
The EUMETSAT Network of Satellite Application Facilities

PPS A DR package for the retrieval of cloud properties from AVHRR and VIIRS

Adam Dybbroe

PPS Team

Ronald Scheirer, Sara Hörnquist, Nina Håkansson, Joseph Sedlar, Anke Thoss, Adam Dybbroe, Karl-Göran Karlsson, Abhay Devasthale, Erik Johansson, Martin Raspaud

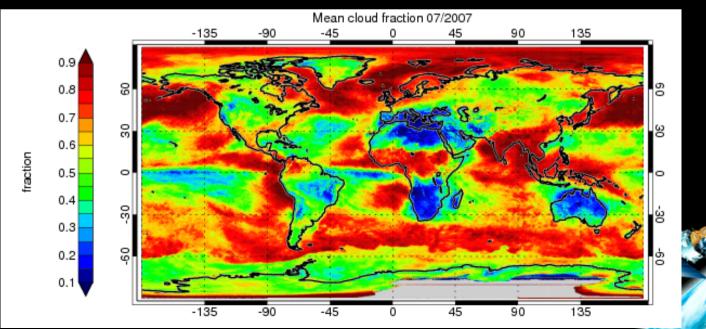
Thanks to Jan Fokke Meirink and colleagues at KNMI

Outline

- What is PPS?
- What is new in PPS?
- VIIRS
- Future
- VIIRS processing at SMHI

What is PPS?

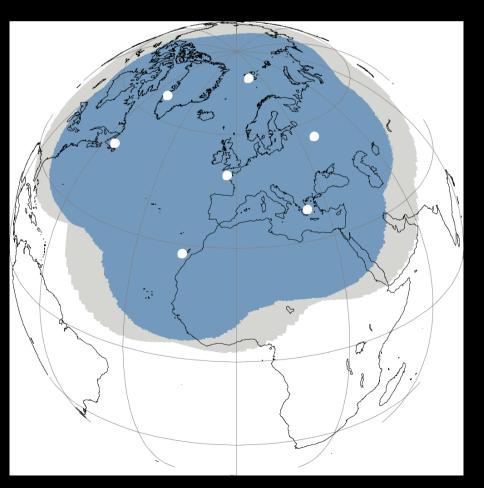
- Processing package for cloud and precipitation products, developed by the NWCSAF
- Originally designed for local processing of Direct Readout data from AVHRR
- Adapted to other input formats, as for example AVHRR GAC
- Recently adapted to VIIRS

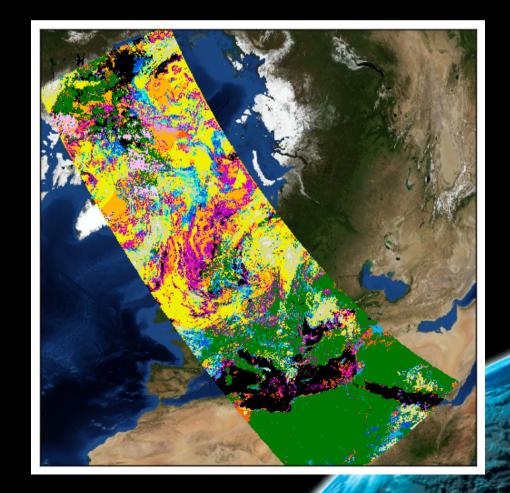


What is PPS?

 Used not only for Nowcasting, but also by CMSAF (global products), OSI SAF and Land SAF (regional products)

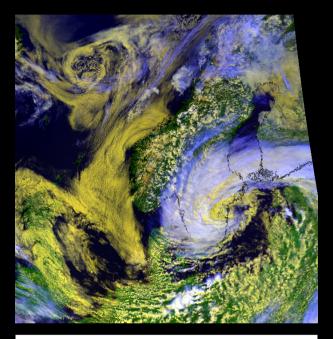
Mean cloud fractional coverage for July 2007, derived from NOAA 15, 16, 17 and 18:

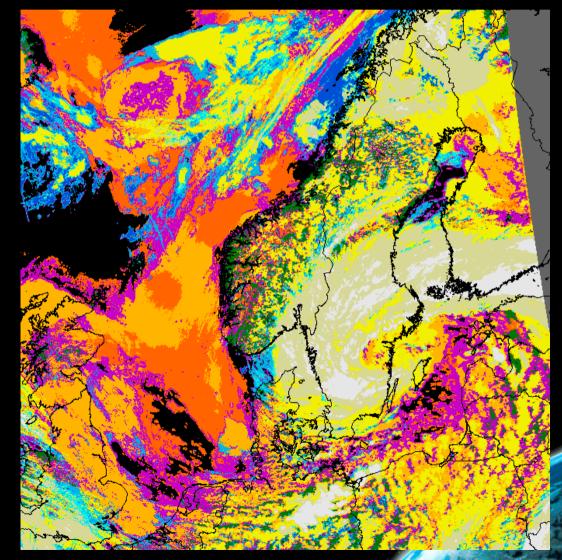




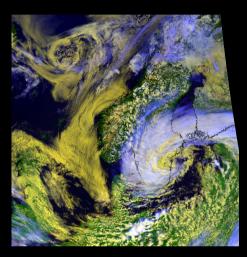
What is PPS?

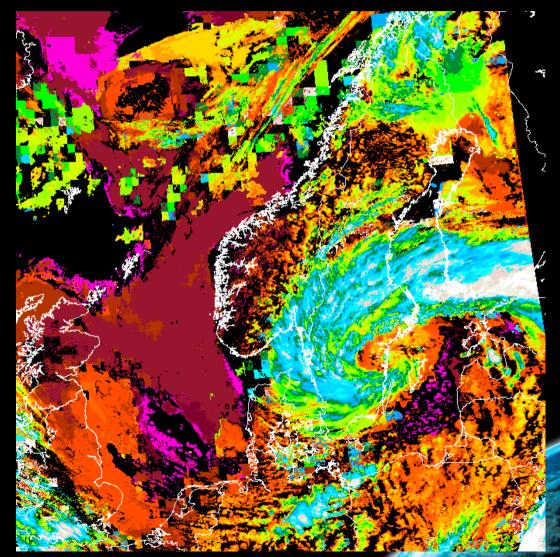
 Now also used for processing cloud products in the new EARS-NWC service





Cloud Mask & Type

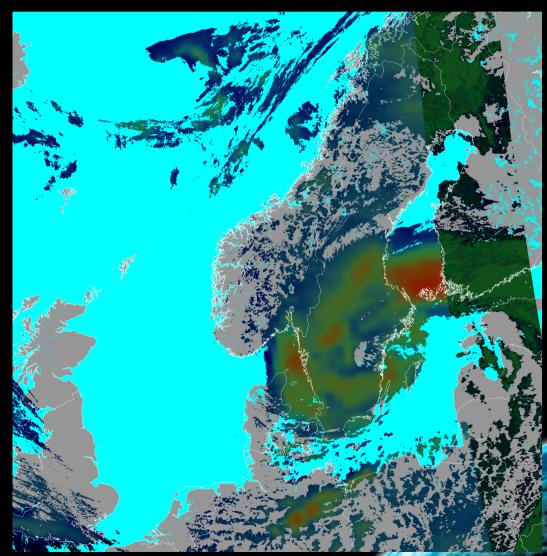

NOAA 19 2012-06-25 12:22 UTC


Cloud Top Temperature and Height

Unprocessed 0-500m 500-1000m 1000-1500m 1500-2000m 2000-2500m 2500-3000m 3000-3500m 300-4000m 4000-4500m

> 4500-5000m 5000-5500m 5500-6000m 6000-6500m 6500-7000m 7000-7500m 7500-8000m 8000-8500m 8500m

NOAA 19 2012-06-25 12:22 UTC



Precipitating Clouds

RGB of likelihood for precipitation in intensity classes

- Red: Intensive (> 5mm/hr)
- Green: light/mod (0.5-5 mm/hr)
- Blue: very light (0.1-0.5 mm/hr)

Based on MHS channel 1, 2 and 4 and AVHRR channel 4 & 5 NOAA 19 2012-06-25 12:22 UTC

Recent enhancements

v2012: Released May 2012

- Cloud Physical Properties CPP
 - Developed by KNMI within the CMSAF
 - Adapted to PPS standards and level 2 validation
 - Framework for future cooperation
 - Released as NWCSAF software
- Support for VIIRS on Suomi NPP

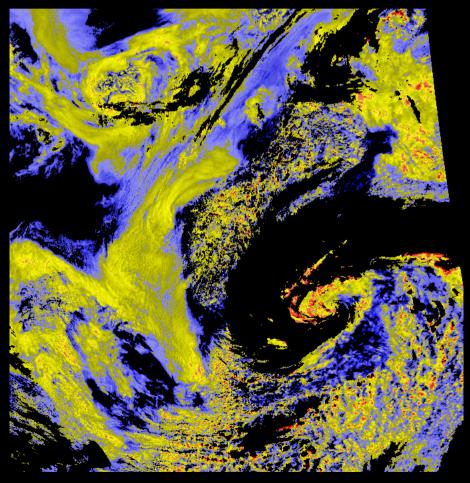
CPP - Cloud Physical Properties

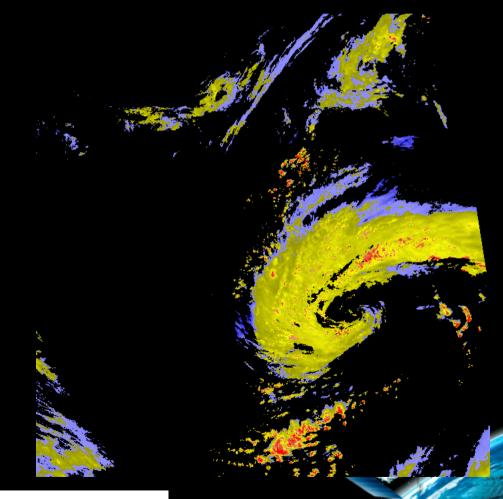
Daytime only!

Parameters:

ditional

- Cloud Thermodynamic Phase CPH
- Cloud Liquid Water Path LWP
- Ice Water Path IWP
- Effective Radius reff
- Cloud Optical Thickness COT



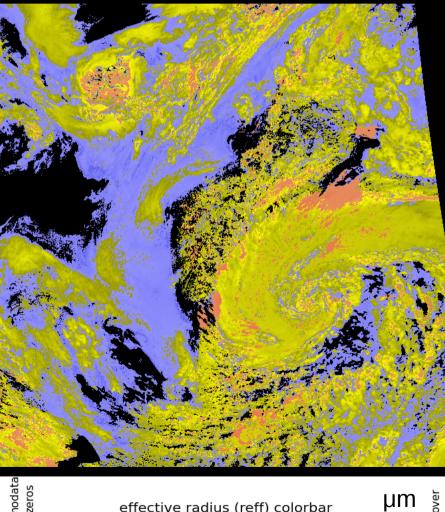


CPP products

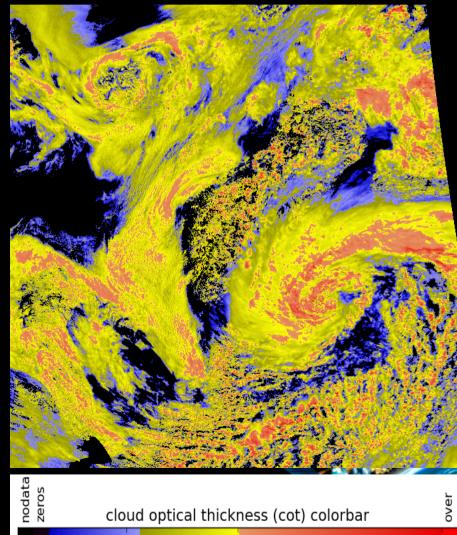
LWP

50

400


2000

Unit: g/m2

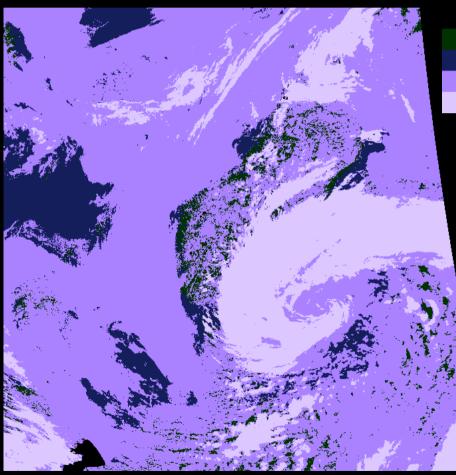


CPP products Effective radius

zeros	effective	radius (reff) colorbar	http://w
0	10	20	1000

Cloud Optical Thickness

23

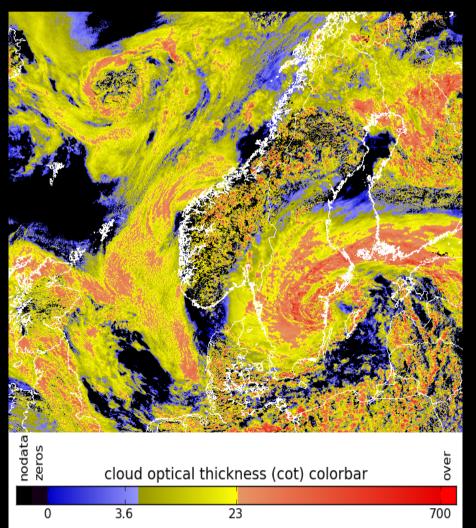

3.6

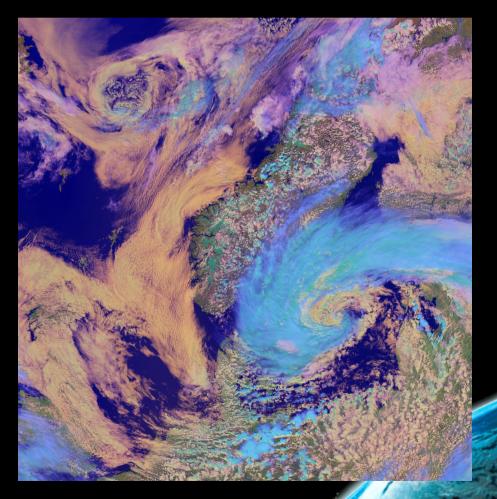
0

CPP products Cloud Phase

VIIRS in PPS

- All moderate resolution AVHRR heritage channels + 8.6 µm
- CSPP used to go from RDR to SDR
- No valid precipitation product until v2014

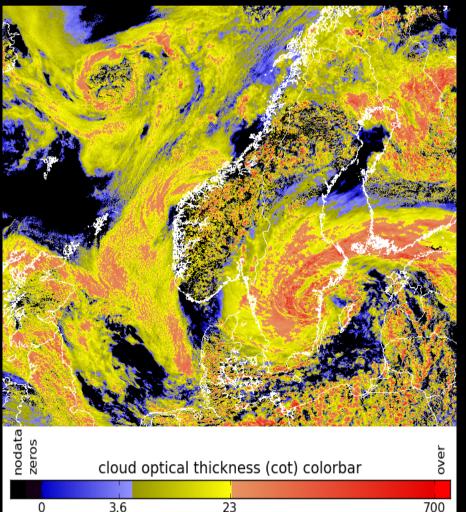


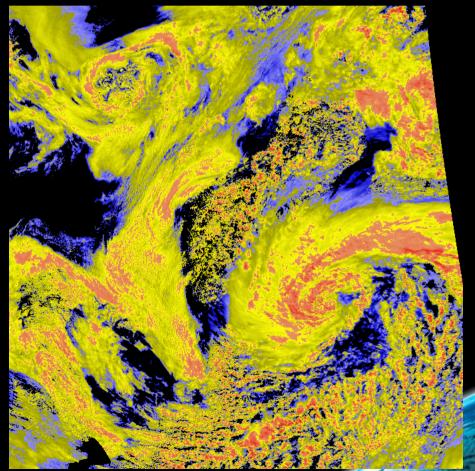


VIIRS products

Cloud Optical Thickness

VIIRS: June 25 11:49 UTC, 2012

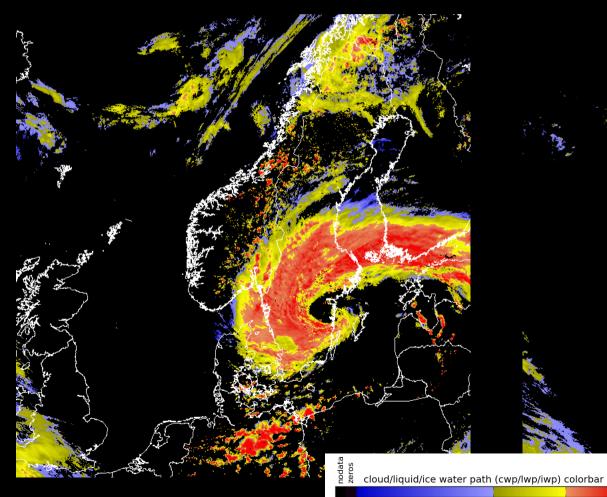


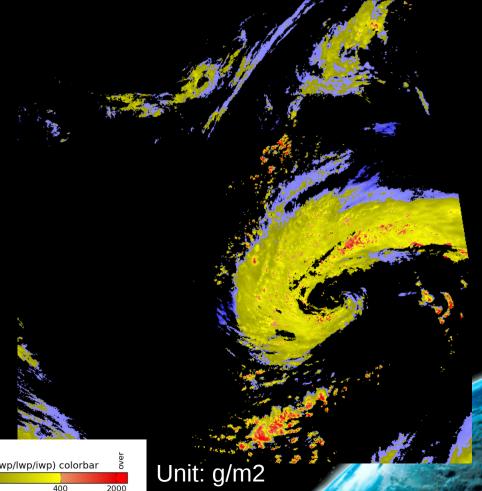

VIIRS versus AVHRR products

Cloud Optical Thickness

VIIRS: June 25 11:49 UTC, 2012

AVHRR: June 25 12:22 UTC, 2012




VIIRS versus AVHRR products

Ice Water Path

VIIRS: June 25 11:49 UTC, 2012

AVHRR: June 25 12:22 UTC, 2012

VIIRS in PPS

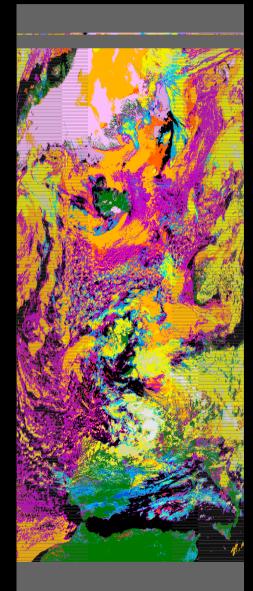
- VIIRS cloud products generally in good agreement with AVHRR (NPP & N19)
 - More ice phase and cirrus seem to be detected

PPS on VIIRS - Validation using CALIOP

- First comprehensive validation completed
- Co-locating CALIOP and VIIRS
- 6 months (May till October 2012)
- 34 scenes from Norrköping station
- Time difference < 10min
- ~150 000 observations

Suomi NPP

12:53 UTC,


scene:

2012

June 11

VIIRS-CALIOP matchup

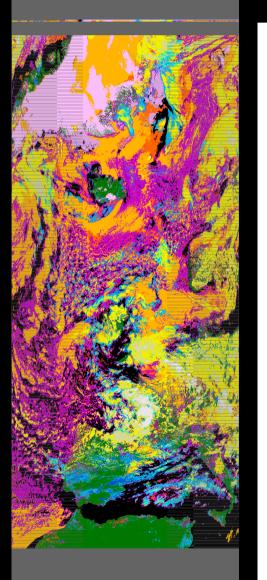
Track Position

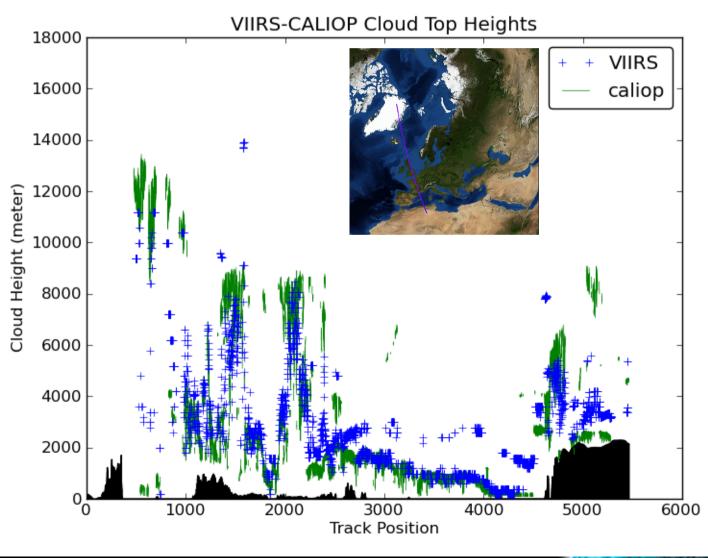
PPS on VIIRS - Validation using CALIOP

- Parallax not accounted for
- Account for differences in observations:
 - VIIRS: Passive imager with limited capability of detecting thin clouds
 - CALIOP: Active instrument highly capable of detecting very thin high clouds

Filtering as introduced in *Karlsson and Johansson*, 2013 doi:10.5194/amt-6-1271-2013

Cloud Mask


	Bias	HR	POD	FAR	POD clear	FAR clear	Ν
All	-9.0	0.84	83.2	5.5			149549
Day	-3.8	0.92	92.9	2.7	86.5	30.3	49888
Twilight	-16.4	0.79	77.7	3.1	87.9	55.0	38773
Night	-8.5	0.80	77.2	10.7	84.6	31.0	60888



VIIRS Cloud Top Height

Future

What's coming next?

- RPM and Debian based installation
 - Q3 2013
- v2014 scheduled for March 2014
- V2016
- CDOP2 ends February 2017

v2014

- New output format:
 - netCDF CF
- Cloud Mask: Revised surface treatment to reduce biases found over some semi-arid regions

v2014

- Improved Cloud Top Height
 - Smaller bias and RMS. Prototyping with CALIOP data
 - Speeding up semi-transparent retrieval and picking up more Cirrus cloud heights

v2014

 Precipitating Cloud: Add rain rate using cloud microphysical products (daytime only). AVHRR & VIIRS

Direct Readout processing at SMHI with VIIRS

- X/L-band station installed Nov 2011
- Running RT-STPS-CSPP-PPS-Pytroll preoperationally since Spring 2012
- In operation since Dec 18, 2012

Nov 8 08:56

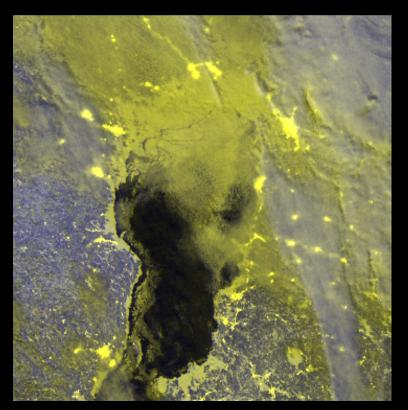
Nov 8 13:53

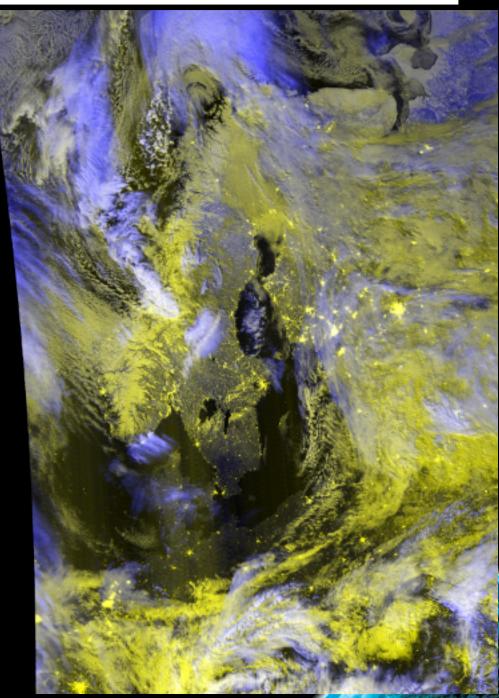
Nov 15 13:05

Nov 16 16:20

Nov 8 10:27

 Due to timeliness issues Suomi NPP is currently prioritized low


- VIIRS only
- The VIIRS DNB and I-band RGBs have proven very useful in the SMHI Ice Charting Service



When Radarsat SAR data are unavailable VIIRS is indispensable

Bothnian Bay in Moonlight: Dec 28, 2012, 00:28 UTC

- RT-STPS 5.3 with streaming patch (DB6) as of May 13
- CSPP 1.3

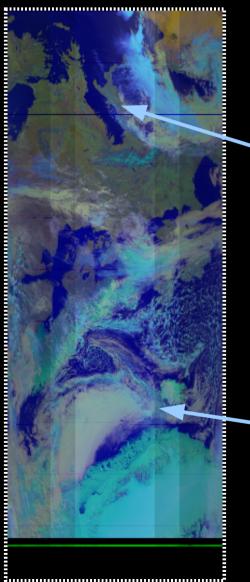
SDR timeliness

- RT-STPS: ~2-3 minutes for one swath
- CSPP: ~20-21 minutes

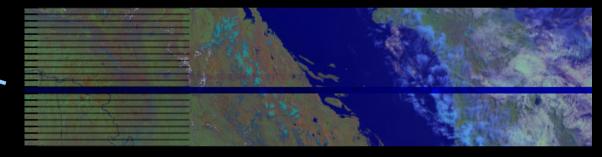
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>S</u> ea	arch	Termi	nal <u>F</u>	lelp						
		0:44				5:25,					verage: 1.		2.17
Tasks					unning							zombie	
Cpu0		.0%us		5.2%s).0%wa			
Cpul).0%us		0.0%s		.0%ni	-).0%wa			
Cpu2).3%us		0%s)		.0%ni).0%wa			
Cpu3).0%us		0.0%s		.0%ni).0%wa			0.0%st
Cpu4).7%us		0.0%5		.0%ni).0%wa			
Cpu5).0%us	-).0%s		.0%ni	-).0%wa			
Cpu6).0%us		0.0%s		.0%ni	-).0%wa			
Cpu7).0%us).0%s		.0%ni).0%wa			
Cpu8).0%us		0.0%5		.0%ni	*).0%wa	, , , , , , , , , , , , , , , , , , , ,	,	
Cpu9).0%us		0.0%s		.0%ni	*).0%wa			
Cpu10).0%us		0.3%s		.0%ni).0%wa			
Cpu11).0%us		9.0%s		.0%ni).0%wa			
Cpu12	: 0	.7%us	, (0.7%5		.0%ni).3%wa			0.0%st
Cpu13).0%us	, (0.0%s		.0%ni).0%wa	, ,		
Cpu14).0%us	, (0.0%s	у, 0	.0%ni	,100.	0%id).0%wa	, ,	0.0%si,	0.0%st
Cpu15	: 0	.0%us	, (0.0%s	у, 0	.0%ni	,100.	0%id	Ι, Θ).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu16	: 0	.0%us	, (0.0%s	у, 0	.0%ni	,100.	0%id	I, 6).0°₃wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu17	: 0).0%us	, (0%5	y, 0	.0%ni	,100.	0%id	I, 6).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu18	: 0	.0%us		0.0%s		.0%ni	,100.	0%id).0%wa			0.0%st
Cpu19	: 0	.0%us	, (0.0%s	y, 0	.0%ni	,100.	0%id	I, 6).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu20	: 0).0%us	, (0.0%s	у, 0	.0%ni	,100.	0%id	Ι, Θ).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu21	: 0	.0%us	, (0.0%s	y, Θ	.0%ni	,100.	0%id	ί, Θ).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu22	: 0).0%us	, ().0%s	у, 0	.0%ni	,100.	0%id	Ι, Θ).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Cpu23	: 0	.0%us	, (0.0%s	у, 0	.0%ni	,100.	0%id	, Θ).0%wa	, 0.0%hi,	0.0%si,	0.0%st
Mem:	4935	9100k	tot	tal,	229768	876k	used,	263	8222	24k fr	ee, 72	15k buffe	rs
Swap:	5157	6824k	tot	tal,	121020	620k	used,	394	7426	04k fr	ee, 109460	32k cache	d
PID			PR	NI	VIRT	RES				%MEM	TIME+		
14116			20		7186m	-		R 9		8.2		ProSdrVii	
22338			20	0	0	0			6.0	0.0		flush-253	:5
2673			20	Θ		8188			3.0		763:24.76		
4617			20	-		1888			0.7	0.0	0:08.15		
154			20	Θ	0	0	-		0.3	0.0	1:19.25		
2635			20	Θ	Θ	0			0.3	0.0		kondemand,	/0
7511			20	Θ		4376			0.3	0.0	91:27.41		
17979	safu	sr.u	20	θ	567m	4184	1424	S	0.3	0.0	42:28.11	python	

RT-STPS streaming and granule processing with CSPP

- 2met! streams CADU data directly to RT-STPS during reception
- RT-STPS makes 86s granules
- RDRs are dispatched in real time to processing servers

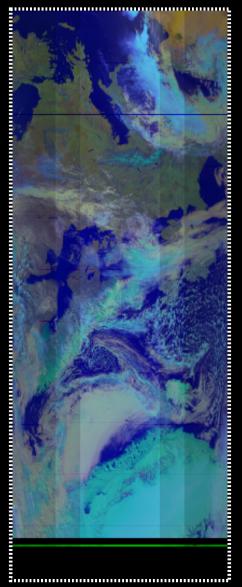

RT-STPS streaming and granule processing with CSPP

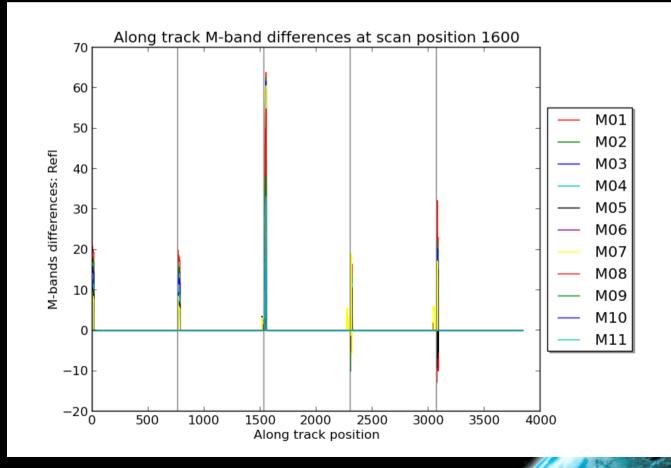
- CSPP is triggered on sets of 3 granules
 - Keeping only the SDRs of the middle granule
- Timeliness improved from ~23min to ~10min




Why run on sets of 3 granules?

Complete dropout of all short wave channels on one scan:

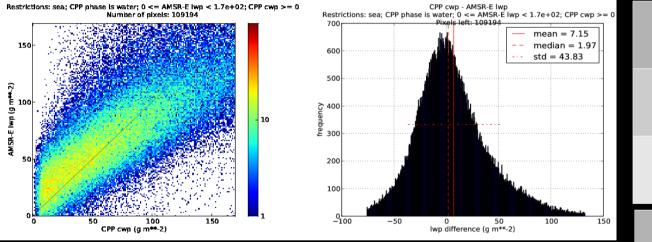

Seamless distortions on parts of scans only



Why run on sets of 3 granules?

Only an issue with short wave bands

Thanks! Questions?


http://www.nwcsaf.org http://nwcsaf.smhi.se

CPP Validation of LWP and Cloud Phase performed against AMSR-E for lwp and Calipso for cph

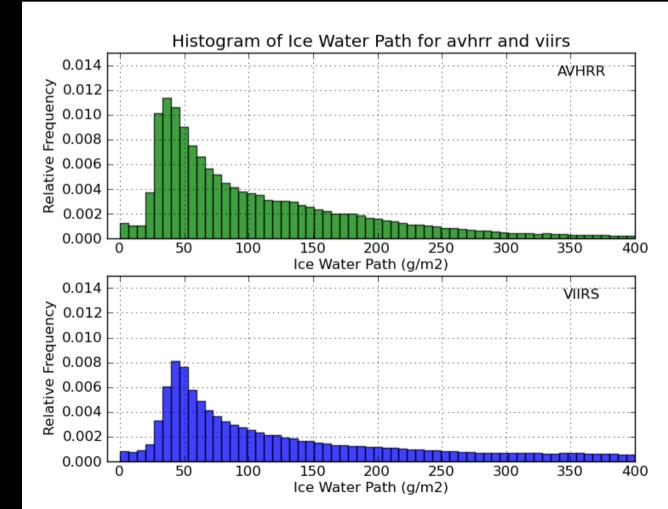
LWP

LWP bias = $7g/m^2$ LWP RMS error = $44g/m^2$

Phase

	CALIOP liquid	CALIOP solid
CPP liquid	18327	5556
CPP solid	1693	9827
	POD	FAR
liquid	0.92	0.23
solid	0.64	0.15

Both liquid water over ocean and cloud phase perform well within specifications



VIIRS versus AVHRR products

Ice Water Path:

Somewhat higher IWP values in VIIRS compared to AVHRR

