

Supporting Direct Broadcast Systems using CSPP and TeraScan Software

Kota Prasad and Chris Becker
Software Dev Group
SeaSpace Corporation, San Diego California

Company Background

- Founded in 1982
- Located in San Diego, California
- Leading provider of satellite remote sensing and TT&C ground stations and software

Comprised of scientists and engineers

End-to-End Capabilities

Product and Software Design

Site Planning

Training

Service and

Support

Manufacturing

Installation

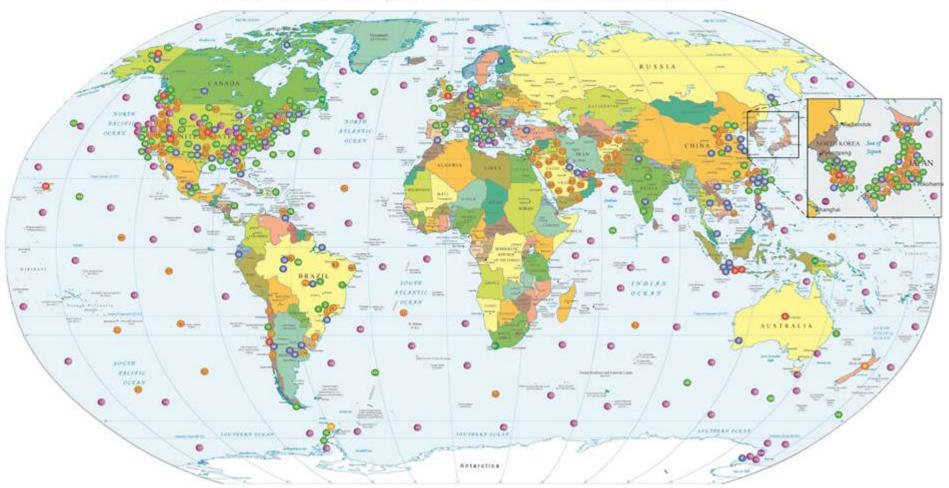
Testing

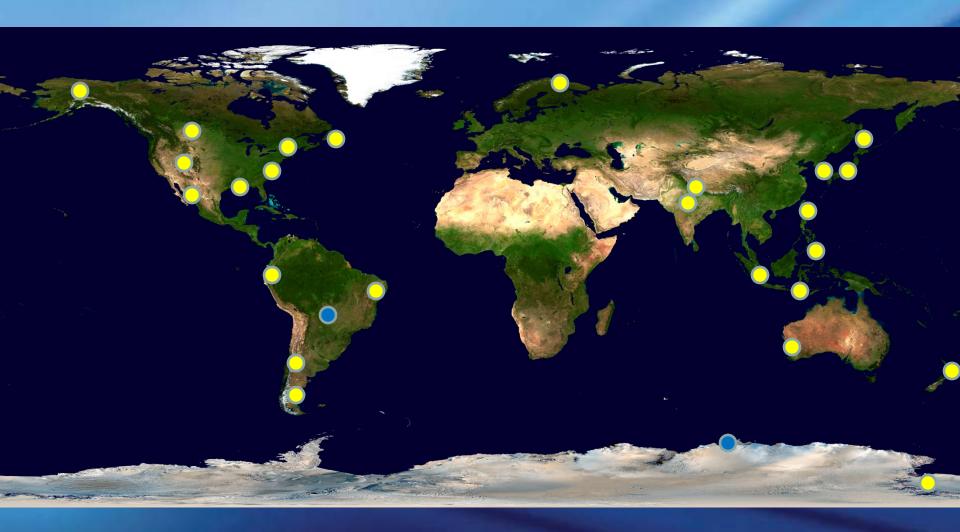
SeaSpace Product Users

Research

Antenna

Operational





Worldwide SeaSpace Ground Station Installations

SeaSpace NPP installation sites

Direct Broadcast Environmental Satellite Constellation

What is TeraScan®?

- TeraScan® is the ultimate remote sensing software tool box that fulfils your requirement for *automated* satellite data acquisition and processing.
- The TeraScan common Data Format (TDF) is an extremely versatile file format capable of assimilating a wide variety of data types, shapes and sizes. For example, a single dataset could contain satellite image data, random in-situ data, and 3-D model data. The TDF also allows applications to access data without any knowledge of the physical layout of that data.

MODIS versus NPP VIIRS

Comparison of 22-band NPOESS VIIRS with MODIS bands

NPOESS VIIRS		MODIS	
Band number	Central wavelength	Band number	Central wavelength
	(μm)		(μm)
M1	0.412	8	0.412
M2	0.445	9	0.443
M3 (blue)	0.488	3 (blue)	0.469
M4 (green)	0.555	4 (green)	0.555
M5 (red)	0.672	1 (red)	0.645
M6	0.746	15	0.748
M 7	0.865	2	0.858
M8	1.240	5	1.240
M9	1.378	26	1.375
M10	1.61	6	1.640
M11	2.25	7	2.13
M12	3.7	22	3.959
M13	4.05	23	4.05
M14	8.55	29	8.55
M15	10.763	31	11.03
M16	12.013	32	12.02
DNB	0.7	No equivalent width	No equivalent width
I1	0.64	1 (red)	0.645
12	0.865	2	0.858
13	1.61	6	1.64
I4	3.74	22	3.959
15	11.45	31	11.03

System requirements for NPP Processing

Operating System Compatibility:

RedHat Enterprise Linux Version 5.x x86_64

CentOS Version 5.x x86_64

Hardware Prerequisites

	Minimum	Maximum
Total Disk Space	1.0 TB	2.8 TB
Memory	16 GB	96 GB
CPU Cores	8	24

Suomi NPP Products generated currently using CSPP and TeraScan

	Data	
VIIRS TDF	Resolution	VIIRS
Datasets		Channels
pass.npp.SVM	750m	Daytime passes only: all moderate-resolution radiance variable (channels 1 through 16).
pass.npp.SVM r	750m	Daytime passes only: moderate-resolution reflectance variables (channels 1 through 11).
pass.npp.SVM b	750m	Daytime passes only: moderate-resolution brightness temperature variables (channels 12 through 16).
pass.npp.SVI	375m	Daytime passes: fine-resolution radiance variables (channels 1 through 5).
		Nighttime passes: fine-resolution radiance variables (channels 4 and 5).
pass.npp.SVI r	375m	Daytime passes only: fine-resolution reflectance variables (channels 1 through 3).
pass.npp.SVI b	375m	Daytime passes: fine-resolution brightness temperature variables (channels 4 and 5).
		Nighttime passes: fine-resolution brightness temperature variables (channels 4 and 5).
pass.npp.DNB	750m	One Day/Night channel.
pass.npp.RGB	750m	Daytime passes only: 3 moderate-resolution variables that can be used to create an RGB composite: red_variable=ch05, green_variable=ch04, blue_variable=ch03.

Suomi NPP Products generated currently using CSPP and TeraScan

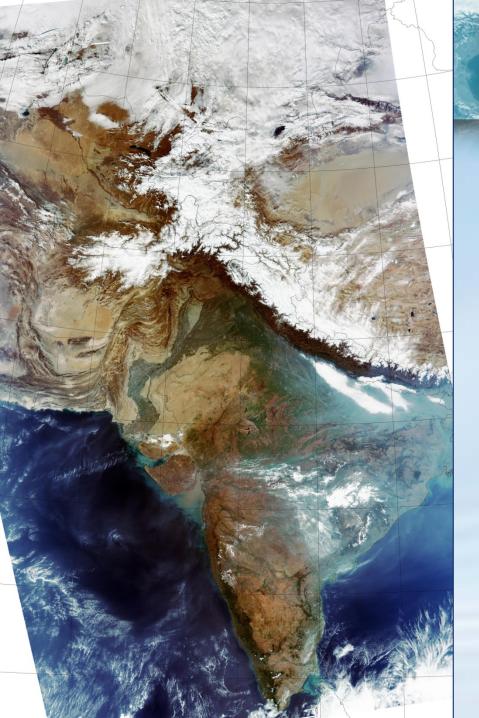
Quicklooks

pass.npp.master_name .rgb	RGB JPEGs from the moderate-resolution channels: red_variable=ch05, green_variable=ch04, blue_variable=ch03. Files are written to the directory \$DATADIR/products/images/viirs.
pass.npp.master_name .rgb	JPEGs of the ch05 fine-resolution channel with an HSL256 palette applied. Files are written to the directory \$DATADIR/products/images/viirs.

Suomi NPP Products generated currently using CSPP and TeraScan

VIIRS Level2 products

VIIRS	Sea Surface Temperature	SST (will be included in the next release)
VIIRS	Ocean Color (Chl), Remote Sensing Reflectances, K490, Aerosol Optical Thickness	chlor_a, Rrs_410-Rrs_671, Kd_490, aot_862
VIIRS	Active fires, including a post overlay file for fire points	latitude, longitude, tracks
VIIRS	Cloudmask	QF1_VIIRSCMIP (thru QF6)
VIIRS	NDVI	ndvi


CrIS

Atmospheric Stability products

CrIS Retrieval Products

Sensor	Product	Variable
CrIS Atmos	pheric Retrievals:	
CrIS	atmospheric temperature [K] at 101 pressure levels	GDAS_TAir_pressure-level
	- from forecast files	(values interpolated to sounder grid)
CrIS	atmospheric temperature [K] at 101 pressure levels - from model	TAir_pressure-level
CrIS	atmospheric humidity [g/kg] at 101 pressure levels	H2OMMR_pressure-level
CrIS	atmospheric ozone [ppmv] at 101 pressure levels	O3VMR_pressure-level
CrIS	atmospheric relative humidity [%] at 101 pressure levels -	GDAS_RelHum_pressure-level
	from forecast files	(values interpolated to sounder grid)
CrIS	atmospheric relative humidity [%] at 101 pressure levels - from model	RelHum_pressure-level
CrIS	atmospheric dew point temperature [K] at 101 pressure levels	Dewpnt_pressure-level
CrIS	surface skin temperature [K]	TSurf
CrIS	total precipitable water (vertically integrated from 100 hPa to surface) [cm]	totH2O
CrIS	precipitable water 1 (vertically integrated from 900 hPa to surface) [cm] - from model	H2Ohigh
CrIS	precipitable water 2 (vertically integrated from 700 to 900 hPa) [cm] - from model	H2Omid
CrIS	precipitable water 3 (vertically integrated from 300 to 700 hPa) [cm] - from model	H2Olow
CrIS	total ozone amount (vertically integrated) [Dobson units]	totO3
CrIS	lifted index [deg celsius]	Lifted_Index
CrIS	CO2 amount [ppmv]	CO2_Amount
CrIS	cloud top pressure [hPa]	СТР
CrIS	cloud top temperature [K]	CTT
CrIS	cloud optical thickness	СОТ
CrIS	cloud mask (values: 0 clear, 1 cloud)	Cmask
CrIS Atmos	pheric Stability:	

Total_Totals and K_index

Research Institute,

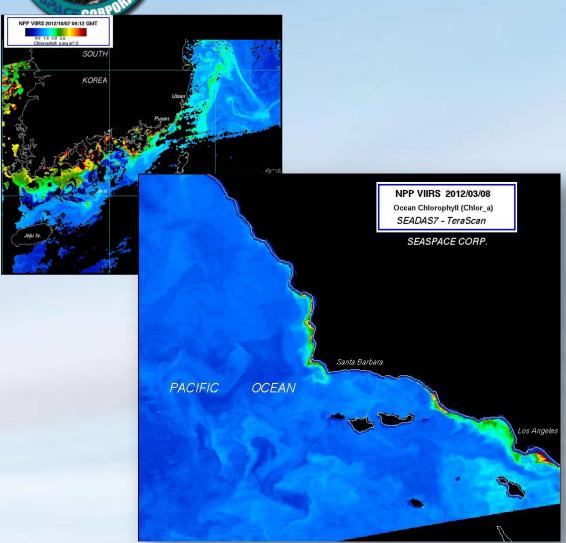
R - Ch5, G - Ch4, B - Ch43

New Delhi

Day Night Bands - India Pakistan border

Day Night Bands - S. Korea Japan

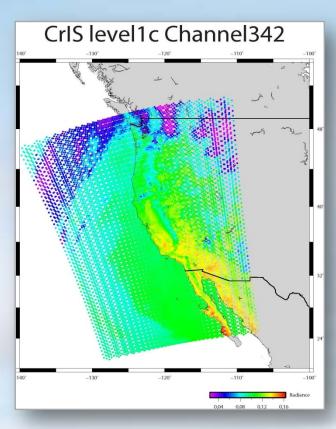
Day Night Bands - Shanghai



Night Bands - Shanghai regio **NDV DNB** night lights **Land Surface Temperature**

Night Bands - Nile River Valley **MEDITERRANEAN NDV**I SEA **DNB** night lights **Land Surface Temperature**

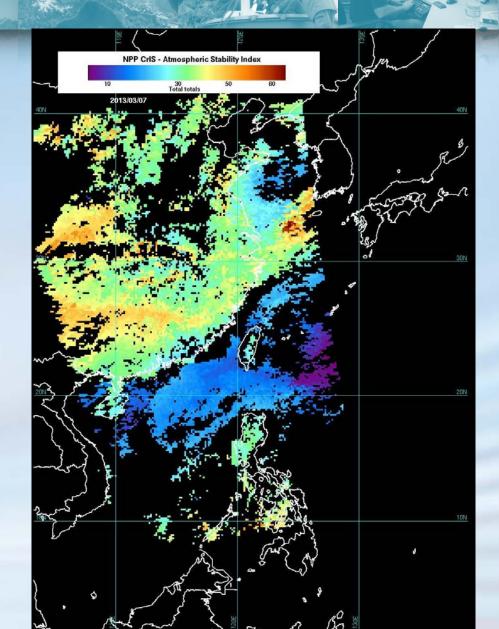
Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color integration



- Generate SDRs using CSPP
- Generate Ocean Color products using SeaDAS7
 - Generate TeraScan Data Format file
- Forward remap to mercator proj.
- Land mask and apply color palette
 - Standard "I2gen" ocean color product support for Water-leaving radiance and bio-optical retrieval products

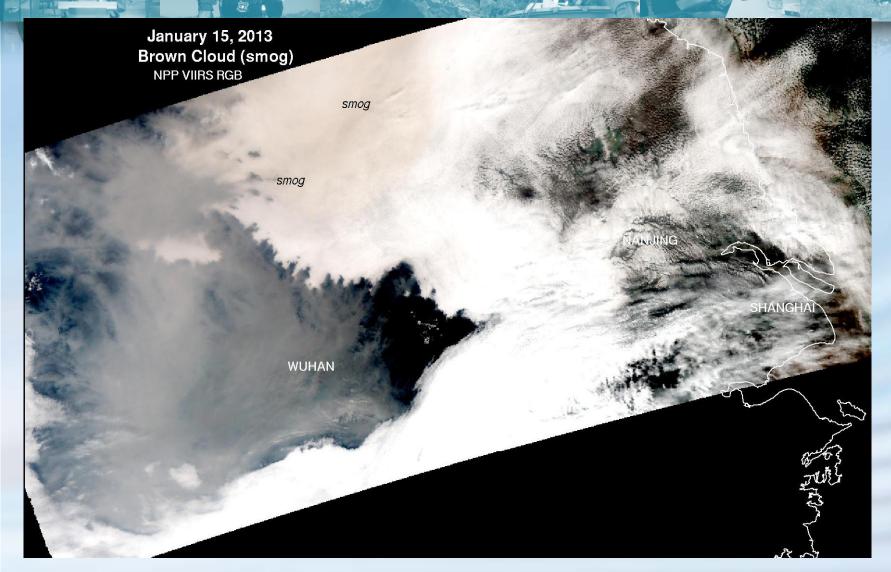
Cross-track Infrared Sounder (CrIS) integration

- Generate SDRs using CSPP
- Convert to AAPP format using cris_sdr
- Concatenate granules if required
- Plot with 20 km footprint at Nadir
- Radiance plot of Channel 342
- Total of 1305 spectral channels over 3 wavelength ranges; LWIR (9.14 - 15.38μm); MWIR (5.71 -8.26μm); and SWIR (3.92 - 4.64 μm)

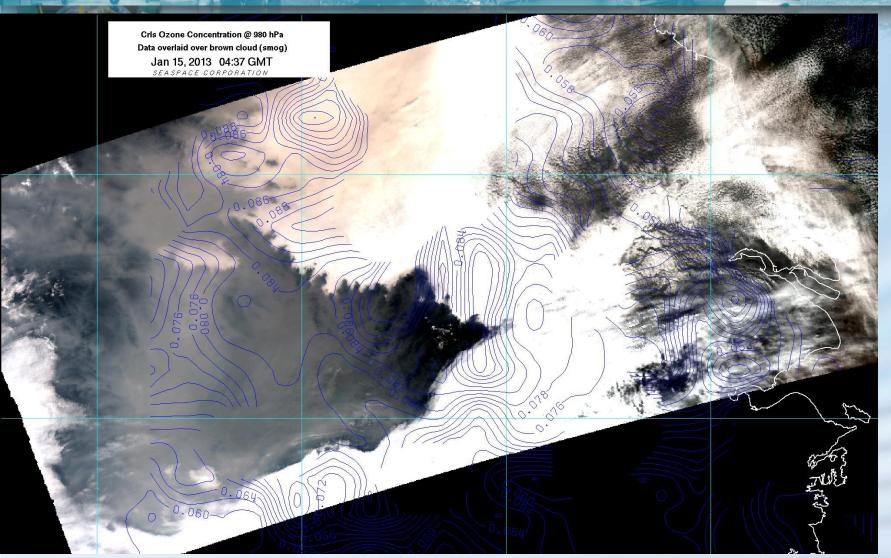


Atmospheric Stability - K Index & TT

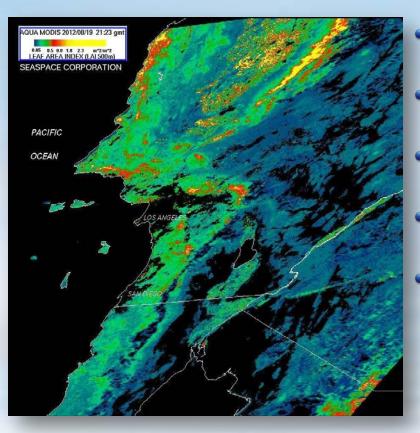
CORPORT


Total totals (TT) index from NPP CrIS (Cross-track Infrared Sounder) retrieval China. A TeraScan value added product from CrIS direct broadcast data.

A Total Totals (TT) of greater than 48 indicates favorable conditions for development of severe thunderstorms, a value of 55 indicates favorable conditions or tornadoes.



Air Pollution monitoring using NPP


Cross-Track Infrared Sounder - Ozone

MODIS Leaf Area Index (LAI) and FPAR algorithm for Direct Broadcast applications

- Works with DB BRDF and surface reflectance input files
- Requires MODIS landcover files to cover Area of Interest
 - Outputs include LAI and FPAR at 500m resolution in sinusoidal projection
 - TeraScan generates modland_tiles based on the input LAI tiles
- Remaps using master or master2 in sinusoidal map projection

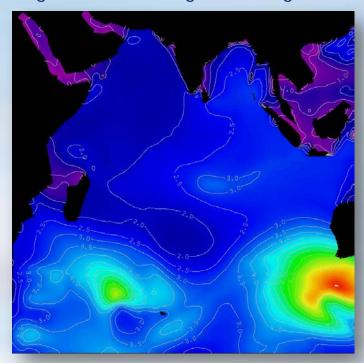
METOP-B and FY3-B MERSI DB

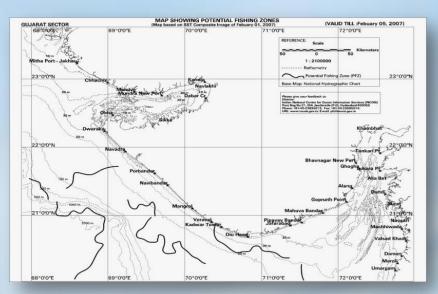
METOP-B

FY3-B MERSI

Cloud3DViewer

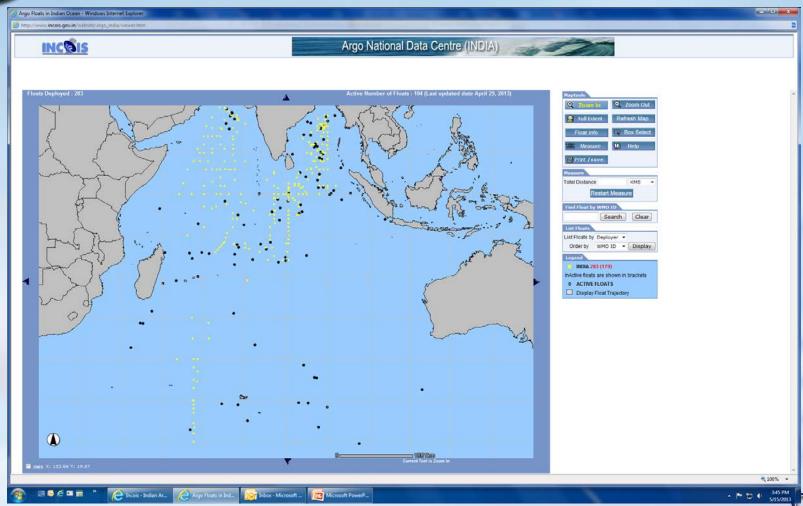
- CloudView3D is a openGL program that renders TDF generated cloud data in 3D.
- Progam permits scene rotation, interactive perspective edit controls.
- Renders 3-Dimensional data-surfaces with latitude/longitude grids.

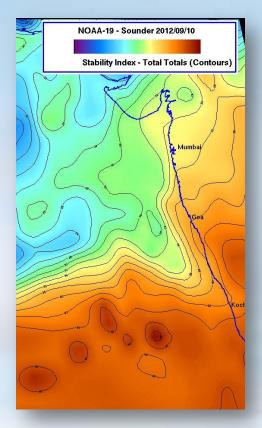

- Renders GIS lines/boundaries
- Allows interactive data queries
- Allows multi-frame time-series animations and more.



Ocean modeling and fisheries applications

Significant wave height modeling

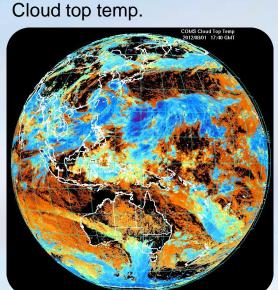

Potential Fishing Zone map from NOAA HRPT and ocean color data


NOAA DCS and ARGO Applications

(No. of Floats deployed: **283**; Active Floats as on 29-Apr-2013: **104**; Floats completed their mission: **179**)

AAPP7 integration

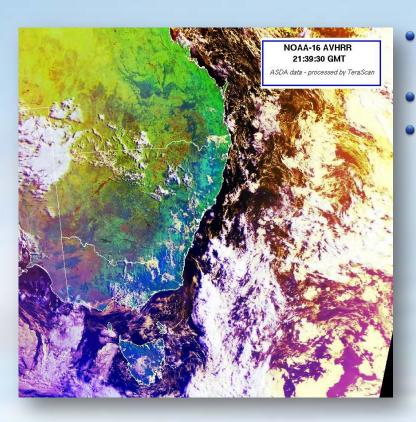
- Calibration updates for NOAA and Metop
- Retrievals from IAPP
- CrIS and ATMS pre-processing
- Retrievals of dew_point, Water_vapor, Temperature, (42 pressure levels),
- Ozone, Total precip water, Total Totals etc
- Enhanced burst function to handle various levels in TeraScan Data Format
- Skew-t support



Communication, Ocean and Meteorological Satellite (COMS)

Vis Channel with Blue- marble background

Sea Surface temp.



ASDA HRPT integration

- NOAA HRPT support for Australian Satellite Data Archive (ASDA) format files
- Extended level2 support
- Support customers in New Zealand and Australia

TeraCATIII

TeraCATIII

Restore default layout

Remember this layout

Database query resul

Filenames preceded by * have

Order by:

✓ tdf

2010.0222.0305.noaa-17.avcloud 1009 2010.0306.2132.noaa-19.ndvi 100% 2010.0306.2132.noaa-19.sst 100%

- 2010.0306.2132.noaa-19.avhrr 100% * 2010.0307.0959.noaa-19.sst 100%
- * 2010.0307.0959.noaa-19.avhrr 1009
- * 2010.0309.0845.noaa-18.sst 100% * 2010.0309.0845.noaa-18.avhrr 1009
- * 2010.0309.0937.noaa-19.sst 100%
- * 2010.0309.0937.noaa-19.avhrr 1009
- * 2010.0309.0937.noaa-19.avhrr 1009
- * 2010.0309.0937.noaa-19.sst 100%

Filename filte

☑ Exclude "cover

Filetypes to incl geotiff

✓ Minimum cover 1

Testing coverage: 375 of 375

Apply filters/reload

□hdf

Total fileCount would be 8 of 500 Total download size:618.03 MB

Click on a filename for metadata and available preview options

- ✓ 2010.0307.0959.noaa-19.sst (100%)
- 2010.0309.0937.noaa-19.sst (100%)
- **✓** 2010.0306.2132.noaa-19.sst (100%)
- ✓ 2010.0309.0845.noaa-18.sst (100%)
- 2010.0309.0937.noaa-19.avhrr (100%)
- 2010.0306.2132.noaa-19.avhrr (100%)
- 2010.0309.0845.noaa-18.avhrr (100%)
- 2010.0307.0959.noaa-19.avhrr (100%)

Passfile metadata (db ref:257287
I doomo modada	ab lonzorzor

/nexus/data2/products/tdf/Global/avhrr/sst/2010.0309 Full path: 19.sst

Satellite: noaa-19

> Time 2010-03-09 09:37:00 stamp:

17.17 MB File size:

Center 32N / -117W

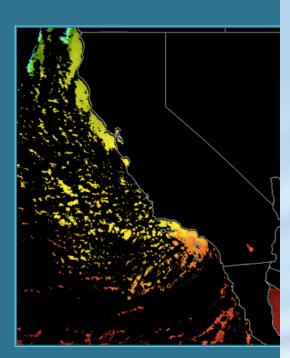
Projection: utm

QL/browse imagery access

Available channels:

mcsst ‡

QL Palette: aaa.sst


Invert palette +

Generate Quicklook Image

Prepare download

Dism

mcsst - rectangular

Discovered browse files for the available datas Right-click to view in new window

2010.0307.0959.noaa-19.avhrr_ch4.jpg

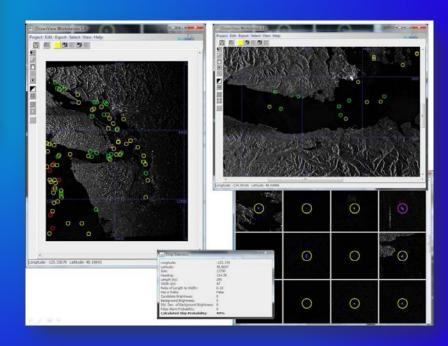
2010.0309.0937.noaa-19.avhrr_ch4.jpg 2010.0309.0845.noaa-18.avhrr_ch4.jpg

2010.0309.0937.noaa-19.avhrr_ch4.jpg

System Login


退出

Multi-language support is available and can be selected on a per-login basis



RADARSAT-1 tests at SeaSpace

Radarsat-1
Pass acquired using a 3.0m antenna

Ship detection using SeaSpace's OceanView maritime awareness software

Thanks to JPSS and the UW SSEC CSPP Team for the NPP DB processing algorithms!

Email: kprasad@seaspace.com

