
c y l c
a high level introduction

CSPP/IMAPP Users’ Group Meeting
SSEC, Madison, Wisconsin, June 27 2017

Adapted from original slides by Hilary J Oliver, NIWA

https://niwa.co.nz/

a workflow engine
to construct complex, cycling workflows

https://cylc.github.io/cylc

what’s cylc?

c y l c

https://cylc.github.io/cylc

a group of tasks related by a dependency graph

cylc terminology: a suite

what’s a workflow?

c y l c

c y l c

c y l c

what’s a cycling workflow?

• operational forecasting: repeat (with variations) a workflow at
intervals, when real-time data comes in

• needs clock-triggers; and continue cycling indefinitely

• forecasting research and testing: run operational workflows (or
variations thereof) over historical periods, off archived data

• no clock-triggers, unless we catch up to the clock

• to split a long model run into many short runs (e.g. for long climate
simulations) with associated processing for each chunk

• no clock-triggers

c y l c

a workflow dependency graph

• must be directed and acyclic
(DAG)

• nodes represent tasks
(which represent real jobs)

• edges represent dependence
(typically input/output files)

• a cycle point is a particular
point in sequence of date-time
(or integer) points; this
shows cycle point 1

c y l c

repeat, for the
next forecast
(cycle point 2)

c y l c

BUT NOTE there is inter-
cycle dependence (e.g.
model restart files)

foo[1] => foo[2]
bar[1] => baz[2]

c y l c

c y l c

inter-cycle dependence makes this
a continuous workflow
not a sequence of single workflows

c y l c

there are no boundaries
between cycles (in real-time
operation clock-triggers
simply delay a few tasks)

c y l c

and the workflow may be unbounded...

c y l c

c y l c

c y l c

Note this cycle interleaving is particularly useful when real-time processing needs
to catch up following a delay

c y l c

what cylc does

• suite construction and visualization
• task meta-scheduling
• suite monitoring and control
• distributed suites
• adaptive scheduling
• cycling workflows

• date-time and integer cycling
• interleaves cycles for efficient scheduling

• (and a gazillion bells and whistles...)

c y l c

c y l c

c y l c

c y l c

suite.rc

#__
FILE FORMAT: INI with [nested][[sections]].
key = value
LEGAL CONTENT: see the cylc User Guide.
#--
[cylc]

Suite-level settings.
[scheduling]

Determines WHEN tasks can run.
[runtime]

Determines WHAT to run, WHERE, & HOW.
[visualization]

Styling the suite dependency graph.

c y l c

dependency graph notation

[scheduling]
[[dependencies]]

graph = """
foo => bar & baz => qux
baz => bob
"""

c y l c

conditional triggers

[scheduling]
[[dependencies]]

graph = foo & (bar | baz) => qux

open arrow heads:

c y l c

task state triggering and suicide triggers

graph = foo:STATE => bar # trigger
graph = foo:STATE => !bar # suicide

STATEs:
• foo # foo:succeed
• foo:submit
• foo:submit-fail
• foo:start
• foo:fail
• foo:finnish # :succeed OR :fail

c y l c

auto-recovery workflow
auto-recovery workflow:
[scheduling]

[[dependencies]]
graph = ""”

pre => model
model:fail => diagnose => recover
model => !diagnose & !recover
model:fail & post => !model
model | recover => post""”

e.g. diagnose - detect grid point storm failures;
recover - run model with shorter timestep.

see also automatic retry-on-failure

c y l c

runtime: what to run

Hello World! In cylc:
#suite.rc
[scheduling]

[[dependencies]]
graph = greeter

[runtime]
[[greeter]]

script = "echo Hello World!”

The script can be any valid bash script; usually it would simply invoke an
external script with appropriate parameters to perform the required task.

c y l c

runtime: where to run

distributed suites:
[scheduling]

[[dependencies]]
graph = greeter_A => greeter_B

[runtime]
[[root]]

script = "echo Hello from ${HOSTNAME}!”
[[greeter_A]]

[[[remote]]]
host = wrh-1.niwa.co.nz

[[greeter_B]]
[[[remote]]]

host = wrh-2.niwa.co.nz

c y l c

runtime inheritance

[runtime]
[[root]] # family

[[[environment]]]
VAR0 = zero

[[ONE]] # family
[[[environment]]]

VAR1 = one
[[TWO]] # family

[[[environment]]]
VAR2 = two

[[foo]] # task
inherit = ONE, TWO

c y l c

repeated sections

[scheduling]
[[dependencies]]

graph = ENSEMBLE
[runtime]

[[ENSEMBLE]]
title = "member xxx”

[[m1,m2,m3,m4]]
inherit = ENSEMBLE

[[m2]] # (extend or override)
title = "member two"

c y l c

runtime: when to run

• all date-times, durations and recurrences are specified using the
ISO8601 Date-Time standard.

• Dates and times should be familiar to most:
• hhmmss e.g. 061000 (ten past 6 in the morning).
• YYYYMMDDThhmmss
• YYYYMMDDThhmmssZ UTC
• YYYYMMDDThhmmss+hhmm +ve time zone offset
• YYYYMMDDThhmmss-hhmm -ve time zone offset
• (same with +YYYYYY and -YYYYYY)

cylc e.g.
initial cycle point = 20140812T00Z

c y l c

ISO 8601 Durations

PnYnMnDTnHnMnS • PT6H - 6 hours
• P1Y6M - 1 year and 6 months
• PT6M - 6 minutes
• P6M - 6 months
• P3W - 3 weeks# cylc e.g.

[runtime]
[[long_forecast]]

On failure, retry once after 1.5
min, and then four times more at
10 min intervals:
retry delays = PT1.5M, 4*PT10M

c y l c

ISO 8601 Recurrences

• Rn/START_TIME/PERIOD
• Rn/START_TIME/END_TIME
• Rn/PERIOD/END_TIME

• Rn - repeat n times
R - repeat indefinitely

• Can omit START, END or R[n]
provided meaning unambiguous

cylc e.g.
run 3 times with cycle times 20140812T00,
20140812T06, 20140812T12
[scheduling]

[[dependencies]]
[[[R3/20140812T00/PT6H]]]

graph = foo => bar

c y l c

date-time offsets

DATE_TIME+PERIOD
DATE_TIME-PERIOD

• R/T06+P1D/P1D - repeat daily from a
day after 0600 at or just beyond the initial
cycle point

• R/+P3D/P2D - repeat two-daily starting
three days after the initial cycle point

[scheduling]
[[dependencies]]

[[[P1Y]]]
an inter-cycle trigger offset:
graph = foo[-P1Y] => foo

c y l c

Date-time cycling #0

run 6 hourly from initial date to final date, cycles run almost in parallel:
suite.rc[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo => bar

c y l c

c y l c

Date-time cycling #1

Cycle N+1 cannot start until foo.N succeeds:
suite.rc
[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar

c y l c

c y l c

date-time cycling #2
• Add extra task ‘baz’ on every 2nd (12 hourly) cycle:
suite.rc[cylc]

cycle point format = CCYY-MM-DDThhZ
[scheduling]

initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]

[[[R1]]]
graph = start => foo

[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar

[[[R//PT12H]]]
graph = bar => baz

c y l c

c y l c

integer cycling

• Almost identical except that instead of date-times, the cycle points
are simply integer counters.

• Start and end times reduce to start and end count values
• Recurrence periods reduce to a cycle step value
• Offsets are just counted in cycles

c y l c

c y l c

other features

• Run-ahead limiting
• Internal queues
• Broadcast messages to all tasks
• Nested subsuites
• Jinja2 scripting in the suite.rc file
• Introspection and self modification through e.g. issuing command line

instructions from a running task to it’s host suite

c y l c

who’s using cylc?

• NIWA (NZ) *
• Met Office (UK) *
• Max-Planck-Institut für

Meteorologie (DE)
• Deutches Klimarechenzentrum (DE)
• Bureau of Meteorology (AU) *
• NRL Marine Meteorology Division

(US)
• 557th Weather Wing (US) *

* used with Rose, a framework for
managing meteorological suites.

• Geophysical Fluid Dynamics
Laboratory (US)

• Meteorological Service Singapore
(SG) *

• South African Weather Service
(ZA) *

• National Centre for Medium Range
Weather Forecasting (IN) *

• Korean Meteorological
Administration (KR) *

• National Center for Atmospheric
Research - NCAR (US)

	c y l c
	Slide Number 2
	Slide Number 3
	Slide Number 4
	what’s a cycling workflow?
	a workflow dependency graph�
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	what cylc does
	Slide Number 17
	Slide Number 18
	Slide Number 19
	suite.rc
	dependency graph notation
	conditional triggers
	task state triggering and suicide triggers
	auto-recovery workflow
	runtime: what to run
	runtime: where to run
	runtime inheritance
	repeated sections
	runtime: when to run
	ISO 8601 Durations
	ISO 8601 Recurrences
	date-time offsets
	Date-time cycling #0
	Slide Number 34
	Date-time cycling #1
	Slide Number 36
	date-time cycling #2
	Slide Number 38
	integer cycling
	Slide Number 40
	other features
	who’s using cylc?

