
 Presented at CSPP/IMAPP Users Group Meeting by
Alexander Shumilin

RBC Signals

27-29 June 2017, Madison, WI

Frame Processing Framework tools for low level CCSDS processing,
and projects for cooperative real-time global EO data collection

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 2

Motivation

● Need for a flexible tool to solve different processing and investigation tasks
for different satellite streams.

● Powerful enough to get the task solved
● Extendable. Add new features and function as new challenges arrive – clean

modular source structure
● KISS. Keep it simple not compromising above requirements
● Portable and easy to deploy,

● One of the widely used cases:DB streams from AQUA/TERRA/NPP/Metop
● Existing options: RT-STPS (385 *.java files), Metopizer, etc

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 3

 (In the beginning was the Word...)

author gratefully acknowledges
support of

* CIMSS/SSEC UW-Madison
* RBC Signals
* RDC ScanEx

Core parts of the FPF were born in CIMSS/SSEC in late 2015.
Thanks to Liam Gumley for kind support and fruitful discussions

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 4

Frame Processing Framework (FPF)

● A Frame – a unit of data stream
● All operations done frame-wise
● Frames = CCSDS CADU,

Source Packet, etc.
● Same type but frame size is not fixed
● Handle of a frame contains

pointer to the frame data and some attributes:
- size,type
- position in the input stream
- stream timestamps

● Frames are processed by C++ objects (Nodes)
inheriting simple common interface

● Nodes are simple. One node – one elementary
operation on one incoming fame per call

● A Node after reception of a new input frame can...
- pass it through to the next object in the chain as is
- block further processing of the frame
- cache or buffer a few packets for own needs
- add/update attributes in the handle
- modify data (e.g. decode, descramble, add timestamps)
- output frame content or any extracted information to files/socket
- create a new kind of frames and initiate another chain of processing objects

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 5

Frames,Nodes and other beasts

● Common interface lets build a chain of objects/nodes
● No single supervisor/governor.

Chains of nodes are “self-assembled” and “self-managed”

● Helper objects:
- Framers – bake frames at the beginning of the chain, have no input frames, only
output. Usually Framer is created first and then it initiate chain self-assembling
- Input Objects – provide raw bit (pre-framed) stream as input to framers (input
from files, socket, http)
- Node factory – helps to instantiate node objects at run-time using class names
and blocks of configuration parameters

● Main.cpp – the only executable which reads configuration, setup environment and
initiate node chain assembling and execution.

Init()/Start() Init()/Start()

take_frame() take_frame()

stop()/close() stop()/close()

Init()/Start()

take_frame()

stop()/close()

Node 1 Node 2 More nodes Last Node

Initialization

Frame by
frame
processing

Termination

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 6

Chain configuration sample (“Hello World”)

● Plain text INI-style chain configuration files

● One object – one INI section

● Common values (part or “The Rules”):
- section name – is ID of the object
- class= - C++ object class name
- next_node= - ref. to ID of the next object in chain

● All other parameters are custom and interpreted
by the object

● Parameter values may be substituted at runtime
by values from
- environment variables
- command line arguments

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 7

Real world processing sample. 1

Sample processing case: TERRA MODIS PDS extraction from
raw CCSDS CADU stream.

CCSDS CADU
Framer

RS Decoder

Descrambler

Packet
Extractor
APID=64

File writer

RT File
reader

Packet
Inventory

inventory
report

Raw
CADU
file

Counter

PDS file

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 8

Real world processing sample. 2

Sample processing case: AQUA MODIS PDS/GBAD extraction from
raw CCSDS CADU stream.

CCSDS CADU
Framer

RS Decoder

Descrambler

Packet
Extractor
APID=64

Packet
Extractor

APID=957

File writer

RT File
reader

Packet
Inventory

inventory
report

Raw
CADU
file

Counter

File writerPDS file

GBAD file

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 9

Distribution (where to take it)

● FPF is maintained as Free Open Source project.
● License: MIT Style (no restrictions)
● Source and binary distributions are hosted at GitHub

https://github.com/alxndrsh/fpf

● Source code is C++ 11.
● Compile environments:

- GCC/make on Linux
- GCC/Linux + mingw cross-compile
 on Linux for Windows
- GCC/Mingw on Windows for Windows

● No build dependencies for the
framework core functions and
basic objects

● Optional dependencies for some
objects and optional features:

- cURL (optional, required)
 - TCP socket API

https://github.com/alxndrsh/fpf

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 10

Deployment (how to get it running)

● Read the manual
● Grab the source

git clone https://github.com/alxndrsh/fpf.git

● Make
make

● Prebuilt binaries are
provided for

1) Linux 64 bit
2) Windows 64/32 bit

● Read the manual (“Fast start”)
● Download the archived package

https://github.com/alxndrsh/fpf/releases
● Unpack it in any folder.

● Decide what do you need it for, if you need it at all
● Provide input data, select suitable INI file sample,

modify or write your own
● Run the FPF engine as (e.g.)

fpf.exe -i c:\fpf\inifiles\terra.ini TERRA_RAW_FILE.dat

● Errors? Read the manual
● Errors? Contact author (alex@rbcsignals.com)
● Do you really need it ?

https://github.com/alxndrsh/fpf.git
https://github.com/alxndrsh/fpf/releases
mailto:alex@rbcsignals.com

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 11

 Applications (let us do something useful)
As soon as we have a tool working with frame stream at a ground station.
Let us do...

● Read input stream in real-time (using socket stream or reading hot files right in
process of cooking)

● process from CADU frames to sensor packets and export L0
● While passing packets conduct quality/content/continuity analysis and generate

a metadata report about small data chunks.
● As soon as we have inventory information about what a station is now receiving,

let us pass this information to a common metadata inventory. This gives
possibility to collect global information what station are collecting now and what
they have got in the past.

CSAIS = Common Satellite Acquisitions Inventory Service

● Collects only metadata (~10-50kB/pass)
● Stream type agnostic (generic metadata – timestamp,

content, location, completeness, quality indicators) ,
may be extended to different sensor streams

● Extreme Real Time (a few seconds latency)
● Ingest inventories from manuy stations. Global coverage

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 12

How to connect a station to CSAIS

● In the provided INI sample for processing
AQUA/TERRA MODIS (starting either from
raw CADU or from PDS level) there is an
Inventory node, which be default writes an
inventry report into local file.

● Report may be posted to CSAIS once after
completion or in Real Time after inventory of
short stream slices (1-2 sec)

● Provide information about your station (do
distinguish metadata coming from different
stations) (replace XXX placeholders in
report_header=….)

● Uncomment either post_to= or post_to_nrt=
paramenter giving a server endpoint

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 13

CSAIS Portal
(where to look at it)

http://beta-csais.rhcloud.com/

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 14

and a step further….
● So metadata inventory let us know what stations are receiving at the moment
● Let us collect the data from many stations in extreme real time to build a

joined swath

● FPF at the stations extracts and prepares packet slices (~ 1 sec.) and posts
them to the server.

● Push mode. Station do not need to maintain publishing of data (only client
access to Internet is required)

● Server accepts packet slices from many stations and inventories all the data
instances

● Server continuously runs a worker which relying on inventory of arrived data
tries to select the best copy of available packets and reconstruct a single
continuous data swath.

● So data at this stage is available with few seconds delay after taking image
● To maintain compatibility with the standard processing tools and

procedures,the swath is then cut into fixed granules and stored as standard L0
product.

● L0 PDS granules for TERRA/AQUA MODIS. 20 – 60 sec.
● As soon as a L0 granule collected and a file is available it can be processed to

higher level products.
● Total delay from imaging to images – 1-2 min, independent of position in the

pass.

 CSPP/IMAPP Users Group Meeting, 27-29 June 2017, Madison, WI 15

Real time Satellite Stream Pipes

Very initial RSS Pipes system,
● data collection
● swath stitching worker
● distribution web portal

is running at

http://rsspipes.rbcsignals.com

Invitation for cooperation

Ground station
operators

Real Time
data users

Ground stations and data users are welcome
to join us in development, operation and use

Contact us: csais@rbcsignals.com
 or alex@rbcsignals.com

mailto:csais@rbcsignals.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

