The ABI (Advanced Baseline Imager) on the GOES-R series

Timothy J. Schmit¹, James J. Gurka², Mathew M. Gunshor³, Jun Li³, and W. Paul Menzel³

¹ NOAA/NESDIS/STAR Advanced Satellite Products Branch (ASPB) Madison, WI

² NOAA/NESDIS GOES-R Program Office

³ Cooperative Institute for Meteorological Satellite Studies (CIMSS)

Introduction

The next generation geostationary satellite series will offer a continuation of current products and services and enable improved and new capabilities. The Advanced Baseline Imager (ABI) on the GOES-R series has been designed to meet user requirements covering a wide range of phenomena.

The ABI:

· Will be used for a wide range of weather, oceanographic, climate, and environmental applications.

• Expands from five spectral bands on the current GOES imagers to a total of 16 spectral bands in the visible, nearinfrared and infrared spectral regions.

· Will increase the coverage rate leading to full disk scans at least every 15 minutes.

. Spatial resolution at the sub-point will be 2 km for the infrared bands, 1 km for most of the other bands (except the 1.378 µm) and 0.5 km for the 0.64 µm visible band.

· Will be remapped into a constant projection before dissemination, similar to SEVIRI

SEVIRI data from EUMETSAT is being used in a number of ways to prepare for ABI data

The ABI will be the next generation geostationary imager on GOES-R It is being built by ITT Industries.

Approximate number of ABI pixels

Input Information			0.5 km	1 km	2 km	
Full disk diameter	17.76	deg	22141	11070	5535	pixels
CONUS height	4.8129	deg	6000	3000	1500	pixels
CONUS width	8.0215	deg	10000	5000	2500	pixels
Meso height/width	1.6043	deg	2000	1000	500	pixels

Parameter	Current GOES Imager	Future GOES Imager	Comments
Number of Visible bands	1	2	Cloud cover, plant health and surface features during the day, etc.
Number of Near IR bands	0	4	Cirrus clouds, Low cloud/fog and fire detection, etc.
Number of Infrared bands	4	10	Upper-level water vapor, clouds, SO ₂ , SST, etc.
Coverage Rate	26 minutes for full disk	15 minutes for full disk, plus CONUS images every 5 minutes, plus meso-scale scans	ABI is approximately five times faster
Spatial resolutions of the 0.6 µm visible band	Approximately 1 km	0.5 km	At the sub-satellite point
Spatial resolutions of the infrared bands	Approximately 4-8 km	2 km	At the sub-satellite point
On-orbit visible	No	Yes	

Improvement Factors: Current and Future GOES Imagen

ABI improves over the current imager by a factor of 3 spectrally, a factor or 4 spatially and a factor of 5 temporally

T. J. Schmit, M. M. Gunshor, W. Paul Menzel, Jun Li, Scott Bachmeier, James J. Gurka, 2005: Introducing the Next-generation Advanced Baseline Imager (ABI) on GOES-R, *Bull. Amer. Meteor. Soc.*, Vol 8, August, pp. 1079-1096.

ABI Spectral Bands

The ABI will have sixteen spectral bands. These are similar to the five bands on the current GOES-8/11 Imagers, plus the 13.3 µm band (similar to those on GOES-12+). Ten additional bands in the visible, near-infrared and infrared spectral regions were added. ABI mock spectral response files are at: ftp://ftp.ssec.wisc.edu/ABI/SRF/

Sample ABI-like data from MODIS, MET-8 and AIRS on April 11, 2004

The spectral bands on ABI can be constructed using various current instruments such as Meteosat-8, AIRS, and MODIS (above) or the ABI bands can be generated via forward model calculations from high-resolution numerical model profiles (below).

Sample ABI-like synthetic data for June 4, 2005 at 18 UTC

There are many similarities for the spectral bands on MET-8 and the ABI. Both have more hands than the current operational GOES imagers. The high resolution spectra is plotted for

ABI Products

ABI will improve every product from the current GOES Imager and will introduce a host of new products. Current products include: retrieved Atmospheric Motion Vectors (AMVs), Quantitative Precipitation Estimates (QPEs), cloud parameters, clear-sky radiances, Sea Surface Temperature (SST), surface (skin) temperature, detection and characterization of fires, volcanic ash, fog, and cloud-top information. ABI will also provide cloud-top phase/particle size information and improved snow/ice detection, total column ozone, aerosol and smoke detection for air quality monitoring and forecasts. Other new products include vegetation monitoring and upper-level SO_2 detection. In addition, the ABI will be used to generate "pseudosoundings" to continue the sounder legacy products such as Total Precipitable Water (TPW) and atmospheric stability parameters.

ABI to continue legacy products

The relative vertical number of independent pieces of information is shown. The moisture content is similar between the ABI and the current GOES Sounder. The current Sounder does show more temperature information than the ABI. This information content analysis does not account for any spatial or temporal differences.

Total Precipitable Water vapor (TPW) overlay on the 11 µm brightness temperature (BT) image (grey shade) from SEVIRI

SEVIRI data provided by EUMETSAT

Enhanced "V": The IR window bands show the improved spatial resolutions of the ABI over the current GOES Imager.

