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a high level introduction

CSPP/IMAPP Users’ Group Meeting
SSEC, Madison, Wisconsin, June 27 2017

Adapted from original slides by Hilary J Oliver, NIWA


https://niwa.co.nz/

what’s cylc?

a workflow engine

to construct complex, cycling workflows

https://cylc.github.io/cylc
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https://cylc.github.io/cylc

what’s a workflow?

a group of tasks related by a dependency graph

cylc terminology: a suite
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what’s a cycling workflow?

e operational forecasting: repeat (with variations) a workflow at
intervals, when real-time data comes in

* needs clock-triggers; and continue cycling indefinitely

e forecasting research and testing: run operational workflows (or
variations thereof) over historical periods, off archived data

* no clock-triggers, unless we catch up to the clock

e tosplit along model run into many short runs (e.g. for long climate
simulations) with associated processing for each chunk

* no clock-triggers
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a workflow dependency graph

must be directed and acyclic
(DAG)

e nodes represent tasks
(which represent real jobs)

e edges represent dependence
(typically input/output files)

e acycle pointis a particular
point in sequence of date-time
(or integer) points; this
shows cycle point 1
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C Ic..

> foo[2]
> baz[2]

cycle dependence (e.g.

model restart files)
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inter-cycle dependence makes this

a continuous workflow

C Ic..
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there are no boundaries
between cycles (in real-time
operation clock-triggers
simply delay a few tasks)
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and the workflow may be unbounded...
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Note this cycle interleaving is particularly useful when real-time processing needs
to catch up following a delay
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what cylc does

e suite construction and visualization
e task meta-scheduling

e suite monitoring and control

e distributed suites

e adaptive scheduling

e cycling workflows
e date-time and integer cycling
e interleaves cycles for efficient scheduling

e (and a gazillion bells and whistles...)
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2014040115 ]
2014040118 BE BBR B B
R O 5 EEEEEEEEEEEEEEEEEEEEEN
- EEEEE EE EEEE
2014040203 B B

2014040206 BEER B

1] [ v
task |state ‘message ‘Tsubmit |Tstart ‘ mean dT ETC ]
forecast short . succeeded forecast short. 2014040118 succeeded at 2014-04-01T22:51:37  22:2748  22:27:50 0:23:20 v
~ POSTPROC B succeeded .
cleanup . succeeded cleanup. 2014040118 succeeded at 2014-04-01T22:51:42 22:51:42  22:51:41 0:00:02 v —
v 2014040121 B running .
reconf_nzlam_t3 . succeeded reconf_nzlam_t3.2014040121 succeeded at 2014-04-01T22:07:07 22:0449  22:4:52 0:02:15 v —
forecast_long . running forecast_|ong 2014040121 started at 2014-04-01T22:54.20 22:54:118 22:54:21 1:59:44 00:54:05
= PSEUDO_ANALYSIS . succeeded *
select nzlam . succeeded select nzlam. 2014040121 succeeded at 2014-04-01T22:08:16 22:.0711 22,0712 0:01:.07 v
select_bkg . succeeded select_bkg 2014040121 succeeded at 2014-04-01T722:52:48 22:51:41  22:51:42 0:01:.08 *
increments . succeeded increments. 2014040121 succeeded at 2014-04-01T22:54:14 22:52:52  22:52:53 0:01:19 v
~ POSTPROC B waiting .
get_um_output . waiting * " 0:00:17 v
~ NETCDF B waiting . B
= waiting = runahead = held = gqueued = ready = submitted
= submit-failed =] submit-retrying = running =] gucceeded = failed =] retriing
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Eile Miew Control Suite Help
00 @ | viewt: Zuw| b = [ [ ] ] [Viewz Yo |0 0 6 6 @ @ &
task |state message
b .succeeded
b 2014040115 B succeeded
b 2014040118 B succeeded
> 2014040121 B running
reconf_nzlam_t3 . succeeded reconf_nzlam_t3.2014040121 succeede
forecast_long . running forecast_|ong 2014040121 started at 2C
b PSEUDO_ANALYSIS . succeeded
b POSTPROC B waiting
verification . waiting
b MOS B waiting
b PRODUCTS B waiting v onfel) X
b INGESTION B waiting Il viting
b 2014040200 B waiting Il unahead
b 2014040203 B waiting Il re
b 2014040206 B waiting queued
. readly
. submitted
I submit-failed
submit-retrying
. running
. succ eeded
B railed |
. retrying ' ) . :
!
l I o
= waiting = runahead = held =] gueued = reagdy = submitted
5 submit-fail B submit-retr @ running = succeedec ® failed =] retriing
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splat_write B POLL_NZLAM ~  PSEUDO _ANALYSIS
splat_run . 2014040200 2014040121
prep .
prepped .
makebc

reconl mzlam 3 reconl_mzlam tH forecast long

pall_nzlam_fc 2014040203 20040402 00 2014040121
poll_nzlam_an

poll_nzlam_wapf

poll_nzlam_cmet

poll_ostia_sst

[]
sst_unpack .
]

reconf_clim - PSEUDO_AMNALYSIS
2014 )

sst_ancil

reconf nzlam t3 . .
reconf _nzlam to .
[]

reconf_clim

reconf sst .

forecast long

forecast short . . . :
select_nzlam ] PSEUDO_ANALYSIS )
select_bkg . 2014040203

increments .

get_um_output

netccf sfc )

- reconf_nzlam_to
netcc_slev o 2014040206
prob_rain

A\ o - -
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sulte.rc

#

# FILE FORMAT: INI with [nested]|[[sections]]-
key = value

# LEGAL CONTENT: see the cylc User Guide.

e
[cylc]

# Suite-level settings.
[scheduling]

# Determines WHEN tasks can run.
[runtime]

# Determines WHAT to run, WHERE, & HOW.
[visualization]
# Styling the suite dependency graph.

—NIWA_—
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dependency graph notation

[scheduling]
[ [dependencies]]
graph = """
foo => bar & baz => qux
baz => bob

__-"'N “I-M/
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conditional triggers

[ scheduling]
[ [dependencies]]
graph = foo & (bar | baz) => qux

open arrow heads:

—NHWYA_— cylc
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task state triggering and suicide triggers

bar
1
—NIIWVA __—
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graph
graph

STATEsS:
e foo

 foo:
 foo:
 foo:
 foo:
 foo:

= Too:STATE => bar # trigger

= Foo:STATE => lbar # suilcide
# foo:succeed

submit

submit-fairl

start

fail

finnish # :succeed OR :fTail
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auto-recovery workflow
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auto-recovery workflow:
[scheduling]

[ [dependencies]]

graph = ""”

pre => model
model :fail => dragnose => recover
model => !dragnose & !recover
model:fail & post => Imodel
model | recover => post''"”

e.g. diagnose - detect grid point storm failures;
recover - run model with shorter timestep.

see also automatic retry-on-failure
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runtime: what to run

Hello World! In cylc:

#suite.rc
[ scheduling]
[ [dependencies]]
graph = greeter
[runtime]

[[greeter]]
script = "echo Hello World!”

The script can be any valid bash script; usually it would simply invoke an
external script with appropriate parameters to perform the required task.
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runtime: where to run

distributed suites:
[ scheduling]

[ [dependencies]]
graph = greeter A => greeter_B
[runtime]
[[root]]

script = "echo Hello from ${HOSTNAME}!”
[[greeter_A]l]

[[[remote]]]

host = wrh-1_.niwa.co.nz
[[greeter B]]

[[[remote]]]

host = wrh-2_.niwa.co.nz

—NIWA_—
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runtime inheritance

[runtime]
[[root]] # family
[[[environment]]]
VARO = zero
[[ONE]] # family
[[[environment]]]
VAR1 = one
[[TWO]] # family
[[[environment]]]
VAR2 = two
[[foo]] # task

inherit = ONE, TWO
_...-""'N ~LWA s
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root

.'.lll
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‘ THO ONE ‘

.'.III

R= ,
I

foo

inheritance graph
(not dependencies!)

lc.




repeated sections

[scheduling]
[ [dependencies]]
graph = ENSEMBLE
[runtime]
[ [ENSEMBLE]]
title = "member xxx”
[Im1,m2,m3,m4]]
inherit = ENSEMBLE
[Im2]] # (extend or override)
title = "member two"

—NIWA_—
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runtime: when to run

* all date-times, durations and recurrences are specified using the
ISO8601 Date-Time standard.

e Dates and times should be familiar to most:
e hhmmss e.g. 061000 (ten past 6 in the morning).
e YYYYMMDDThhmmss
e YYYYMMDDThhmmssZ UTC
e YYYYMMDDThhmmss+hhmm +ve time zone offset
e YYYYMMDDThhmmss-hhmm -ve time zone offset
e (same with +YYYYYY and -YYYYYY)

# cylc e.qg.
initial cycle point = 20140812T00Z

—NIWA_—
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ISO 8601 Durations

PNnYNMNDTnNHNMNS e PTOH - 6 hours
e P1YGM - 1 year and 6 months

e PTAGM - 6 minutes
e PGM - 6 months
e P3W - 3 weeks

# cylc e.g.
[runtime]
[[long forecast]]
# On fairlure, retry once after 1.5
# min, and then four times more at
# 10 min 1ntervals:
—NIWA_— retry delays = PT1.5M, 4*PT10M
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ISO 8601 Recurrences

* RNn/START_TIME/PERIOD * RN - repeat n times

» RN/START_TIME/END_TIME  R-repeatindefinitely

« RN/PERIOD/END TIME e Can omit START, END or R[n]
— provided meaning unambiguous

# cylc e.g.
# run 3 times with cycle times 20140812700,
# 20140812706, 20140812712
[scheduling]
[ [dependencies]]
[[[R3720140812T00/PT6H] 1]

graph = foo => bar
——N-HWYVA_—
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date-time offsets

DATE _TIME+PERIOD « R/TO6+P1D/P1D - repeat daily from a
DATE_TIME-PERIOD day after 0600 at or just beyond the initial
cycle point

e R/+P3D/P2D - repeat two-daily starting
three days after the initial cycle point

[ scheduling]
[ [dependencies]]

LLLP1Y11]
# an 1nter-cycle trigger offset:
graph = foo[-P1Y] => foo
—N-JWA__—
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Date-time cycling #0

run 6 hourly from initial date to final date, cycles run almost in parallel:

# suilte.rcjcylc]
cycle point format = CCYY-MM-DDThhZ
[ scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z
[ [dependencies]]
LLIR11]]
graph = start => foo
[[[R//PT6H]]]

graph = foo => bar
__.-—-—-NJ-.WA —
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start
2014-08-01T00Z

l

foo
2014-08-01T06Z

foo
2014-08-01T00Z

foo
2014-08-01T12Z2

bar
2014-08-01T06Z

bar
2014-08-01T00Z

—NIWA_—
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bar
2014-08-011T12£
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Date-time cycling #1

Cycle N+1 cannot start until foo.N succeeds:
# suilte.rc
[cyic]
cycle point format = CCYY-MM-DDThhZ
[ scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z

[ [dependencies]]
[L[R111]
graph = start => foo
[[[R//PT6H]1]]
graph = foo[-PT6H] => foo => bar

—NIWA_—
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start
2014-08-01T002

l

foo
2014-08-01T00Z

bar foo
2014-08-01T00Z 2014-08-01T06Z

bar foo
2014-08-01T062 2014-08-01T12Z

bar
2014-08-01T122

—NIMWA_— cycling1
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date-time cycling #2

e Add extra task ‘baz’ on every 2" (12 hourly) cycle:

# suite.rcjcylc]
cycle point format = CCYY-MM-DDThhZ
[ scheduling]
initial cycle point = 2014-08-01T00Z
final cycle point = 2014-12-01T00Z

[ [dependencies]]
LLIR111]
graph = start => foo
[[[R//PT6H]]]
graph = foo[-PT6H] => foo => bar
[[[R//PT12H]]]
graph = bar => baz

—NIWA_—
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start
2014-08-01T00Z

bar
2014-08-01T00Z

bar
2014-08-01T06Z

bar
2014-08-01T12Z2

—NIWA_—
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integer cycling

* Almost identical except that instead of date-times, the cycle points
are simply integer counters.

e Start and end times reduce to start and end count values
e Recurrence periods reduce to a cycle step value
» Offsets are just counted in cycles

—NIWA_—
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other features

 Run-ahead limiting

* Internal queues

* Broadcast messages to all tasks

* Nested subsuites

e Jinja2 scripting in the suite.rc file

* Introspection and self modification through e.g. issuing command line
instructions from a running task to it’s host suite

—NIWA_—
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who's using cylc?

 NIWA (NZ) * e Geophysical Fluid Dynamics
« Met Office (UK) * Laboratory (US)
e Max-Planck-Institut fir . (Ig/IGe)tgorological Service Singapore

Meteorologie (DE) | |
e Deutches Klimarechenzentrum (DE) ° (SZOX)tQ African Weather Service

o *
Bureau of Meteorology (AU) e National Centre for Medium Range

 NRL Marine Meteorology Division Weather Forecasting (IN) *
(US) _ * Korean Meteorological
e 557th Weather Wing (US) * Administration (KR% *
_ e National Center for Atmospheric
* used with Rose, a ’framework for Research - NCAR (US)
managing meteorological suites.
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