V Gorin and M Tsyrulnikov

Can model error be perceived from routine observations?

Motivation: all existing approaches in model-error modeling are largely *ad-hoc*. Any objective knowledge on real model errors is very welcome.

Model error: definition

The forecast equation:

 $\frac{dX}{dt} = F(X)$

The truth substituted into the forecast equation:

 $\frac{dX^{t}}{dt} = F(X^{t}) - \varepsilon$

Model error = forecast tendency *minus* true tendency:

$$\varepsilon = F(X^t) - \frac{dX^t}{dt}$$

The goal: objectively estimate a model error model

Let us aim to estimate a mixed additive-multiplicative model:

 $\varepsilon = \mu \cdot F + \varepsilon_{add}$

where *epsilon_add* and *mu* are spatio-temporal random fields, whose probability distributions are to be estimated.

Even in a parametrized Gaussian case, estimating model parameters (variances and length scales) requires a <u>proxy</u> to model error *epsilon*.

Assessing model error: approximations

$$\varepsilon = F(X^t) - \frac{dX^t}{dt}$$

- 1) In dX/dt, replace the truth by observations.
- 2) Replace instantaneous tendencies with finite-time ones.
- 3) In F(X), replace the truth by the analysis (and subsequent forecast).

$$\int \varepsilon dt \approx \int F(X^m) dt - \Delta X^o = \Delta X^m - \Delta X^o$$

The question: can we assess <u>epsilon</u> having the <u>r.h.s.</u> of this equation?

Numerical experiments: setup

- **Methodology: OSSE.**
- Model: COSMO (LAM, 5000*5000 km, 40 levels, 14 km mesh).
- **Observations:** T,u,v,q, all grid points observed, obs error covariance proportional to background error covariance.
- **Analysis:** simplified: with R~B, the gain matrix is diagonal.
- Assimilation: 6-h cycle; 1-month long, interpolated global analyses as LBC.
- **Model error:** univariate and *constant* in space and time for 6-h periods.
- Finite-time tendency lengths: 1, 3, and 6 h.

Magnitudes of imposed model errors and obs errors

Obs errors std:

(1) realistic (1 K and 2 m/s)

(2) unrealistically low (0.1 K and 0.2 m/s)

(3) zero

Model errors std:

(1) realistic (1 K/day and 2 m/s per day)
(2) unrealistically high (5 K/day and 10 m/s per day)

Assessing model error: an approximation-error measure

- If model error is observable, then $\int \mathcal{E}dt = \mathcal{E}_0 \cdot \Delta t$
- should be close to data $d = \Delta X^m \Delta X^o$
- Both quantities are known from simulations, so we define the discrepancy (the model-error observability error) as

$$r = r.m.s.\frac{d - \varepsilon_0 \Delta t}{\varepsilon_0 \Delta t}$$

Results (1) The model-error observability. R.m.s. statistics. Realistic error magnitudes

With <u>realistic</u> both obs error and model error, the model-error observability error *r* appears to be <u>above 1</u> (not observable at all) for all 3 tendency lengths (not shown).

Results (2): obs error <u>small or zero</u>, model error <u>normal</u>.

The model-error observability error "r"

OE	Field	$\Delta t = 1 \text{ h}$	$\Delta t = 3$ h	$\Delta t = 6$ h
OE small	Т	> 1		0.68
	u	> 1		2.7
	v	> 1		3.4
OE=0	Т	1.0	0.58	0.46
	u	1.2	1.8	1.6
	v	1.4	1.5	2.0
Fc starts	Т	0.28	0.30	0.33
from	u	0.33	0.75	0.99
truth	v	0.35	0.69	1.20

Results (3): an example of finite-time forecast tendency error. Dashed – expected model error eps*(Deltat), colored – perceived model error d. Forecast starts from <u>truth</u>, model error normal. *Temperature*

Model error is observable within 6 hours (albeit imperfectly)

Results (4): an example of finite-time forecast tendency error. Dashed – expected model error eps*(Deltat), colored – perceived model error d. Forecast starts from <u>truth</u>, model error normal. *Zonal wind*

Model error is observable within 2 hours

Results (5): an example of finite-time forecast tendency error. Dashed – expected model error eps*(Delta t), colored – perceived model error d. Forecast starts from <u>truth</u>, model error normal. *Meridional wind*

Model error is observable within just 1 hour

Conclusions

= Existing routine observations are far too scarse and far too inaccurate to allow a reliable assessment of realistic-magnitude model errors.

= A field experiment could, in principle, be imagined to assess model errors.

= Comparisons of tendencies from *operational* parametrizations vs. *most sophisticated* ones (both tendencies start from the same state) can be used as proxies to model errors.

Results (6): obs error <u>small or zero</u>, model error <u>large</u>. *The model-error observability error "r"*

OE	Field	$\Delta t = 1~\mathrm{h}$	$\Delta t = 3~\mathrm{h}$	$\Delta t = 6~\mathrm{h}$
$OE \ small$	Т	0.80	0.41	0.35
	u	1.75	0.98	1.09
	v	2.26	1.38	1.42
OE=0	Т			0.34
	u			1.02
	v			1.30
Fc starts	Т	0.27		0.34
from	u	0.26		0.98
truth	v	0.34		1.26