Outdoor installation

Corrense

EOF-FES DBPS Archive System Dehydrator

Hardware onsite training

Software training

First ECNU EOS-FES/DBPS Terra MODIS Images(0235 UTC, 25 May, 2010)

First ECNU EOS-FES/DBPS Terra MODIS

Image in Google Earth

First DB Products Terra/MODIS

Retrieval products

Aerosol Optical Thickness

Water Vapor

Sea Surface Temperature

Distribution of testing samples in global and China.

Comparison between the two algorithms:

- 1. Dual-Regression algorithm based on global regression coefficients;
- 2. AIRS/MODIS retrieval algorithm that uses both AIRS L1B data and MODIS product.

To get a better atmospheric temperature profile, proposed a regional algorithm:

3. Dual-Regression algorithm based on Chinese regression coefficients.

Dual-regression

AIRS/MODIS retrieval

Chinese coefficient

Averaged absolute error and relative error compared with radiosonde observations:

1.Dual-regression algorithm: 1.71K, 0.84%

2.AIRS/MODIS Retrieval algorithm: 2.68K, 1.32%

3. Chinese coefficients: 1.59K, 0.78%

Satellite retrieved aerosol product has the low spatial coverage because of the limitation of cloud coverage and dark target algorithm.

Horizontal meteorological visibility (HMV) is another very important parameter in describing aerosol optical characteristics. It is observed fixed times and published per day by widely distributed meteorological sites. It can be a good supplement of satellite retrieved AOD.

Thus, a fast fusion algorithm was developed. Terra and Aqua satellite MODIS AOD and ground-based HMV data were fused in order to obtain AOD product with high spatial resolution and complete spatial coverage in real time.

Step 1 : Linear fusion Step 2 : Model conversion fusion Step 3 : Interpolation

(a) Terra

Distribution of AOD at east of China

Spatial coverage after linear fusion

Source of AOD data

Distribution of HMV data from observation sites (stars)

Model conversion fusion

Without HMV

After model conversion

Thin plate splines interpolation

Using cross-validation method to validate the fusion steps separately

Fusion step	RMSE
Step1: Linear fusion	0.11
Step2: Model conversion fusion	0.31
Step3: Interpolation	0.35

Application of IDEA-I

Infusing satellite Data into Environmental Application - International

Direct Broadcast CIMSS Regional Assimilation System

Resolution:	48 km;16 km	
Sigma levels:	38	
Grid Size:	210 x140; 207x141	
Time-step:	240 seconds	
Forecast length:	72 hours; 48 hours	
Initialization:	12-hr spin-up with 5-7 MODIS	nseiter
Output:	3 hourly, grib2 format	All al
Initial times (UTC): 00/12 UTC	Re-locate (31° N
Initial conditions:	1/2 degree GFS, 6 hr Forecast	121°E)
Boundaries:	6 hourly, one degree GFS Forecasts	
Inputs:	Surface, RAOBs,	
	MODIS: Total precipitable water, cloud-top pressure	

135E

30N

72h forecast at 500hPa, 12UTC 27/10/2010

Methods

Qualitative and quantitative analysis

Time

00UTC, heavy rain case at Yangtze river delta in June 2011 Data

CRAS output (format: grib2);

Projection:Polar stereographicResolution: $0.5^{\circ} \times 0.5^{\circ}$

ECMWF: ERA-Interim (format: netcdf)

Projection: Cylindrical equidistant Resolution: 1.5° × 1.5°

Other data: Radiosonde; TRMM precipitation product

24h forecast temperature bias (a) 300hPa (b) 500hPa (c) 700hPa (d) 850hPa

24h forecast relativity humidity bias (a) 300hPa (b) 500hPa (c) 700hPa (d) 850hPa

Forecast of 24h accumulated precipitation compared with TRMM precipitation

Researches supported by IMAPP

Xiaoyun Zhuang : Localization of temperature profile retrieval Yunzhu Chen : Data fusion of aerosol optical depth Cong Zhou : Research on CO2 Yuanyuan Chen : PM 10 forecast Yan'an Liu : Assimilation of CrIS in regional model

.

Thank You !