

Processing and Use of Direct Broadcast Data at the Met Office

Nigel Atkinson (Met Office, UK)

© Crown copyright Met Office

CSPP/IMAPP Users Group meeting – 21st May 2013

- Met Office capabilities for direct readout processing
- Satellites and software packages
- Developments in VIIRS imagery
- Processing of NPP sounder data
- Example of the use of CSPP for anomaly investigation in ATMS
- Summary

Why direct readout?

- Timeliness satellite broadcasts what it sees
- No reliance on external comms links – suitable for remote locations

Direct broadcast = what the satellite transmits

Direct readout = what the user receives

Metop-B AVHRR from Exeter, 25/04/2013

Satellites and instruments of interest

Satellite	Frequency	Data rate	Instruments
NOAA POES	L-band (HRPT), 1.7 GHz	0.67 Mbps	AVHRR, AMSU, MHS, HIRS
	VHF (APT), 137 MHz	0.04 Mbps	AVHRR (2 channels)
Metop-A/B/C (EPS)	L-band (AHRPT), 1.7 GHz	3.5 Mbps	AVHRR, AMSU, MHS, HIRS, IASI
Terra/Aqua	X-band, 8.2 GHz	13.1 / 15 Mbps	Terra: MODIS
			Aqua: MODIS, AIRS, AMSU, AMSR-E
Suomi NPP	X-band, 7.8 GHz	15 Mbps	VIIRS, ATMS, CrIS
(JPSS 2017+)			
FY-3A/3B	L-band, 1.7 GHz	4.2 Mbps	VIRR, MWTS, MWHS, IRAS
(FY-3C soon?)	X-band, 7.8 GHz	18.7 Mbps	MERSI
EPS-SG (2020+)	X-band		Imagers, sounders, etc., on 2 satellites

Direct Readout Reception

3m dish at Met Office, Exeter

Direct Readout Reception (2)

Installation of new 2.4m system, March 2012

Direct Readout Reception (3)

Met Office DB processing chain at the Met Office

Processing packages

Output format

HDF-EOS

BUFR

Met Office Available from Satellite Software Aqua/Terra MODISL1DB (SeaDAS) http://seadas.gsfc.nasa.gov/ http://cimss.ssec.wisc.edu/imapp/ IMAPP MODIS level 2

	AIRS level 1 & 2				
	AMSR-E level 1 & 2				
NPP	RT-STPS (raw \rightarrow RDR) and CSPP (RDR \rightarrow SDR)	http://cimss.ssec.wisc.edu/cspp/	HDF5		
	IPOPP (NASA Direct Readout Lab)	http://directreadout.sci.gsfc.nasa.gov			
NOAA POES	AAPP	NWP SAF	AAPP native		
and Metop		http://www.nwpsaf.org	BUFR		
FY-3A and FY-3B	FY3L0pp and FY3L1pp	http://www.nsmc.cma.gov.cn/NewSite /NSMC_EN	HDF5		
		Training \rightarrow FAQs			
DMSP (U.S. military)	No	-	-		
Meteor-3M (Russia)	No	_	-		
© Crown convright Met Office					

Processing server for DB data (and global data)

- Procured in 2012
- 2 production systems and 1 test system
- Redhat Enterprise Linux 6
- 2 x Hexa-core Intel Xeon X5675 Processors 3.06GHz. 24 virtual cores
- 64 GB RAM
- 6 x 600 GB disks (2 RAID 1, 3 RAID 5, 1 spare)

We look forward to a multithreaded version of CSPP VIIRS SDR!

VIIRS Day-night band

Met Office

Colour: blue = M15 infrared red+green = DNB

DNB only:

- lunar illumination
- enhance low intensities
- useful for low cloud / fog detection

Enhancement of low intensities

 $r' = A \ln(1 + r/A)$ $A = 5x10^{-9}$ W/(cm² sr)

Scale r such that -1x10⁻⁹ to 1x10⁻⁸ fills 0-255

Suitable throughout the lunar cycle

DNB stray light problem

Night time scene, but satellite sunlit Note prominent scan cycle (16 lines)

9th Oct 2012

Met Office

- 1. Estimate a radiance correction for each of the 16 detectors in a scan (use a reference dark scene)
- 2. Use SCSolarZenithAngle to roughly locate the day/night transition (look at 70°-82°)
- 3. For each line in the test scene, compute the 25th percentile of the radiance
- 4. For each scan (16 lines), compute the product of the radiance, *r*, and the reference correction, *R*

$$\frac{\sum (r-\overline{r})(R-\overline{R})}{\left(\sum (R-\overline{R})\right)^2}$$

$$y = A + Bx + Cx^{2} + 0.5(1 - \tanh(x / w))$$

A, B, C, w are constants; vary the x origin

- 5. Fit the amplitude
- 6. For each scan, multiply the radiance correction (step 1) by the optimised reference function (step 5), hence correct each line

Corrected DNB imagery

Method in use for several months - works well Happy to share the Fortran code!

 Using the new version of UW's "crefl" software (version 1.7.1)

➤ supports MODIS and VIIRS

- Channels M2, M4, M5 or I1
- Same radiance to grey-scale mapping as MODIS (see Creating Reprojected True Color MODIS Images: A Tutorial by Gumley et al.)

High resolution VIIRS and MODIS

MODIS:

>Band 1 (250m & 500m), Band 4 (500m), Band 3 (500m)

• VIIRS:

➢I1 (370m), M4 (740m), M2 (740m)

 \succ Create a low res version of I1 (average 2x2)

As per Liam's tutorial, define

 $f = \text{Red}_{\text{High res}} / \text{Red}_{\text{low res}}$ $Green_{High res} = Green_{Low res} \times f$ $Blue_{High res} = Blue_{Low res} \times f$ We do this after reprojection

VIIRS over Cornwall

Sharpened (370m)

Original (740m)

Aside: VIIRS SDR format

 The VIIRS SDR format (hdf5) is not well suited to dissemination

- Geolocation is bulky
- Some channel radiances are floating point numbers

- We strongly support EUMETSAT's initiative to devise a new format for EARS-VIIRS service (see Anders Soerensen's talk)
 - ≻Tie points (1 in 256 reduction)
 - ≻16 bit integer radiances
 - Software to convert to standard SDR
- Could the new format be use more widely (e.g. NOAA CLASS)?

© Crown copyright Met Office

Met Office

AAPP support for Suomi NPP

from AAPP v7.1 (Feb 2012)

AAPP ingests the SDR files – hdf5 or BUFR. Stores in "AAPP-format level 1c" Global DB

ATMS

- Spatial filtering (noise reduction and channel matching)
- Spatial thinning
- Map to CrIS
- BUFR encoding

CrIS

- Channel selection
- Spatial thinning
- BUFR encoding

VIIRS

• Cloud mask coming soon

Two issues for NWP:

- 1. For many channels, raw NE Δ T is larger than model background error (and larger than AMSU NE Δ T)
- 2. Difficult to use channels 1&2 due to beamwidth mismatch with channels 3-15 (5.2° vs 2.2°)

These issues are handled by AAPP:

- Broaden ch 3-15 beam width to that of AMSU-A
- Narrow ch 1-2 (as far as possible without increasing noise) see AAPP document on ATMS processing at http://www.nwpsaf.org

Technique now used operationally at several centres

Met Office

- Reported at ITSC-18 (March 2012)
- At that time we were speculating that this was calibration noise
- Difficult to investigate due to lack of access to raw counts for calibration views -50 (not in the SDR)

Extract from ITSC-18 Products Working Group report

- Recommendation: ATMS, VIIRS, and CrIS SDR calibration traceability must be improved to allow users to investigate detailed instrument performance.
 - Action 6.1: Investigate ways to expose or save calibration information from the RDR files. RayG, NigelA
 - Action 6.2: In order to maintain a record of product provenance, create a set of guidelines for metadata to be associated with satellite products. GeoffC

- 2. Deduce the contents of the Verified RDR using ADL source code ADL/algorithms/ADL/SDR/ATMS/src/atms_struct.f
- 3. Wrote an IDL reader
 - Gives earth counts, space counts and warm counts, as well as other instrument health data.
 - IDL code available on request!

- This procedure is far from obvious!
 - compare the AMSU 1b format in which raw counts are fundamental
- Consider ways to document for ATMS?
- Can we improve visibility for future instruments and missions?

What did we find?

Results derived from DB data

- Warm counts (and cold counts) are correlated with neighbouring earth view counts
- Correlation extends over approx 1 scan
- Also some inter-channel correlations in the BT fields
- Extending the calibration view averaging does *not* help to reduce noise
- Manufacturer (NGES) confirmed that this "1/f noise" is a known "feature" of ATMS (the pre-amp)

ATMS striping - conclusions

- Striping (1/f noise) is a characteristic of the instrument
- The NEΔT values in the SDR do not take account of 1/f noise – so are optimistic
- Spatial averaging of the BT fields does not beat down the noise as much as originally expected
- Performance is within the official spec

Importance of specifying future instruments correctly

• Nevertheless, impact of ATMS in NWP is positive!

Use of NPP data in NWP

Met Office ATMS and CrIS data assimilated operationally in Met Office global model from April 2013

Use of NPP data in NWP (cont.)

- Also store at full spatial resolution, for future use in regional models
- Plan to make use of EARS-ATMS and EARS-CrIS

- Direct readout ATMS and CrIS data (50km) supplement the global data
- Data Coverage: ATMS (12/5/2013, 0 UTC, qg00) Total number of observations assimilated: 11111

- Met Office DB systems receive POES, Metop, NPP, EOS and FY-3
- The data are used for imagery and NWP
- The level 1 processing uses several freely-available processing packages, and runs OK on a Linux server
- Techniques developed for displaying VIIRS

>e.g. true-color and DNB images

- CSPP can be used for in-depth investigations, as in the ATMS striping anomaly
- ATMS and CrIS deliver positive impact in NWP at the Met Office

Thank you for listening!

For more information: http://www.metoffice.gov.uk http://www.nwpsaf.org

Questions?

nigel.atkinson@metoffice.gov.uk