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a workflow engine
to construct complex, cycling workflows

https://cylc.github.io/cylc

what’s cylc?
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https://cylc.github.io/cylc


a group of tasks related by a dependency graph

cylc terminology: a suite

what’s a workflow?
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what’s a cycling workflow?

• operational forecasting: repeat (with variations) a workflow at 
intervals, when real-time data comes in

• needs clock-triggers; and continue cycling indefinitely

• forecasting research and testing: run operational workflows (or 
variations thereof) over historical periods, off archived data

• no clock-triggers, unless we catch up to the clock

• to split a long model run into many short runs (e.g. for long climate 
simulations) with associated processing for each chunk

• no clock-triggers
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a workflow dependency graph

• must be directed and acyclic 
(DAG)

• nodes represent tasks
(which represent real jobs)

• edges represent dependence
(typically input/output files)

• a cycle point is a particular  
point in sequence of date-time 
(or integer) points; this 
shows cycle point 1
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repeat, for the 
next forecast 
(cycle point 2)
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BUT NOTE there is inter-
cycle dependence (e.g. 
model restart files)

foo[1] => foo[2]
bar[1] => baz[2]
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inter-cycle dependence makes this
a continuous workflow
not a sequence of single workflows
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there are no boundaries 
between cycles (in real-time 
operation clock-triggers 
simply delay a few tasks)
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and the workflow may be unbounded...



c y l c



c y l c



c y l c

Note this cycle interleaving is particularly useful when real-time processing needs 
to catch up following a delay
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what cylc does

• suite construction and visualization
• task meta-scheduling
• suite monitoring and control
• distributed suites
• adaptive scheduling
• cycling workflows

• date-time and integer cycling
• interleaves cycles for efficient scheduling

• (and a gazillion bells and whistles...)
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suite.rc

#____________________________________________
# FILE FORMAT: INI with [nested][[sections]].
key = value
# LEGAL CONTENT: see the cylc User Guide.
#--------------------------------------------
[cylc]

# Suite-level settings.
[scheduling]

# Determines WHEN tasks can run.
[runtime]

# Determines WHAT to run, WHERE, & HOW.
[visualization]

# Styling the suite dependency graph.
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dependency graph notation

[scheduling]
[[dependencies]]

graph = """
foo => bar & baz => qux
baz => bob
"""
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conditional triggers

[scheduling]
[[dependencies]]

graph = foo & (bar | baz) => qux

open arrow heads:
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task state triggering and suicide triggers

graph = foo:STATE => bar # trigger
graph = foo:STATE => !bar # suicide

STATEs:
• foo # foo:succeed
• foo:submit
• foo:submit-fail
• foo:start
• foo:fail
• foo:finnish # :succeed OR :fail
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auto-recovery workflow
auto-recovery workflow:
[scheduling]

[[dependencies]]
graph = ""”

pre => model
model:fail => diagnose => recover
model => !diagnose & !recover
model:fail & post => !model
model | recover => post""”

e.g. diagnose - detect grid point storm failures;
recover - run model with shorter timestep.

see also automatic retry-on-failure
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runtime: what to run

Hello World! In cylc:
#suite.rc
[scheduling]

[[dependencies]]
graph = greeter

[runtime]
[[greeter]]

script = "echo Hello World!”

The script can be any valid bash script; usually it would simply invoke an 
external script with appropriate parameters to perform the required task.
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runtime: where to run

distributed suites:
[scheduling]

[[dependencies]]
graph = greeter_A => greeter_B

[runtime]
[[root]]

script = "echo Hello from ${HOSTNAME}!”
[[greeter_A]]

[[[remote]]]
host = wrh-1.niwa.co.nz

[[greeter_B]]
[[[remote]]]

host = wrh-2.niwa.co.nz
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runtime inheritance 

[runtime]
[[root]] # family

[[[environment]]]
VAR0 = zero

[[ONE]]  # family
[[[environment]]]

VAR1 = one
[[TWO]]  # family

[[[environment]]]
VAR2 = two

[[foo]] # task
inherit = ONE, TWO
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repeated sections

[scheduling]
[[dependencies]]

graph = ENSEMBLE
[runtime]

[[ENSEMBLE]]
title = "member xxx”

[[m1,m2,m3,m4]]
inherit = ENSEMBLE

[[m2]]       # (extend or override)
title = "member two"
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runtime: when to run

• all date-times, durations and recurrences are specified using the 
ISO8601 Date-Time standard.

• Dates and times should be familiar to most:
• hhmmss e.g. 061000 (ten past 6 in the morning).
• YYYYMMDDThhmmss
• YYYYMMDDThhmmssZ UTC
• YYYYMMDDThhmmss+hhmm +ve time zone offset
• YYYYMMDDThhmmss-hhmm -ve time zone offset
• (same with +YYYYYY and -YYYYYY)

# cylc e.g. 
initial cycle point = 20140812T00Z
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ISO 8601 Durations

PnYnMnDTnHnMnS • PT6H - 6 hours
• P1Y6M - 1 year and 6 months
• PT6M - 6 minutes
• P6M - 6 months
• P3W - 3 weeks# cylc e.g.

[runtime]
[[long_forecast]]

# On failure, retry once after 1.5
# min, and then four times more at
# 10 min intervals:
retry delays = PT1.5M, 4*PT10M
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ISO 8601 Recurrences

• Rn/START_TIME/PERIOD
• Rn/START_TIME/END_TIME
• Rn/PERIOD/END_TIME

• Rn - repeat n times
R - repeat indefinitely

• Can omit START, END or R[n] 
provided meaning unambiguous

# cylc e.g.
# run 3 times with cycle times 20140812T00,
# 20140812T06, 20140812T12
[scheduling]

[[dependencies]]
[[[R3/20140812T00/PT6H]]]

graph = foo => bar



c y l c

date-time offsets

DATE_TIME+PERIOD
DATE_TIME-PERIOD

• R/T06+P1D/P1D - repeat daily from a 
day after 0600 at or just beyond the initial 
cycle point

• R/+P3D/P2D - repeat two-daily starting 
three days after the initial cycle point

[scheduling]
[[dependencies]]

[[[P1Y]]]
# an inter-cycle trigger offset:
graph = foo[-P1Y] => foo



c y l c

Date-time cycling #0

run 6 hourly from initial date to final date, cycles run almost in parallel:
# suite.rc[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo => bar
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Date-time cycling #1

Cycle N+1 cannot start until foo.N succeeds:
# suite.rc
[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar
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date-time cycling #2
• Add extra task ‘baz’ on every 2nd (12 hourly) cycle:
# suite.rc[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar

[[[R//PT12H]]]
graph = bar => baz
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integer cycling

• Almost identical except that instead of date-times, the cycle points 
are simply integer counters.

• Start and end times reduce to start and end count values
• Recurrence periods reduce to a cycle step value
• Offsets are just counted in cycles
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other features

• Run-ahead limiting
• Internal queues
• Broadcast messages to all tasks
• Nested subsuites
• Jinja2 scripting in the suite.rc file
• Introspection and self modification through e.g. issuing command line 

instructions from a running task to it’s host suite
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who’s using cylc?

• NIWA (NZ) *
• Met Office (UK) *
• Max-Planck-Institut für

Meteorologie (DE)
• Deutches Klimarechenzentrum (DE)
• Bureau of Meteorology (AU) *
• NRL Marine Meteorology Division 

(US)
• 557th Weather Wing (US) *

* used with Rose, a framework for 
managing meteorological suites.

• Geophysical Fluid Dynamics 
Laboratory (US)

• Meteorological Service Singapore 
(SG) *

• South African Weather Service 
(ZA) *

• National Centre for Medium Range 
Weather Forecasting (IN) *

• Korean Meteorological 
Administration (KR) *

• National Center for Atmospheric 
Research - NCAR (US)
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