cylc@”

a high level introduction

CSPP/IMAPP Users’ Group Meeting
SSEC, Madison, Wisconsin, June 27 2017

Adapted from original slides by Hilary J Oliver, NIWA

https://niwa.co.nz/

what’s cylc?

a workflow engine

to construct complex, cycling workflows

https://cylc.github.io/cylc

....-""NHLL/‘!A = i

Taihoro Nukurangi cyle ‘

https://cylc.github.io/cylc

what’s a workflow?

a group of tasks related by a dependency graph

cylc terminology: a suite

—NIWA_—

Taihoro Nukurangi cyle .

—NIWA_—

Taihoro Nukurangi

what’s a cycling workflow?

e operational forecasting: repeat (with variations) a workflow at
intervals, when real-time data comes in

* needs clock-triggers; and continue cycling indefinitely

e forecasting research and testing: run operational workflows (or
variations thereof) over historical periods, off archived data

* no clock-triggers, unless we catch up to the clock

e tosplit along model run into many short runs (e.g. for long climate
simulations) with associated processing for each chunk

* no clock-triggers

Taihoro Nukurangi ¢ ¢ ‘

__-——an..l./.VﬂA/

Taihoro Nukurangi

a workflow dependency graph

must be directed and acyclic
(DAG)

e nodes represent tasks
(which represent real jobs)

e edges represent dependence
(typically input/output files)

e acycle pointis a particular
point in sequence of date-time
(or integer) points; this
shows cycle point 1

lc

Lo

Q
-
o+
| -
@)
y—
t.l
©
Q
(@R
Q
| -

next forecast

(cycle point 2)

C Ic..

_NIWA__—
Taihoro Nukurangi

C Ic..

> foo[2]
> baz[2]

cycle dependence (e.g.

model restart files)

.
Q
s
=
2
Q
| -
()
-
o+
L
T
O
=z
T
>
an)

foo[1]
bar[1]

—N-LWA_—
Taihoro Nukurangi

_NIWA__—

Taihoro Nukurangi

inter-cycle dependence makes this

a continuous workflow

C Ic..

_NIWA__—
Taihoro Nukurangi

—NIWA_—

Taihoro Nukurangi

there are no boundaries
between cycles (in real-time
operation clock-triggers
simply delay a few tasks)

lc

Lo

and the workflow may be unbounded...

_NIWA__—

Taihoro Nukurangi

C Ic‘

-"'""——N "I“M/ & ?]

Taihoro Nukurangi Y cy | .

“om
%,
B
%
»
&
“eion
“elon
ey
'23\
“ds,
b
i,
)
b8
%
1]
b
06’2:
[11
e
e
sien
‘g”
B
Cery
@
%)
sien
ey
‘@
J: o
i,
wie
sidn
s
ﬂ..o,:
gilbn
sEdm
i
‘B
%
b
i
@
sign
-5
‘0/. L]

éo

Py

Y

LL Y
CerT
%
.‘a}_\
Ceion
‘ﬁfzn‘
-
sien
(£ 1)
siign
i
wiem
L1]
—NIWA_— g | a®
“eth cy
sidw
N"‘I- .
Taihoro Nukurangi

Note this cycle interleaving is particularly useful when real-time processing needs
to catch up following a delay

0

&

Taihoro Nukurangi .

what cylc does

e suite construction and visualization
e task meta-scheduling

e suite monitoring and control

e distributed suites

e adaptive scheduling

e cycling workflows
e date-time and integer cycling
e interleaves cycles for efficient scheduling

e (and a gazillion bells and whistles...)

NIWA_— ol a®
Taihoro Nukurangi ‘

¥ niwal-aa041 - localhost - geyle (on fe-1)
Eile Miew Control Suite Help

. , WEmm S I [p— =
0 B |Viewt "i"3|w i |] | view2: [Trrv| & =
E E El S:,_'| — @ @ _ = g
c -— = =
Lla|l=|a @ E|E D5 | £ o < o & & E
a L [e = 5= | = w |3 Z £ 8 50w
s E|E|E|E| & a MW =% 7Y = 2lElg o b 5 5 [E = 1= | =
Cycle E | e | g 2 @ | .8 8 = c = |5 alx A = e |®@ | E = O =S s 25 =z (8|9 w | @ | @
513 B8 88| B(RIE|5|2 | | BIE LS E|E e EIEIS|S S GESEE 285
RN R] o 2®|6|6|5|5 g|g B|B & ;I 3 8 ng =k B 5 g|a gl gl il 3 8 8
O a o 2|2 2 | 0 W w & 5 @ |@T 2 m @ o= [+ M
o |m B &|lE|lal alaola ale|n @ @ @ @ LSlelfle|lE|lol2| | &l% = E c |o | E|E|E 3 S g8 |5 |E | E
1 HEENR

2014040115]
2014040118 BE BBR B B
R O 5 EEEEEEEEEEEEEEEEEEEEEN
- EEEEE EE EEEE
2014040203 B B

2014040206 BEER B

1] [v
task |state ‘message ‘Tsubmit |Tstart ‘ mean dT ETC]
forecast short . succeeded forecast short. 2014040118 succeeded at 2014-04-01T22:51:37 22:2748 22:27:50 0:23:20 v
~ POSTPROC B succeeded .
cleanup . succeeded cleanup. 2014040118 succeeded at 2014-04-01T22:51:42 22:51:42 22:51:41 0:00:02 v —
v 2014040121 B running .
reconf_nzlam_t3 . succeeded reconf_nzlam_t3.2014040121 succeeded at 2014-04-01T22:07:07 22:0449 22:4:52 0:02:15 v —
forecast_long . running forecast_|ong 2014040121 started at 2014-04-01T22:54.20 22:54:118 22:54:21 1:59:44 00:54:05
= PSEUDO_ANALYSIS . succeeded *
select nzlam . succeeded select nzlam. 2014040121 succeeded at 2014-04-01T22:08:16 22:.0711 22,0712 0:01:.07 v
select_bkg . succeeded select_bkg 2014040121 succeeded at 2014-04-01T722:52:48 22:51:41 22:51:42 0:01:.08 *
increments . succeeded increments. 2014040121 succeeded at 2014-04-01T22:54:14 22:52:52 22:52:53 0:01:19 v
~ POSTPROC B waiting .
get_um_output . waiting * " 0:00:17 v
~ NETCDF B waiting . B
= waiting = runahead = held = gqueued = ready = submitted
= submit-failed =] submit-retrying = running =] gucceeded = failed =] retriing

_...--""N-L‘MA/ running Y ive 2014/04/01 22:54:22 A\
Taihoro Nukurangi cylc .

* niwal-aa0d41 - localhost - geyle (on fc-1) - 0O X
Eile Miew Control Suite Help
00 @ | viewt: Zuw| b = [[]] [Viewz Yo |0 0 6 6 @ @ &
task |state message
b .succeeded
b 2014040115 B succeeded
b 2014040118 B succeeded
> 2014040121 B running
reconf_nzlam_t3 . succeeded reconf_nzlam_t3.2014040121 succeede
forecast_long . running forecast_|ong 2014040121 started at 2C
b PSEUDO_ANALYSIS . succeeded
b POSTPROC B waiting
verification . waiting
b MOS B waiting
b PRODUCTS B waiting v onfel) X
b INGESTION B waiting Il viting
b 2014040200 B waiting Il unahead
b 2014040203 B waiting Il re
b 2014040206 B waiting queued
. readly
. submitted
I submit-failed
submit-retrying
. running
. succ eeded
B railed |
. retrying ') . :
!
l I o
= waiting = runahead = held =] gueued = reagdy = submitted
5 submit-fail B submit-retr @ running = succeedec ® failed =] retriing
___‘-—-'NEI_‘MA/ running - live 2014/04/01 22:54:22 A\ .

Taihoro Nukurangi cylc .

[niwal-aal041 - localhost - geyle (on fe-1)

File View Control Suite Help

+ , . L . f .- - n . R o S =

0 | view 1: "3) 1| B | viewz Tolv 0 1 6 6 & @ el

u oo — [=] [5¢) (1] - e

— — (4] [=) [=) [=) —

— — — (1] (1] (a1

(=] (=] (=] (=] (=] (=]
Name 238|883

TIEEIEIE(E

[=] [=] [=] [=] [=] [=]

— [3Y) [3Y) [3Y) [3Y) [3Y) [3Y)

splat_write B POLL_NZLAM ~ PSEUDO _ANALYSIS
splat_run . 2014040200 2014040121
prep .
prepped .
makebc

reconl mzlam 3 reconl_mzlam tH forecast long

pall_nzlam_fc 2014040203 20040402 00 2014040121
poll_nzlam_an

poll_nzlam_wapf

poll_nzlam_cmet

poll_ostia_sst

[]
sst_unpack .
]

reconf_clim - PSEUDO_AMNALYSIS
2014)

sst_ancil

reconf nzlam t3 . .
reconf _nzlam to .
[]

reconf_clim

reconf sst .

forecast long

forecast short . . . :
select_nzlam] PSEUDO_ANALYSIS)
select_bkg . 2014040203

increments .

get_um_output

netccf sfc)

- reconf_nzlam_to
netcc_slev o 2014040206
prob_rain

A\ o - -
—"'""——N I"‘M/ running live 2014/04/01 22:54:;2253,

Taihoro Nukurangi

sulte.rc

#

FILE FORMAT: INI with [nested]|[[sections]]-
key = value

LEGAL CONTENT: see the cylc User Guide.

e
[cylc]

Suite-level settings.
[scheduling]

Determines WHEN tasks can run.
[runtime]

Determines WHAT to run, WHERE, & HOW.
[visualization]
Styling the suite dependency graph.

—NIWA_—

Taihoro Nukurangi I C m

dependency graph notation

[scheduling]
[[dependencies]]
graph = """
foo => bar & baz => qux
baz => bob

__-"'N “I-M/

Taihoro Nukurangi cy | ¢ ‘

conditional triggers

[scheduling]
[[dependencies]]
graph = foo & (bar | baz) => qux

open arrow heads:

—NHWYA_— cylc
Taihoro Nukurangi ‘

task state triggering and suicide triggers

bar
1
—NIIWVA __—

Taihoro Nukurangi

graph
graph

STATEsS:
e foo

 foo:
 foo:
 foo:
 foo:
 foo:

= Too:STATE => bar # trigger

= Foo:STATE => lbar # suilcide
foo:succeed

submit

submit-fairl

start

fail

finnish # :succeed OR :fTail

C Ic‘

auto-recovery workflow

—NIWA_—

Taihoro Nukurangi

auto-recovery workflow:
[scheduling]

[[dependencies]]

graph = ""”

pre => model
model :fail => dragnose => recover
model => !dragnose & !recover
model:fail & post => Imodel
model | recover => post''"”

e.g. diagnose - detect grid point storm failures;
recover - run model with shorter timestep.

see also automatic retry-on-failure

|l c

runtime: what to run

Hello World! In cylc:

#suite.rc
[scheduling]
[[dependencies]]
graph = greeter
[runtime]

[[greeter]]
script = "echo Hello World!”

The script can be any valid bash script; usually it would simply invoke an
external script with appropriate parameters to perform the required task.

—NIWA_—

Taihoro Nukurangi

runtime: where to run

distributed suites:
[scheduling]

[[dependencies]]
graph = greeter A => greeter_B
[runtime]
[[root]]

script = "echo Hello from ${HOSTNAME}!”
[[greeter_A]l]

[[[remote]]]

host = wrh-1_.niwa.co.nz
[[greeter B]]

[[[remote]]]

host = wrh-2_.niwa.co.nz

—NIWA_—

Taihoro Nukurangi

-y

runtime inheritance

[runtime]
[[root]] # family
[[[environment]]]
VARO = zero
[[ONE]] # family
[[[environment]]]
VAR1 = one
[[TWO]] # family
[[[environment]]]
VAR2 = two
[[foo]] # task

inherit = ONE, TWO
_...-""'N ~LWA s

Taihoro Nukurangi

root

.'.lll

4 4
‘ THO ONE ‘

.'.III

R= ,
I

foo

inheritance graph
(not dependencies!)

lc.

repeated sections

[scheduling]
[[dependencies]]
graph = ENSEMBLE
[runtime]
[[ENSEMBLE]]
title = "member xxx”
[Im1,m2,m3,m4]]
inherit = ENSEMBLE
[Im2]] # (extend or override)
title = "member two"

—NIWA_—

Taihoro Nukurangi

runtime: when to run

* all date-times, durations and recurrences are specified using the
ISO8601 Date-Time standard.

e Dates and times should be familiar to most:
e hhmmss e.g. 061000 (ten past 6 in the morning).
e YYYYMMDDThhmmss
e YYYYMMDDThhmmssZ UTC
e YYYYMMDDThhmmss+hhmm +ve time zone offset
e YYYYMMDDThhmmss-hhmm -ve time zone offset
e (same with +YYYYYY and -YYYYYY)

cylc e.qg.
initial cycle point = 20140812T00Z

—NIWA_—

Taihoro Nukurangi

-y

ISO 8601 Durations

PNnYNMNDTnNHNMNS e PTOH - 6 hours
e P1YGM - 1 year and 6 months

e PTAGM - 6 minutes
e PGM - 6 months
e P3W - 3 weeks

cylc e.g.
[runtime]
[[long forecast]]
On fairlure, retry once after 1.5
min, and then four times more at
10 min 1ntervals:
—NIWA_— retry delays = PT1.5M, 4*PT10M

Taihoro Nukurangi

ISO 8601 Recurrences

* RNn/START_TIME/PERIOD * RN - repeat n times

» RN/START_TIME/END_TIME R-repeatindefinitely

« RN/PERIOD/END TIME e Can omit START, END or R[n]
— provided meaning unambiguous

cylc e.g.
run 3 times with cycle times 20140812700,
20140812706, 20140812712
[scheduling]
[[dependencies]]
[[[R3720140812T00/PT6H] 1]

graph = foo => bar
——N-HWYVA_—

Taihoro Nukurangi

date-time offsets

DATE _TIME+PERIOD « R/TO6+P1D/P1D - repeat daily from a
DATE_TIME-PERIOD day after 0600 at or just beyond the initial
cycle point

e R/+P3D/P2D - repeat two-daily starting
three days after the initial cycle point

[scheduling]
[[dependencies]]

LLLP1Y11]
an 1nter-cycle trigger offset:
graph = foo[-P1Y] => foo
—N-JWA__—

Taihoro Nukurangi

Date-time cycling #0

run 6 hourly from initial date to final date, cycles run almost in parallel:

suilte.rcjcylc]
cycle point format = CCYY-MM-DDThhZ
[scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[[dependencies]]
LLIR11]]
graph = start => foo
[[[R//PT6H]]]

graph = foo => bar
__.-—-—-NJ-.WA —

Taihoro Nukurang

I
C

start
2014-08-01T00Z

l

foo
2014-08-01T06Z

foo
2014-08-01T00Z

foo
2014-08-01T12Z2

bar
2014-08-01T06Z

bar
2014-08-01T00Z

—NIWA_—

Taihoro Nukurangi

cycling0

bar
2014-08-011T12£

C Ic.

Date-time cycling #1

Cycle N+1 cannot start until foo.N succeeds:
suilte.rc
[cyic]
cycle point format = CCYY-MM-DDThhZ
[scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z

[[dependencies]]
[L[R111]
graph = start => foo
[[[R//PT6H]1]]
graph = foo[-PT6H] => foo => bar

—NIWA_—

Taihoro Nukurangi

start
2014-08-01T002

l

foo
2014-08-01T00Z

bar foo
2014-08-01T00Z 2014-08-01T06Z

bar foo
2014-08-01T062 2014-08-01T12Z

bar
2014-08-01T122

—NIMWA_— cycling1

Taihoro Nukurangi

date-time cycling #2

e Add extra task ‘baz’ on every 2" (12 hourly) cycle:

suite.rcjcylc]
cycle point format = CCYY-MM-DDThhZ
[scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z

[[dependencies]]
LLIR111]
graph = start => foo
[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar
[[[R//PT12H]]]
graph = bar => baz

—NIWA_—

Taihoro Nukurangi

start
2014-08-01T00Z

bar
2014-08-01T00Z

bar
2014-08-01T06Z

bar
2014-08-01T12Z2

—NIWA_—

Taihoro Nukurangi cycling2

integer cycling

* Almost identical except that instead of date-times, the cycle points
are simply integer counters.

e Start and end times reduce to start and end count values
e Recurrence periods reduce to a cycle step value
» Offsets are just counted in cycles

—NIWA_—

Taihoro Nukurangi

Ic@g

__-"'N “I-M/

Taihoro Nukurangi cy | c .

other features

 Run-ahead limiting

* Internal queues

* Broadcast messages to all tasks

* Nested subsuites

e Jinja2 scripting in the suite.rc file

* Introspection and self modification through e.g. issuing command line
instructions from a running task to it’s host suite

—NIWA_—

Taihoro Nukurangi

Ic@g

who's using cylc?

 NIWA (NZ) * e Geophysical Fluid Dynamics
« Met Office (UK) * Laboratory (US)
e Max-Planck-Institut fir . (Ig/IGe)tgorological Service Singapore

Meteorologie (DE) | |
e Deutches Klimarechenzentrum (DE) ° (SZOX)tQ African Weather Service

o *
Bureau of Meteorology (AU) e National Centre for Medium Range

 NRL Marine Meteorology Division Weather Forecasting (IN) *
(US) _ * Korean Meteorological
e 557th Weather Wing (US) * Administration (KR% *
_ e National Center for Atmospheric
* used with Rose, a ’framework for Research - NCAR (US)
managing meteorological suites.

—NIWA_—

Taihoro Nukurangi

	c y l c
	Slide Number 2
	Slide Number 3
	Slide Number 4
	what’s a cycling workflow?
	a workflow dependency graph�
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	what cylc does
	Slide Number 17
	Slide Number 18
	Slide Number 19
	suite.rc
	dependency graph notation
	conditional triggers
	task state triggering and suicide triggers
	auto-recovery workflow
	runtime: what to run
	runtime: where to run
	runtime inheritance
	repeated sections
	runtime: when to run
	ISO 8601 Durations
	ISO 8601 Recurrences
	date-time offsets
	Date-time cycling #0
	Slide Number 34
	Date-time cycling #1
	Slide Number 36
	date-time cycling #2
	Slide Number 38
	integer cycling
	Slide Number 40
	other features
	who’s using cylc?

