
Near-real-time satellite data processing at NIWA
with Cylc

Simon Wood, NIWA

CSPP/IMAPP Users’ Group Meeting

SSEC, Madison, Wisconsin
June 27-29 2017

https://niwa.co.nz/

Outline

• About NIWA – who we are and what we do

• NIWA's Direct Readout and Data Processing facilities
• What facilities do we have?
• Brief history and future directions

• Intro to Cylc
• What is Cylc?
• Motivations and (very) quick tour

• Can we use Cylc to manage real-time satellite data
processing?

• Suitability
• Some issues to address
• Conclusion

CSPP Wisconsin 2017

Aotearoa: ‘the land of the long white cloud’

CSPP Wisconsin 2017

But if we look from further out we
see that we’re just two small islands
in a great big ocean

CSPP Wisconsin 2017

Two small islands
surrounded by
ocean

CSPP Wisconsin 2017

• Remote sensing works
really well over large
expanses of ocean

• We need timely
atmospheric
observations for data
assimilation into NWP

• So maybe we’re really
ideally placed?

CSPP Wisconsin 2017

Taihoro - flow and movement of water

Nukurangi - interface between sea and sky (atmosphere).

‘Where the waters meet the sky’

• NZ Government Crown Research Institute (CRI)

• Purpose: to enhance the economic value and sustainable management of New
Zealand’s aquatic resources and environments, to provide understanding of
climate and the atmosphere and increase resilience to weather and climate
hazards to improve the safety and well being of New Zealanders.

CSPP Wisconsin 2017

aquatic resources and environments
oceans
freshwater and marine fisheries
aquaculture
climate and atmosphere
climate and weather hazards
aquatic and atmospheric-based energy resources
aquatic biodiversity and biosecurity

NIWA is lead CRI for

Climate and Atmosphere
Natural Hazards
Freshwater
Coasts and Oceans
Aquaculture
Fisheries

Science Centres
Environmental Information
Maori Development
Pacific Rim and International

Other Centres

CSPP Wisconsin 2017What is NIWA - Oct 2003

Wellington 250

Napier 3

Rotorua 5

Dunedin 7

Alexandra 3

Christchurch 100

Auckland 80

Hamilton 110

Nelson 18

Greymouth 5

Tekapo 2

Lauder 9

~630 Employees

Turangi 2

Wanganui 1

Bream Bay 21

Perth, Australia, 12

CSPP Wisconsin 2017What is NIWA - Oct 2003

Key Facilities

HPC

Satellite Ground Stations

Aquaculture Facilities

Atmospheric
Observatories

Specialized Labs
• Mass Spec
• Water Quality
• Air Quality
• etc

Collections & Databases

Monitoring
Networks

CSPP Wisconsin 2017

Key Facilities - Vessels

Satellite Reception Facilities 1: Maupuia

• First receiver installed in
Wellington early 90s

• 1.2 m dish, L-band only
• Supplied by ES&S
• NOAA [15,] 18, 19
• L0 data back to Wellington Greta

Point campus via radio link across
the water (quite slow)

• Lovingly decorated by the locals…

CSPP Wisconsin 2017

Satellite Reception Facilities 2: Lauder

• ES&S, dual X-L band, 2.4 m antenna,
A-B tracking mount

• Installed late 2007
• Lauder location chosen for

(reasonably) good skyline and radio
quietness

• NOAA, Metop, Terra, Aqua, NPP (FY
also possible)

• L0 data back to Wellington via
REANNZ (NZ’s NREN) but ‘last mile’
can be problematic

CSPP Wisconsin 2017

Satellite Reception Facilities 3: Himawari-8/9

• (Not Direct Readout, but…)
• NIWA obtains Himawari AHI imager data from

the ‘HimawariCloud’ service (via the NZ
MetService)

• AHI imager, all bands, full resolution
• Complete Earth disk scan every 10 mins
• All data at NIWA within 10 mins of end of scan
• Immediate processing to netCDF. netCDF files

available within 10 mins of last segment file
arriving at NIWA.

• Top of atmosphere image products routinely
generated

CSPP Wisconsin 2017

High Performance Computing Facilities – past and present

• 1999: Cray T3E 1200 (2nd hand ex UK Met Office)
• Acquired specifically for the purpose of running localized versions of the UK MO’s Unified Model

(NWP)
• 2009, 2013: IBM P575/P6 supercomputer

• Initially 58 nodes x 32 cores (1856 cores) @ 4.7 GHz, upgraded to 106 nodes (3392 cores) in 2013.
• 64 or 128 GB RAM per node (28 have 128 GB)
• 4 x 144 port InfiniBand switches, 4 more added in 2013
• Originally 0.5 PB high speed disks with ~8 PB tape storage (via HSM), disks now 1.5 PB
• GPFS and TSM (HSM)
• 8-10 P520/P6 servers for management and login nodes
• A BladeCenter with 56 x Xeon 2.53 GHz with 224 GB RAM for pre and post-processing tasks.

Upgraded to 113 cores with 448 GB RAM in 2013.
• A PureFlex system was added in 2013 with 60 x Xeon, 1 x Tesla K40 GPGPU and 1.4 TB RAM for

pre and post-processing tasks.
• Housed at NIWA Wellington (Greta Point) in purpose built computer room.
• Owned jointly between NIWA (majority) and other research institutes under the NeSI (New

Zealand eScience Infrastructure) umbrella.

CSPP Wisconsin 2017

High Performance Computing Facility – future

• Procurement for a replacement machine began mid 2016
• Contracts signed and public announcement mid June 2017
• Full details still being kept under wraps, sneak preview:

• 3 machines (replacing both the IBM P575 and a 6000+ core x86 cluster at
Auckland University)

• 2 x Cray XC50 (one large capability machine, one much smaller for disaster recovery): x86
Skylake, approx 19500 cores (main machine), Infiniband EDR 100 Gb/s, Linux OS.

• 1 x Cray CS400 capacity machine for pre- and post-processing or loosely coupled
(‘embarrassingly parallel’) workflows: x86 Broadwell, 9216 cores, Linux

• IBM Spectrum Scale (GPFS), 9.8 PB disk, 20 PB tape
• Both large machines located at NIWA Wellington. DR machine in Auckland.
• Joint ownership through NeSI.

CSPP Wisconsin 2017

Satellite Data Processing – beginnings and recent past

Various systems over the years:

• 1990s: Batch processing on VMS. Most processing code developed in-house.

• Early 2000s: Collection of cron (and similar) based scripts on Linux. Begin
adoption of community software (e.g. AAPP, SeaDAS).

• 2008 onwards: SDPS (aka ‘satproc’) – dedicated, lightweight processing
framework written in Python using ‘inotify’ file system monitor to detect
arrival / generation of new input files and trigger appropriate processing task.
Publish / Subscribe model.
Worked well for last few years but now time to move on…

CSPP Wisconsin 2017

Satellite Data Processing – motivations for change

Why do we need a new system?

1. Processing environment is changing
• Until recently we had dedicated machines for satellite processing
• Now all satellite processing is expected to run in HPC environment alongside other

operational workflows
• inotify does not scale well to GPFS / cluster environments (blind to non-local filesystem

events)

2. Processing culture is changing
• Originally ‘operational’ processing was managed by science code ‘owners’ – satellite

processing was managed by me (log tails via ssh on my desktop etc)
• Now we have a 3-person Operations Team responsible for keeping all forecasting models

and associated processing running 24x7. Satellite data processing will also become their
responsibility. They don’t thing log tails are quite sufficient…

CSPP Wisconsin 2017

Operations Team Requirements

• Have to manage whole suite of forecasting models, observation
processing and (image) product generation systems

• Need to be able to see status across many systems in a consistent
fashion

• Manage ‘by exception’; don’t want to have to check that processing
completed successfully – just be alerted when things fail

• Not domain experts – generalists
• Not programmers – but can do some basic scripting
• Prefer graphical interfaces

• View status across whole ‘suite’
• Start / stop/ restart / retry processing tasks easily (e.g. following intervention)

• Our ops team likes Cylc…
CSPP Wisconsin 2017

Is Cylc a good fit for satellite data processing?

Pros
• Designed to manage continuously

repeating workflows
• Simple configuration via text file can

describe arbitrarily complex
workflows

• Support for HPC job schedulers
• Support for real-time processing
• Rich graphical monitoring tools
• Comprehensive logging
• Easy integration with alerting

systems (e.g. Nagios)
• Already well established in our

operations team; familiar interface

Cons
• Designed for time based cycling:

“run over period from Jan 1 to
March 31 in 6 hour steps starting at
00:00”

• Real-time support assumes time
based cycling: “run every 3 hours
starting at 00:00”

• Designed for continuous cycling
workflows – implicit assumption of
inter-cycle dependency (what
happens when processing of
previous pass fails?)

CSPP Wisconsin 2017

Issues 1, 2: time based cycling

Obviously real-time satellite processing cannot be scheduled on a “run every N minutes” basis;
we need to start processing as soon as the data arrives (at irregular intervals through the day)

• Use Cylc’s integer cycling mode to remove any notion of time dependence:
[scheduling]

cycling mode = integer
[[dependencies]]

[[[R1]]] # first cycle; do some inits
graph = prep => get_data

[[[P1]]] # run every cycle
graph = get_data => proc1 => proc2 => products

• with external triggering to force each cycle to wait for an external trigger before starting:
[scheduling]

cycling mode = integer
[[special tasks]]

external-trigger = get_data(scheduled pass end time reached)
[[dependencies]]

...

CSPP Wisconsin 2017

Issues 1, 2: time based cycling (cont’d)

• We’ll arrange for an external system to send a trigger at the end of each pass
$ cylc ext-trigger <SUITE NAME> \

"scheduled pass end time reached" <PASS_ID>

• this could be a separate time cycling suite that runs once a day to get the
schedule file from the receiver and configures a timer chain to generate the
trigger events at the required times, e.g.:

[scheduling]
[[special tasks]]

clock-trigger = get_schedule # cannot run until due time
[[dependencies]]

[[[R1]]]
graph = prep => get_schedule

[[[PD1]]] # run every day
graph = get_schedule => parse_schedule => queue_triggers

CSPP Wisconsin 2017

Issue 3: continuous cycling – normal operation

CSPP Wisconsin 2017

Each task spawns its
own successor when
it becomes ready to
run (submitted state)

Issue 3: continuous cycling – example 1: no data

CSPP Wisconsin 2017

1. Previous cycle
OK

2. get_data fails –
no successors
created for proc1,
proc2 or products

3. Suite stalls –
nothing will get
processed for
sebsequent
passes

Issue 3: continuous cycling – example 2: a processing task fails

CSPP Wisconsin 2017

1. Previous cycle OK

2. proc2 fails – no
successor created
for products

3. Suite stalls –
subsequent
passes cannot
complete

Issues 3: continuous cycling (cont’d)

Clearly we need to force creation of successors for the failed task’s dependants.
• We can force any task to spawn it’s own successors via the CLI:

$ cylc spawn <SUITE NAME> <TASK>.<CYCLE_POINT>

• We can associate an event handler to a task’s failed state which causes a
custom script to be run whenever the task enters the failed state. Here we
need to get it to call cylc spawn on all dependants at the current cycle
point:

[runtime]

[[get_data, proc1, proc2]]
[[[events]]]

failed handle = cylc spawn %(suite)s \
PROCESSORS.%(point)s

where PROCESSORS is a task group containing proc1, proc2 and products

CSPP Wisconsin 2017

Issue 3: continuous cycling – example 1 resolved

CSPP Wisconsin 2017

1. get_data fails as
before but now
all dependants’
successors get
created

2. Later passes can
be processed
normally

Issue 3: continuous cycling – example 2 resolved

CSPP Wisconsin 2017

1. proc2 fails as
before but now
a successor gets
created for
products

2. Later passes can
be completed
normally

Is Cylc a good fit for satellite data processing?

Pros
• Designed to manage continuously

repeating workflows
• Simple configuration via text file can

describe arbitrarily complex
workflows

• Support for real-time processing
• Rich graphical monitoring tools
• Comprehensive logging
• Easy integration with alerting

systems (e.g. Nagios)
• Already well established in our

operations team; familiar interface

Cons
• Designed for time based cycling:

“run over period from Jan 1 to
March 31 in 6 hour steps starting at
00:00” fixed with integer cycling

• Real-time support assumes time
based cycling: “run every 3 hours
starting at 00:00” fixed with integer
cycling and external triggers

• Designed for continuous cycling
workflows – implicit assumption of
inter-cycle dependency fixed with
cylc spawn from error handler

CSPP Wisconsin 2017CSPP_2017_SLW_NIWA.pptx

	Near-real-time satellite data processing at NIWA with Cylc
	Outline
	Aotearoa: ‘the land of the long white cloud’
	But if we look from further out we see that we’re just two small islands in a great big ocean�
	Two small islands surrounded by ocean
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Satellite Reception Facilities 1: Maupuia
	Satellite Reception Facilities 2: Lauder
	Satellite Reception Facilities 3: Himawari-8/9
	High Performance Computing Facilities – past and present
	High Performance Computing Facility – future
	Satellite Data Processing – beginnings and recent past
	Satellite Data Processing – motivations for change�
	Operations Team Requirements
	Is Cylc a good fit for satellite data processing?
	Issues 1, 2: time based cycling
	Issues 1, 2: time based cycling (cont’d)
	Issue 3: continuous cycling – normal operation
	Issue 3: continuous cycling – example 1: no data
	Issue 3: continuous cycling – example 2: a processing task fails
	Issues 3: continuous cycling (cont’d)
	Issue 3: continuous cycling – example 1 resolved
	Issue 3: continuous cycling – example 2 resolved
	Is Cylc a good fit for satellite data processing?

