CSPP Geo Status and Plans

Graeme Martin

University of Wisconsin – Madison, Space Science & Engineering Center / Cooperative Institute for Meteorological Satellite Studies

CSPP / IMAPP Users' Meeting 28 June 2017 Madison, Wisconsin

What is CSPP Geo?

- CSPP Geo = "Community Satellite Processing Package for Geostationary Data"
- The CSPP Geo project creates and distributes software allowing direct broadcast users to create products from geostationary satellite data
- The project draws on experience creating software allowing direct broadcast users to process data from polar orbiters (CSPP and IMAPP projects)
- Funded by the GOES-R Program Office
- Supported missions: GOES-16, Himawari-8, GOES-13 and -15
- Using Level 2 algorithms that were developed for ABI
- Users include vendors of DB receiving stations, US government, international Met agencies, research institutions

Software philosophy

- CSPP Geo software is:
 - ⇒Publicly available and free of charge: http://cimss.ssec.wisc.edu/csppgeo/
 - ⇒ Distributed as binary packages for 64-bit CentOS6-compatible Linux
 - ⇒Distributed with all required 3rd party software bundled
 - ⇒Easy to install and run
 - ⇒Released with an optional test data package
 - ⇒High level of user support
- Software is intended to be run on rack-mounted commodity hardware
- Recommended hardware specs for each software package are on the CSPP Geo website
- Ancillary data is staged on servers at the U. of Wisconsin
- Generally Level 2 software is developed in collaboration with scientists, while Level 1 software may be developed from scratch

Project personnel and collaborators

The CSPP Geo team: Liam Gumley (Principal Investigator), Graeme Martin (Project Manager), Nick Bearson, Jessica Braun, Geoff Cureton, Alan DeSmet, Ray Garcia, Tommy Jasmin, Scott Mindock, Eva Schiffer, Kathy Strabala

NOAA / AIT: Walter Wolf, Shanna Sampson and team

GEOCAT: Mike Pavolonis

GOES-R Cloud team: Andy Heidinger (lead), Corey Calvert, Pat Heck, William Straka, Andy Walther, Steve Wanzong

Imagery: Tim Schmit, Kaba Bah, Jordan Gerth, Mat Gunshor

GOES-16

- GOES-16 is the first of a new generation of U.S. geostationary satellites
- Launched in November 2016
- Location during checkout is W 89.5°
 - ⇒Will be moved to GOES-East position (W 75°) when it becomes operational in November 2017
- GOES-16 has a direct broadcast stream called GOES Rebroadcast (GRB)
- GRB receiving systems are currently available from vendors
 - ⇒NOAA list of GRB receiving station vendors:
 http://www.goes-r.gov/users/docs/GRB ReceivingSystemManufacturersList.p
- More information at http://www.goes-r.gov/

GOES-16 instruments:

Advanced Baseline Imager (ABI)

Geostationary Lightning Mapper (GLM)

Solar Ultraviolet Imager (SUVI)

Space Environment In-Situ Suite (SEISS)

Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)

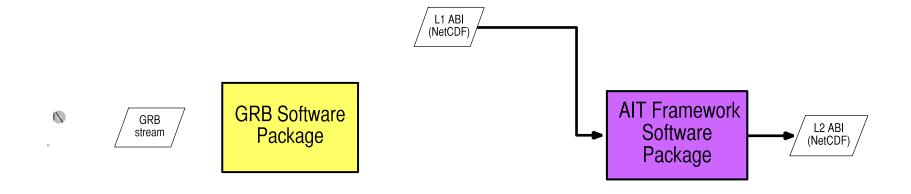
Magnetometer (MAG)

GOES-16 L1B observed data volumes

Raw data:

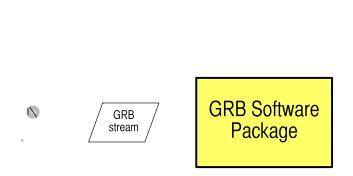
	GOES 13/15 (GVAR)	GOES-16 (GRB)
Data rate	2.1 Mbps	31 Mbps
Raw data volume	21.5 GB/day	310 GB/day
Raw data volume (idle / null data removed)	14.24 GB/day	99 GB/day (Mode 3) 150 GB/day (Mode 4)

ABI L1B Products (NetCDF):


uncompressed	550GB/day (Mode 3)
compressed	135-140 GB/day (Mode 3) 215 GB/day (Mode 4)

Based on representative samples of data volumes observed at U. Wisconsin GRB receiving station during PLT

GOES-R Processing Chain

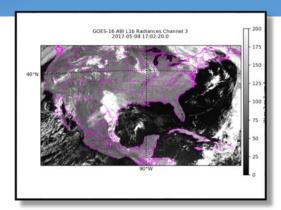


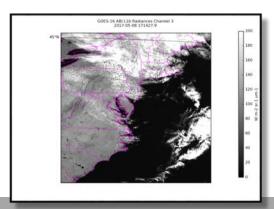
The GRB Software Package

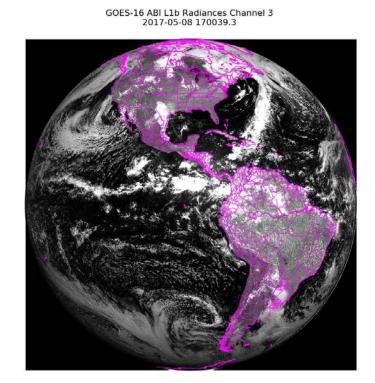
- Runs as a server, processing the raw GRB data stream
 - ⇒reads CADUs from two sockets
- Ingestor component is a modified version of NASA RT-STPS
- Extracts data payloads, decompresses, reconstructs datasets as they were created on the Ground Segment
- Generates products from all GOES-R instruments
 - ⇒ Level 1 ABI and space weather, Level 2 GLM
- Requires multiple cores, hardware specs published on website
- Includes an experimental tracking interface allowing data to be used as it arrives

L1 ABI (NetCDF)

GRB: the first 6 months




- GRB stream was turned on Dec 2016, instruments have been added one-by-one
 - ⇒Currently the GRB stream includes data from all GOES-R instruments except GLM
- Since then have released interim "dev snapshot" versions of the GRB package incorporating the latest software improvements needed to process real data
 - ⇒Interim release GRB v0.4.4 is available from the user forum
- Feedback indicates users are integrating the dev snapshot versions and are routinely generating products
- Will release GRB v1.0 after GLM has been added
- Running software on data from our GRB antenna
- PLT activities via Jim McNitt / GRB User Group
 ⇒Notifications of events affecting GRB, mechanism for reporting issues affecting the GRB stream
- Standard disclaimer: "These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized."


GRB Package Quicklooks



FE IX 171A 1sec 2017-05-15 18:10:37.1Z

SUVI

SUVI

HE II 304A 1sec 2017-05-15 18:11:27.1Z

FE XV 284A 1sec 2017-05-15 18:11:07.1Z

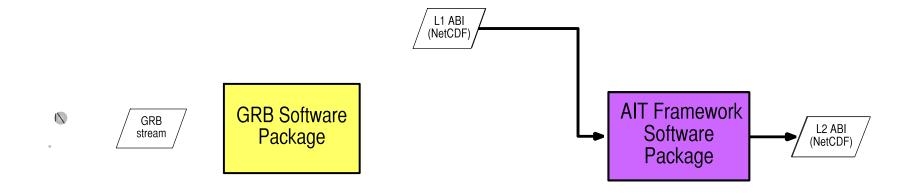
SUVI

FE XII 195A 1sec 2017-05-15 18:12:37.1Z

15

SUVI

28 June 2017


FE XX 133A 1sec 2017-05-15 18:13:17.1Z

SUVI

GOES-R Processing Chain

The AIT Framework Software Package

- Further processes ABI L1B data to generate Level 2 products
- AIT is the "Algorithm Integration Team" at NOAA STAR
- The AIT Framework was developed by the AIT as an integration point for research implementations of GOES-R Level 2 research algorithm
- Initial version will generate a subset of the GOES-R Baseline products
- Alpha version has been released
 - ⇒Contact <u>csppgeo.issues@ssec.wisc.edu</u> to become an alpha tester
- Planning beta in August 2017, v1 to follow
- Later releases will add products and include updates to existing algorithms, LUTs, etc.

Initial set of products:

Aerosol Detection: Smoke and Dust

Aerosol Optical Depth

Clear Sky Masks

Cloud and Moisture Imagery

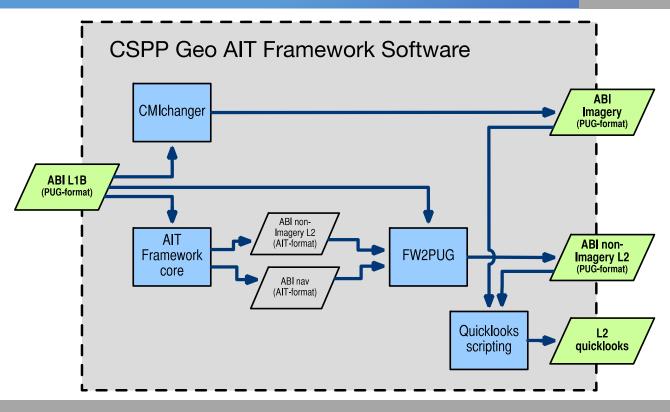
Cloud Optical Depth (day/night)

Cloud Particle Size Distribution (day/night)

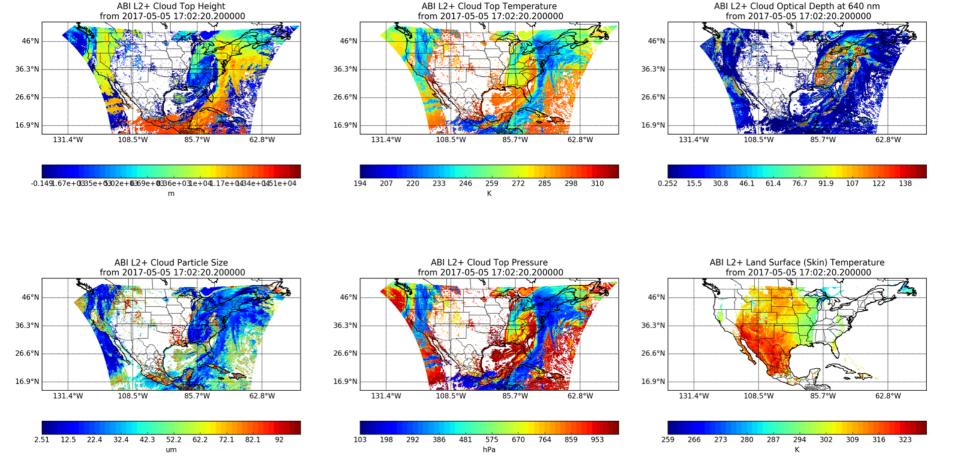
Cloud Top Height

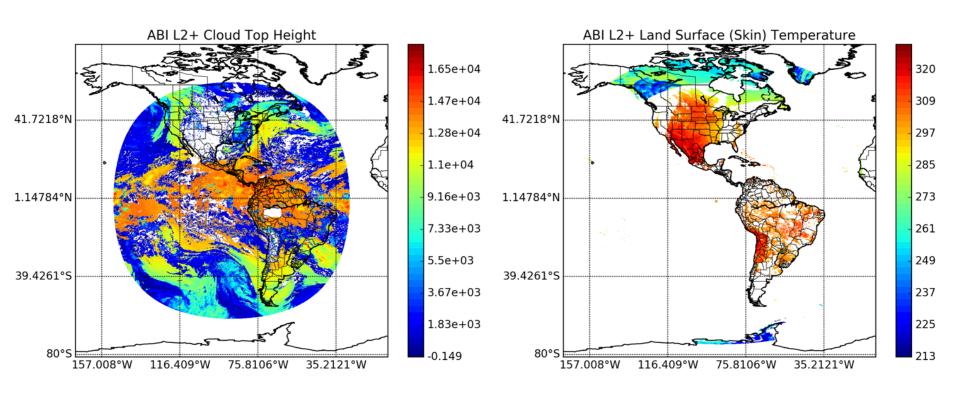
Cloud Top Phase

Cloud Top Pressure

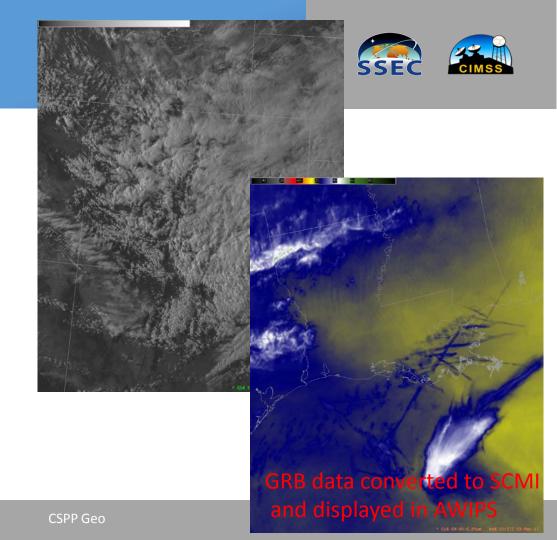

Cloud Top Temperature

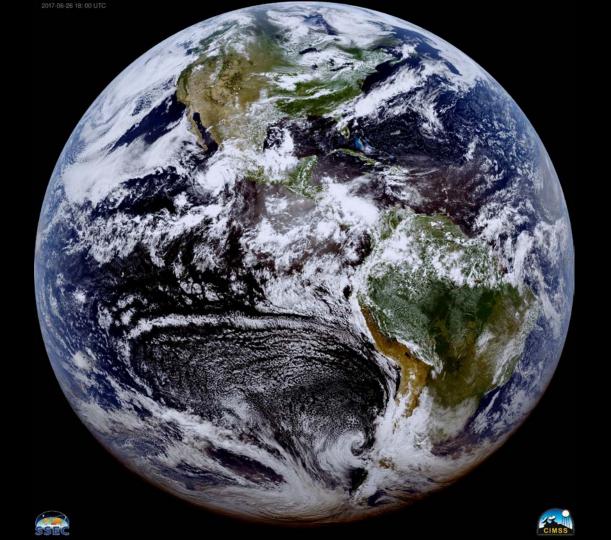
Land Surface Temperature (Skin)


AIT Framework Software Package Internals



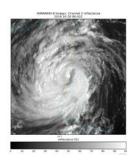
Example GOES-16 Level 2 products: CONUS

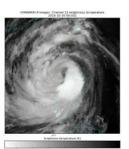


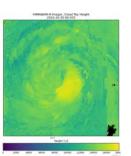

Example GOES-16 Level 2 products: Full Disk

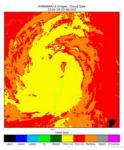
CMI Changer

- Developed a tool to convert ABI L1B data to imagery (i.e. brightness temperatures and reflectances)
- Output is NetCDF4 files in AWIPS-compatible "Sectorized Cloud Moisture Imagery" format
- Supports tiling
- Used by the NWS to load data in AWIPS
- Included in the AIT Framework Level 2 Package




ABI true color image developed by the GOES-R Imagery Team


The GEOCAT Software Package for Level 2 AHI, GOES-13 and -15



- GEOCAT = "Geostationary Cloud Algorithm Testbed"
- Originally developed by NOAA Scientist Mike Pavolonis for GOES-R algorithm development
- Products are generated by research versions of GOES-R algorithms that have been updated and adapted for the Japanese ABI-class instrument "AHI"
 - ⇒ Korea is planning to launch their AMI instrument into geostationary orbit in 2018
- CSPP Geo team integrated updated algorithms for AHI, developed "glue" code
- Parallel processing is needed to keep up with the data rate
- V1.0 beta was released in Fall 2016
- V1.0 planned for Summer 2017

Products planned for initial release:

Cloud and Moisture Imagery

Clear Sky Masks

Cloud Phase

Cloud Type

Cloud Top Height

Cloud Top Pressure

Cloud Top Temperature

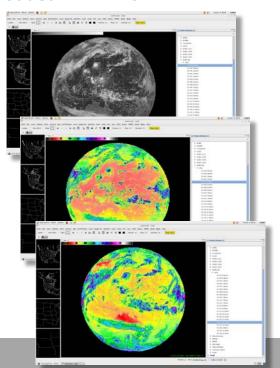
Cloud Optical Depth (day/night)

Cloud Particle Size Distribution (day/night)

Cloud Liquid Water Path (day/night)

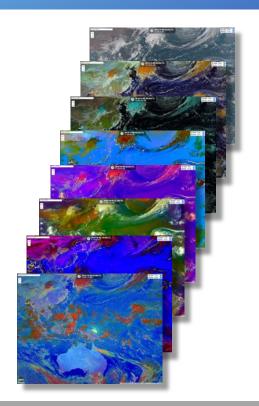
Cloud Ice Water Path (day/night)

Low Cloud and Fog


Himawari Ingest Software Library

- Himawari ingest library was developed at U. of Wisconsin by Ray Garcia, with help from Scott Mindock and William Straka
- Offers radiances, reflectance and brightness temperatures, as well as metadata
 - ⇒Data conversions are done on-the-fly using parameters in files when available
- Supports HimawariCloud and HimawariCast formats
 - ⇒Programs can be written to read both
- Offers high level of abstraction from file layer
 - ⇒Transparently handles datasets spanning multiple files
- Used in multiple programs maintained at U. of Wisconsin
- Open source: https://gitlab.ssec.wisc.edu/rayg/himawari

AHI data converted with libHimawari and loaded in AWIPS2


28 June 2017 CSPP Geo

The Composite RGB Software Package

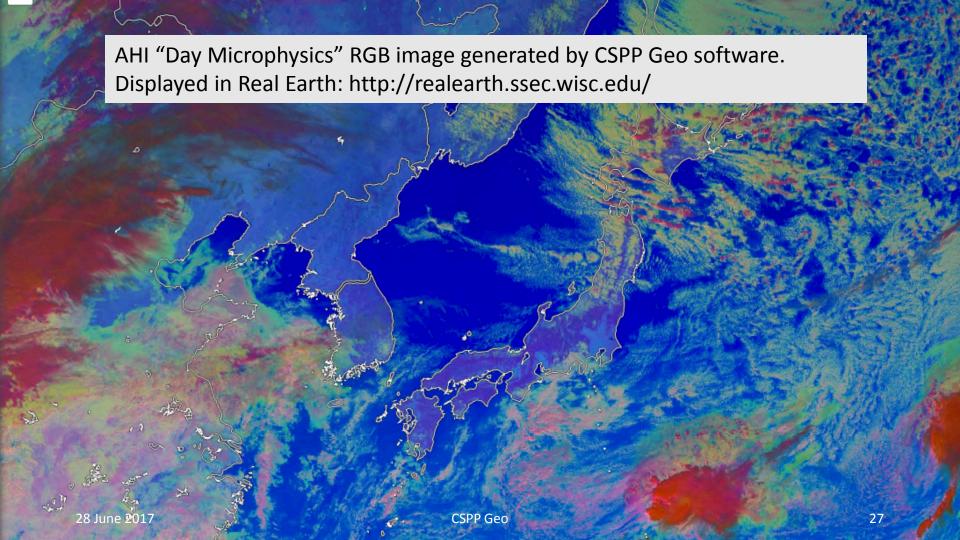
- Composite RGBs are color images that highlight information about the atmosphere and surface
- Output files contain projection information, allowing them to be mapped
- Output format is GeoTiff, which can be displayed in GIS-aware applications, like Google Earth, ArcGIS
- Initially AHI will be supported
- RGB formulas were obtained from JMA and GOES-R Imagery team
 - ⇒ Refer to the JMA real-time RGB image webpage http://www.data.jma.go.jp/mscweb/data/himawari/sat img.php
- Version 1.0 beta is currently being tested

Products created by the initial beta version

Airmass

Day Convective Storm

Day Microphysics


Night Microphysics

Dust

Day Snow / Fog

Natural Color

True Color

Future plans

- Version 1.0 releases of GOES-16 and AHI software packages later in 2017
- Support additional Level 2 products that have been identified as a high priority for NWS and other users, such as AMV (Winds), Rainfall Rate, Fires, HIE (Hurricane Intensity)
- Add image generation capabilities, including true-color ABI
- Features and tools to help users handle challenges and opportunities of the GOES-16 era (more data = greater hardware requirements and more complex software):
 - ⇒Data sub-setting
 - **⇒**Tiling
 - ⇒System and product monitoring and visualization
 - ⇒Support for data processing in a "streaming mode"
- Add support for future instruments in collaboration with international partner agencies, such as Korea's AMI

Thank you!

For more information on CSPP Geo:

website: http://cimss.ssec.wisc.edu/csppgeo/

support: csppgeo.issues@ssec.wisc.edu