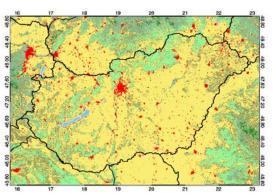
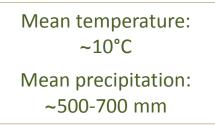
Estimation and forecast of winter wheat yield in Hungary using Direct Broadcast MODIS data


<u>Anikó Kern</u>, Péter Bognár, Szilárd Pásztor, János Lichtenberger, Dávid Koronczay, Csaba Ferencz

Department of Geophysics and Space Science, Eötvös Loránd University, Budapest, Hungary


CSPP/IMAPP Users' Group Meeting, University of Wisconsin-Madison, USA, 27-29 June 2017

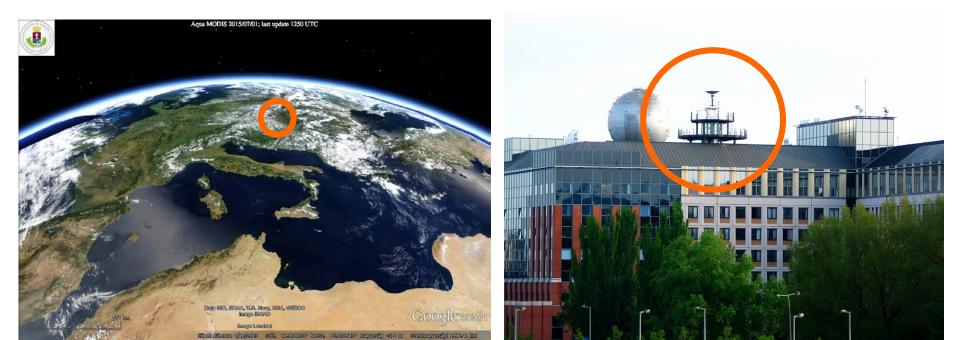
Winter wheat in Hungary

- One of the **most important crop** in Hungary
- Area: on ~11.000 km²
 = ~25% of the entire agricultural areas
- Production: 3-6 million tons/year (2000-2015)
 = ~40% of the cereals
- Yield: 4-5 tons/ha, which is strongly affected by the extreme weather events
- Effecting also the market and the export
- Relationship between spectral properties of plant species and their yield do exist (*Tucker et al., 1980*)
- Yield estimation procedures has a wide range for the different agricultural plants

MCD12 Land cover - Hungary

The applied winter wheat estimation method

Our aim was to develop a yield estimation method, which is:

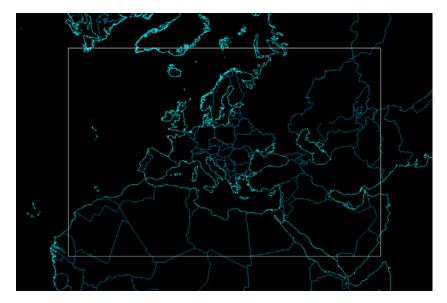

- simple and easily adaptive,
- based only on remotely sensed daily MODIS data (preferable DB data to be independent),
- **robust**: does not require either meteorological, biophysical or agronomical input parameters, **neither the location of the cultivated** fields of the given agricultural plants (small parcels!),
- using only land cover information (MOD12) and official yield data,
- taking advantage of the daily data (in contrast to the temporal composite datasets (eg. MOD13/MYD13)),
- appropriate for **forecasting** as well.

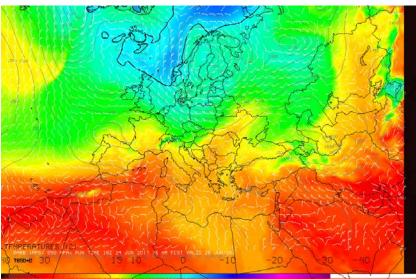
Foundation: 2002

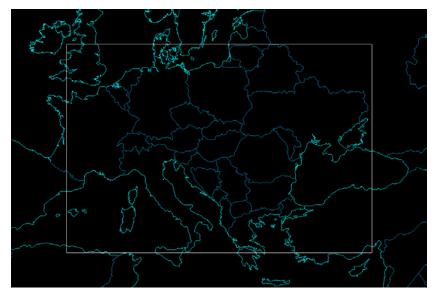
Location: Eötvös Loránd University, Budapest, Hungary

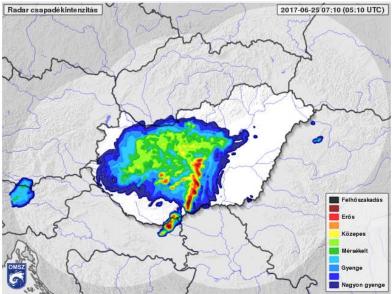
Received data:

- data of self-build satellite sensors (onboard Chibis and Relec) measuring electromagnetic waves of the magnetosphere
- NOAA HRPT, FY CHRPT, Direct Broadcast MODIS data (since 2004)


Automatic real-time processing chain for the DB MODIS data

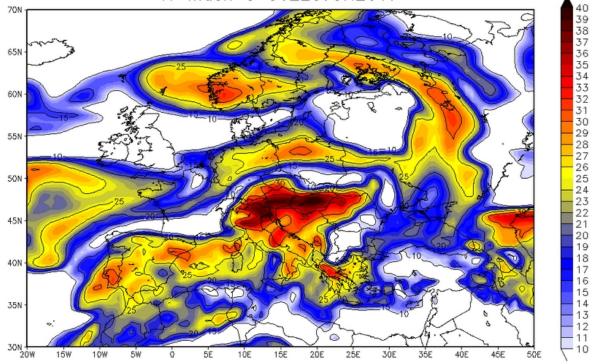

The applied MODIS related software:


- (1) SeaDAS MODIS Level1DB Software Package (v1.8) \rightarrow OCSSW
- (2) MODIS Destripe Direct Broadcast Software
- (3) IMAPP MODIS Level2 (v3.0)
- (4) DBCRAS numerical weather prediction software
- (5) + Nested DBCRAS
- (6)
- (7)
- (8)
- (9)


(10)

(4-5) DBCRAS & NDBCRAS – since 2009

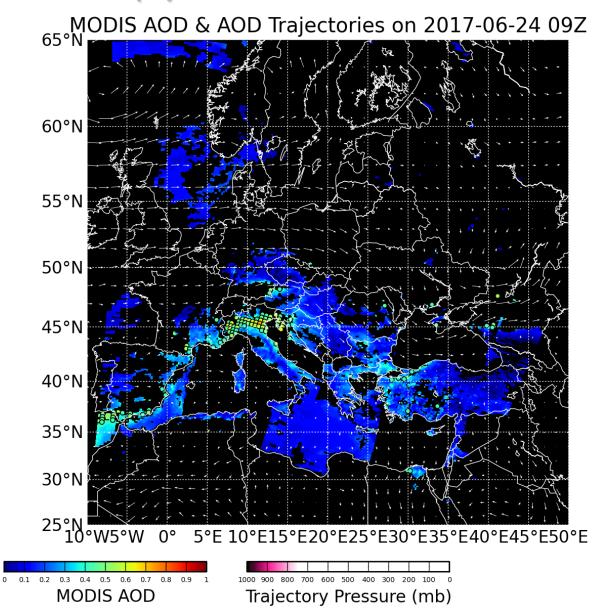
http://nimbus.elte.hu/kutatas/sat/dbcras-en.html



- Short term weather forecast at the Department of Meteorology (ELU) based on the model DBCRAS -

IR-sat Precipitation	JET 300 hPa wind	Θ850 Φ850 Φ500	PBL-RH RH850	RH700 RH500
TA700 T2m T850	T500 10m w	wind speed 6700	Moist.Conv.10m	w700 K-index

K-index @ 06Z25JUN2017

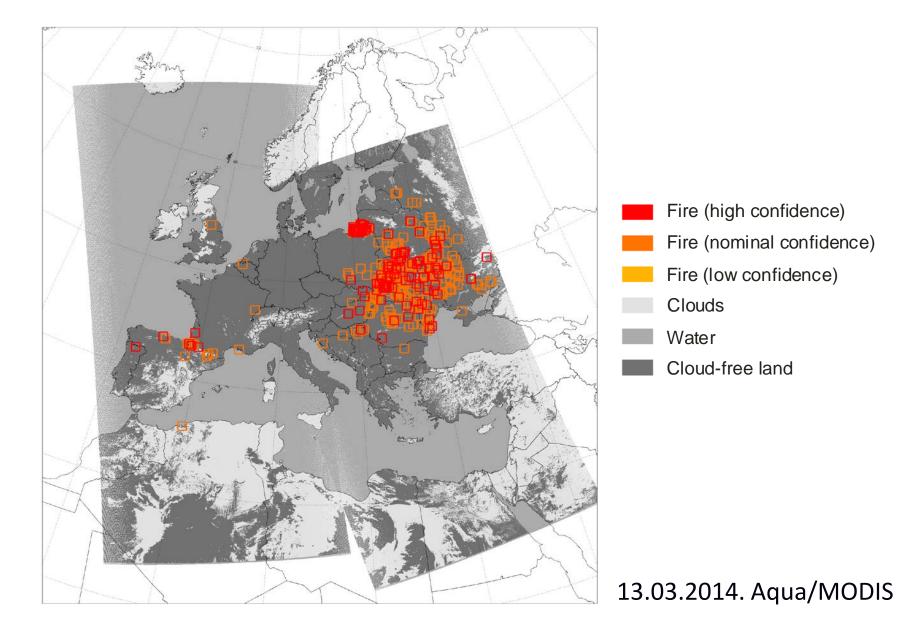

http://nimbus.elte.hu/~cras/

Automatic real-time processing chain for the DB MODIS data

The applied MODIS related software:

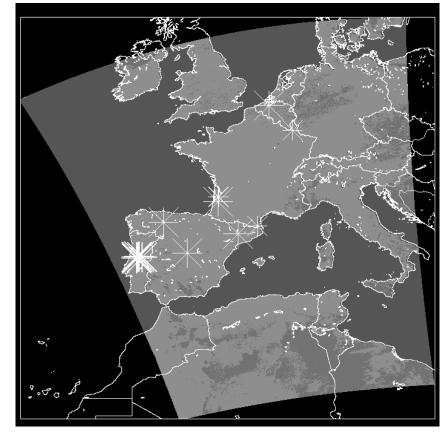
- (1) SeaDAS MODIS Level1DB Software Package (v1.8) \rightarrow OCSSW
- (2) MODIS Destriping Software
- (3) IMAPP MODIS Level2 (v3.0)
- (4) DBCRAS numerical weather prediction software
- (5) Nested DBCRAS
- (6) IDEA-I air quality forecast (v1.1)
- (7)
- (8)
- (9)
- (10)

(6) IDEA-I – since 2009


http://nimbus.elte.hu/kutatas/sat/idea-en.pl

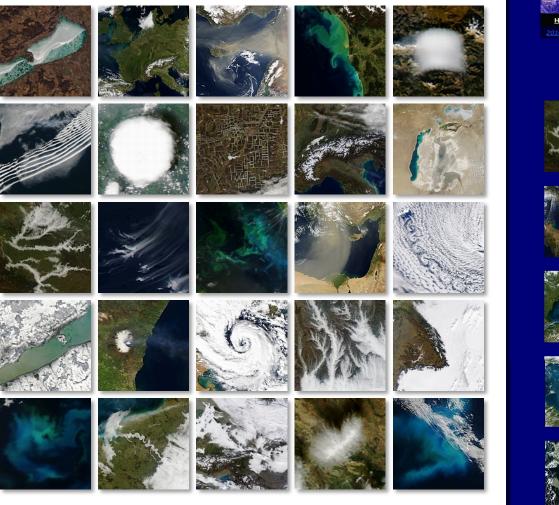
Automatic real-time processing chain for the DB MODIS data

The applied MODIS related software:


- (1) SeaDAS MODIS Level1DB Software Package (v1.8) \rightarrow OCSSW
- (2) MODIS Destriping Software
- (3) IMAPP MODIS Level2 (v3.0)
- (4) DBCRAS numerical weather prediction software
- (5) Nested DBCRAS
- (6) IDEA-I air quality forecast (v1.1)
- (7) MOD14, Identification of fire and thermal anomalies
- (8)
- (9)
- (10)

(7) MOD14 – Id. of thermal anomalies – since 2009

(7) MOD14 – Id. of thermal anomalies – since 2009


18.06.2017. Aqua/MODIS

Automatic real-time processing chain for the DB MODIS data

The applied MODIS related software:

- (1) SeaDAS MODIS Level1DB Software Package (v1.8) \rightarrow OCSSW
- (2) MODIS Destriping Software
- (3) IMAPP MODIS Level2 (v3.0)
- (4) DBCRAS numerical weather prediction software
- (5) Nested DBCRAS
- (6) IDEA-I air quality forecast (v1.1)
- (7) MOD14, Identification of fire and thermal anomalies
- (8) MODIS True Color software
- (9) Direct Broadcast Google Earth software (v1.2)
- (10) Polar2grid & IMAPP MODIS GeoTIFF Web Mapping Service

(8) MODIS True Color – since 2004

Selection of the received Terra/Aqua True Color MODIS images from 2012

Fog over the River Garrone in France Terra, (2012.12.06. 10:56)

Wildfires in the Balkans (Terra, 2012.08.31 10:13)

Phytoplankton bloom in the Black Sea (Terra, 2012.06.03, 08:41)

Phytoplankton bloom in the Black Sea (Terra, 2012.05.29, 08:23)

Convection over Western Europe (Terra, 2012.04.12, 10:43)

http://nimbus.elte.hu/kutatas/sat/modis-en.html

(9) Direct Broadcast Google Earth – since 2009

http://nimbus.elte.hu/kutatas/sat/modis-en_latest.pl

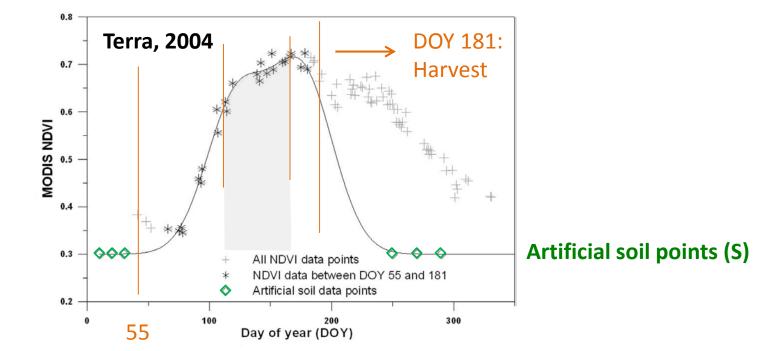
(10) IMAPP MODIS GeoTIFF Web Mapping Service (WMS) – since 2014

http://regcm.elte.hu:8001/

Post-processing for crop yield estimation

Applied steps:

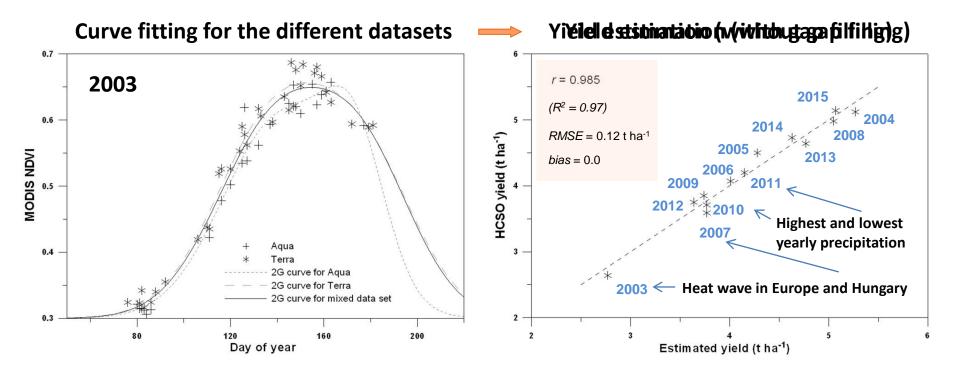
- (1) SeaDAS MODIS Level1DB Software Package (v1.8) \rightarrow OCSSW
- (2) MODIS Destriping Software
- (3) IMAPP MODIS Level2 (v3.0)
 - determining the cloudmask
- (4) MOD09 DB MODIS Land Surface Reflectance software
 - calculating atmospherically corrected surface reflectances
- Resampled cropland-mask from the IGBP MODIS land cover classification (MOD12), improved by the CORINE 2000 database


to calculate <u>cropland specific</u> area-averaged NDVI values for B1 and B2 with a maximum cloud coverage of 50%.

For: 2005 - 2015: archived Terra & Aqua received DB data 2003 - 2004 + lack of DB: Level1b data from NASA/Reverb Echo

Crop yield estimation – I.

Based on the methodology developed for AVHRR GN data (Ferencz et al., 2004):


- (1) Terra, Aqua, and a **mixed dataset** (with its combination)
- (2) **vegetation period** for wheat: between DOY 55 and 181, + *soil points*
- (3) in case of data gaps (>20days) *extra points* were inserted (in 2006 and 2010)
- (4) **curve fitting**: double-Gaussian function: $NDVI_t = A_1 e^{-((t-t_{01})/\Delta t_1)^2} + A_2 e^{-((t-t_{02})/\Delta t_2)^2} + S_1$ (Lagrange interpolation, cubic spline and smoothing were also tested)
- (5) calculating the integral of the fitted NDVI curve between DOY 113 and 166

Crop yield estimation – II.

Linear regression between:

- the calculated integral values (GYURRI)
- and the official area-avaraged **yield data** (provided by the Hungarian Central Statistics Office, HCSO).

- Less than 5% deviation from the official yield data during the 13 years
- Mean absolute difference is 2.7%

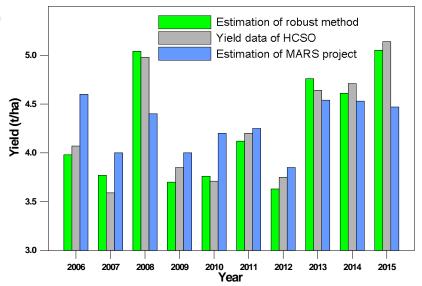
Crop yield estimation – III.

For other curve fitting (with 20-day averaging):

- Lagrange interpolation: r = 0.947
- cubic spline: r = 0.944
- smoothing: r = 0.936

Simulating of a real operative yield estimating process:

 Starting from the regression for years 2003-2005 until 2003-2015 the deviations were always less than 5%


Comparing with the estimations of MARS

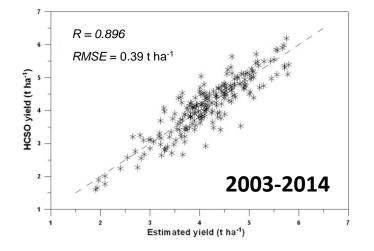
(Monitoring Agriculture with Remote Sensing) **programme** (1988), which provides:

- area and yield estimation over Europe.

During 2006-2015:

⇒ RMSE of 0.104 t ha⁻¹ (estimated vs. HCSO)
 ⇒ RMSE of 0.326 t ha⁻¹ (MARS vs. HCSO)

Comparison of the end of June estimations

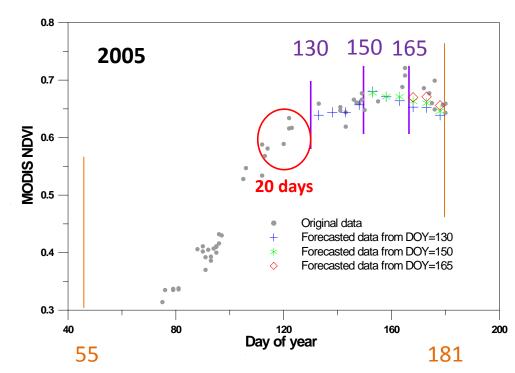

Crop yield estimation for smaller areas

Estimation for the 19 counties of Hungary (NUTS-3 level):

- calculating again all the cropland specific NDVI time-series at county level, and
- investigating also the different curve fitting methods:
 - ⇒ not uniformly the double-Gaussian is the best,
 - ⇒ different integral periods gave the best correlation,
 - \Rightarrow where the averages of the r values was 0.883,

the stability of the process is reduced on smaller scale,

⇒ the robust yield forecasting method becomes less reliable for smaller areas.


Can be explained by the **less number of cloud-free measured data** of the smaller regions

> NUTS – Nomenclature des unités territoriales statistiques – EU standard for referencing the subdivisions of countries

Crop yield forecasting – I.

Based on the same methodology:

- (+) **extrapolating in time** from different forecasting dates, using all the NDVI data of the previous years (through *prediction coefficients*) from the antecedent 20 days:
 - from DOY 130 for DOY 133, 138, 143,... 178
 - from DOY 135 for DOY 138, 143,... 178
 - from DOY 175 for DOY 178

Accurate enough, if:

- there is a sufficient amount of data prior to the forecast date, and
- no extreme weather event occurs after the forecast date.

Forecasting results from different prediction days:

(averages of the years, where extreme yeras can have higher deviation)

DOY	r	RMSE (t ha ⁻¹)	Difference (%)	
130	0.737	0.47	10.2	
135	0.832	0.39	8.5 —	→ -18.1% (2007)
140	0.853	0.36	7.7	
145	0.873	0.34	6.6	
150	0.855	0.36	6.8	
155	0.843	0.37	6.7	
160	0.926	0.26	5.4	
165	0.955	0.21	4.5	→ +9.6% (2012)
170	0.964	0.18	4.0	
175	0.970	0.17	3.6	

Results of the forecasting method in period of 2003-2015

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017 VOL. 38, NO. 11, 3394–3414 http://dx.doi.org/10.1080/01431161.2017.1295482

Check for updates

Yield estimation and forecasting for winter wheat in Hungary using time series of MODIS data

Péter Bognár^a, Anikó Kern^a, Szilárd Pásztor^a, János Lichtenberger^b, Dávid Koronczay^a and Csaba Ferencz^a

^aDepartment of Geophysics and Space Sciences, Eötvös Loránd University, Budapest, Hungary; ^bGeodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Sopron, Hungary

Crop yield estimation from MOD13 data

To compare with the usefulness of the DB data, based on:

- **raw C5 1KM MOD13 16-day NDVI data** for 2003-2015 (with the mean julian date of a given 16-day period)
- post-processed C6 HKM MOD13 NDVI data interpolated into a 8-day dataset (using the julian day information) for 2000-2016

Based on cropland pixels from dominant Corine land cover, ⇒ resulting 62% coverage of the country

2000-2016

 $R^2 = 0.69$ (R = 0.83)

Even if they are not fully comparable: ⇒ less accurate results!

Supposed reason: the less number of data during the years

Crop yield estimation from the GIMMS NDVI3g dataset

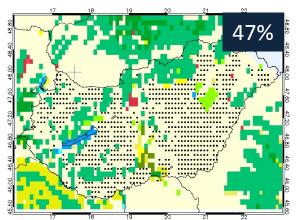
2000-

NDVI3g (*Pinzon and Tucker, 2005*) global dataset:

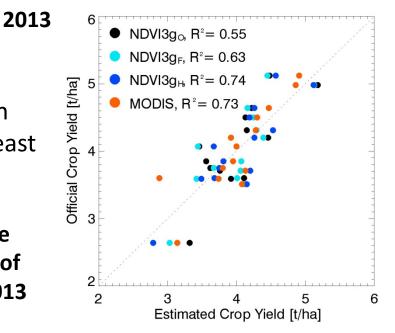
- 1/12° x 1/12° spatial, and
- 15-day temporal resolution,
- based on AVHRR GAC data for 1982-2013.

Winter wheat yield was estimated also based on:

1982-

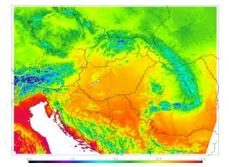

2013

- the original NDVI3g,
- the BISE-filtered one,
- the harmonized NDVI3g^{*},
- and the resampled MOD13 NDVI dataset.

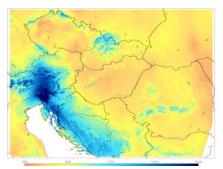

The selection of the pixels were made based on the **CORINE 2012 land cover dataset**, with at least 60% present of agricultural aeras.

	RMSE	Bias	Intercept	Slope	R ²	
For the	0,42	0,00	0,01	1,00	0,55	NDVI3go
period of	0,39	0,00	0,00	1,00	0,63	NDVI3g _F
2000-2013	0,32	0,00	0,00	1,00	0,74	NDVI3g _H
2000-2013	0,33	0,00	0,00	1,00	0,73	MODIS

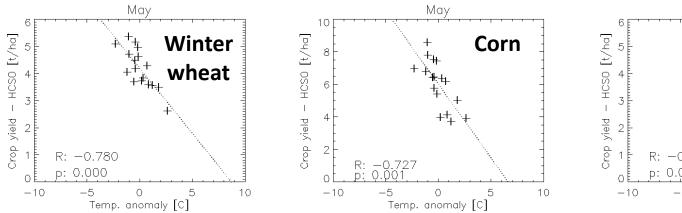
* Kern et al., 2016, Remote Sensing, 8(11) 955, doi:10.3390/rs8110955.

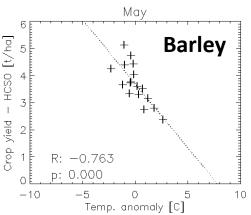

Relationship with meteorology

Using the FORESEE meteorological database:


- Observed (1951-2014) and projected
 - daily max. & min. temperature
 - and precipitation
 - + VPD (Vapour Pressure Deficit)
 - + global radiation
- for Central Europe, on a regular grid of 1/6° × 1/6°

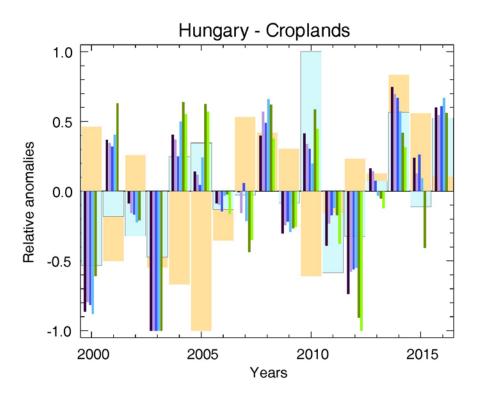
Investigating the relationship between:


- the meteorological anomalies
- crop yield values



Mean annual temperature (1999-2014)

Summary and future plans


- With the presented robust method it is possible:
 - to estimate the yield of winter wheat at the end of June (beginning of the harvest) with an accuracy of 5%, and
 - to forecast several weeks before.
- The method is **applicable for other crop types as well** (corn, rye, barley, etc.).

Plans...

- to implement the effect of the current weather into the forecast,
- to upgrade the receiving station: real-time Suomi-NPP data.

Thank you for your attention! 😊

Acknowledgements: <u>Kathy Strabala</u>, Liam Gumley, and the IMAPP-Team NASA & EOSDIS for the MOD02, MOD03, MOD12 and MOD13 products GIMMS-team for the NDVI3g dataset EC & ESA for CORINE-2012 database, and Hrvoje MARJANOVIĆ for its resampling Hungarian Statistical Office for the official crop yield data Hungarian Scientific Research Fund (OTKA PD-111920) Zoltán BARCZA & Richárd KOVÁCS

Remote Sens. 2016, 8, 955; doi:10.3390/rs8110955

www.mdpi.com/journal/remotesensing

Article Evaluation of the Quality of NDVI3g Dataset against Collection 6 MODIS NDVI in Central Europe between 2000 and 2013

Anikó Kern^{1,*}, Hrvoje Marjanović² and Zoltán Barcza³

- ¹ Department of Geophysics and Space Science, Eötvös Loránd University, Pázmány P. st. 1/A, Budapest H-1117, Hungary
- ² Croatian Forest Research Institute, Cvjetno naselje 41, Jastrebarsko HR-10450, Croatia; hrvojem@sumins.hr
- ³ Department of Meteorology, Eötvös Loránd University, Pázmány P. st. 1/A, Budapest H-1117, Hungary; bzoli@elte.hu
- * Correspondence: anikoc@nimbus.elte.hu; Tel.: +36-1-372-2500 (ext. 6651)