Stobie NIR

SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009

COMMISSIONING PLAN

ersity of Wi

ANDREW SHEINIS UNIVERSITY OF WISCONSIN

date	task	mode	On sky
I+1 mo	Group I comissioning tasks (not requiring all mirrors)		
5 d	Integrate + test instrument control software w/telescope		N
1 d	Develop focus procedure, check focus with field position	Img	Y
1 d	Test acquisition & guide accuracy w/offset guiders	Img	Y
1 d	Check focus + image position vs. telescope + tracker position	Img	Y
1 d	Develop focus procedures for tilted longslits	Spec	Y
1 d	Plot grating wavelength solutions w/ scope/tracker position	Spec	N
1 d	Plot spatial distortion along slit for each config.	Spec	Y
1 d	Plot focus as function of wavelength, field position and tracker	Spec	Y
5 d	Develop slitmask fabrication procedures	MSpec	N
1 d	Test slitmask insertion + alignment	MSpec	Y
1 d	Plot focus as function of wavelength, field position and tracker	MSpec	Y
1 d	Calibrate FP wavelength & stability w/telescope position	FP	N
1 d		ImPol	N
1 d	Calibrate FP instr. polarization w/telescope + tracker position	FPPol	Y

mode On sky date task T | 9 . . . - 1 1 + 1

1+3 mo	Group II comissioning tasks (those requiring all mirrors)		
8 h	Perform direct imaging science program *	Img *	Υ
1 d	Test overall throughput for each grating vs. tilt, field position	Spec	Υ
1 d	Test target acquisition + tracking procedure for single slits	Spec	Y
8 h	Perform Single slit spectroscopy science program *	Spec *	Y
1 d	Obtain on-sky imaging to calibrate mask-making plate solution	MSpec	Y
1 d	Test automated milti-slit acquisition & peak-up procedure	MSpec	Υ
1 d	Test sensitivity & wavelength stability over multi-slit field	MSpec	Y
8 h	Perform Multi-slit spectroscopy science program *	MSpec *	Υ
1 d	FP	FP	Y
1 d	Perform Fabry-Perot science program *	FP *	Y
1 d	Calibrate instrumental polarization vs. field position	ImPol	Y
1 d	Calibrate instrumental polarization vs. pupil illumination	ImPol	Υ
8 h	Perform Imaging Polarimetry science program *	ImPol *	Υ
8 h	Perform Spectro-Polarimetric science program *	SpecPol *	Υ
8 h	Perform Fabry-Perot Polarimetric science program *	FPPol *	Υ

...

		Length	Use
1	0.45''	7.5'	Tilted longslit reflective plate
2	0.6''	7.5'	Tilted longslit reflective plate
3	0.9''	7.5'	Tilted longslit reflective plate
4	1.1''	7.5'	Tilted longslit reflective plate
5	1.3''	7.5'	Tilted longslit reflective plate
6	3.0''	7.5'	Tilted longslit reflective plate
7	1.1''	central $4'$	Tilted longslit reflective plate for polarimetry
8	1.1''	central 4^\prime	Tilted plate for coronographic work and polarimetry

• Longslits available to RSS

The annulus of visibility for SALT as a function of Declination and hour angle

The parallactic angle for different declinations as a function of hour angle

Total visibility as a function of declination and 6 degree tracker limit

The range of Right Ascension where an object is visible to SALT for at least hour

Curves showing the change in parallactic angle with elevation for a sampling of different Declinations.

Schematic diagrams showing how sources at various declinations track across the field of SALT

Goals-Imaging

- 1) Plots of PSF as a function of focus position for each filter
- 2) Plots of PSF as a function of field location focus position for each filter
- 3) Plots of PSF as a function of ambient temperature
- 4) Quantify offsets and relative distortions between acquisition CCD, guide probes and NIR detector.
- 5) Test image quality over the field by observing a stellar eld with known astrometry and stellar sources
 - 1) Vector plots of astrometric distortion across the detector
 - 2) Vector plots of astrometric distortion as a function of rotator angle
 - 3) Vector plots of astrometric distortion as a function of tracker position including repeatability

- 1. Calibrate filter set with standard stars
- 2. Plots of sensitivity (erg/DN) in each filter
- 3. Plots of total system throughput for each filter as a function of field position and illumination
- 4. Test telescope pointing tracking: produce plots of seeing and image motion as a function of exposure time, hour angle, tracker position, and rotator motion

FP BLOCKING FILTERS

- Location chosen to minimize terrestrial foreground
- optimize FIRST LIGHT detection in discovery mode

Filters

• and hit key z=0 diagnostics

Goals-Imaging: sample target list

Field	RA (2000)	DEC (2000)	notes
47 Tuc Ω Cen LMC NGC 3603 M5 M4 NGC 6397 M22	00 24 05.2 3 26 45.8 05 11 00 11 15 09.1 15 18 33.7 16 23 35.4 17 40 41.3 18 36 24 4	-72 04 49 -47 28 36 -70 00 00 -61 16 17 +02 04 58 -26 31 32 -53 40 25 -23 54 12	Globular Cluster (Cudworth astrometry!) Globular Cluster LMC bar/disk Smecker-Hane HST program Young open cluster Globular Cluster (Cudworth astrometry!) Globular Cluster (Cudworth astrometry!) Globular Cluster (Cudworth astrometry!)

System ensquared energy

INSTRUMENT THROUGHPUT

- T of all optical materials
- 1% R coatings
- Grating superblaze predicted by Kolgelnik approximation
- Hawaii-2RG-1.7μm measured QE
 - Beletic et al. 2008
 SPIE

RSS-NIR MTR

LIMITING VEGA MAGNITUDES

Spectroscopy-Longslit

- 1. Test use of standard single slits and target acquisition operations
- 2. Produce plots of spectrophotometric sensitivities with each grating
- 3. Produce plots of slit illumination function and image quality at several different pupil illumination positions
- 4. Produce plots of distortion along spatial direction of slit
- 5. Produce plots of wavelength solution for each grating and how it varies with time tracker position etc
- 6. check for timing errors
- 7. Test data acquisition storage under heavy throughput

Spectroscopy-MOS

- 1. Test slitmask fabrication/ gold coating
- 2. Plots of edge smoothness and slit uniformity
- 3. Plots of time required to fabricate masks based on number of slits
- 4. Test slitmask insertion position repeatability
- 5. Test astrometric solutions required to make masks
- 6. Check for slitmask flexure with position temperature
- 7. Test multi slit acquisition strategy
- 8. Test multi slit flat fields, spectral calibration
- 9. Plots of spectral sensitivity vs position in field for each grating
- 10. Plots of slit illumination function

9.

Observational procedure

- 1. Pre observation: Obtain coordinates for targets from literature
- 2. Run Pre-observation-software program, choose targets take into account camera distortions and write AUTOCAD format file to be used for mask fabrication
- 3. Pre observation: Cut mask on laser cutter
- 4. Pre observation: verify tolerances size position of slits and mask
- 5. Pre observation: verify correct insertion into mask holder and mask magazine and focal plane
- 6. Afternoon Obtain at fields
- 7. Afternoon Take direct image through mask s with at field lamp to locate positions of alignment boxes on science CCD
- 8. Obtain Afternoon flat fields

Observational procedure

- 1. Move to target field
- 2. Obtain arc lamp exposures
- 3. Initiate acquisition camera exposure to locate field
- 4. Pattern matching software moves telescope so that alignment stars in field will fall on slitmask alignment boxes
- 5. Peak up software steps telescope and reads out sub regions of the science CCD near alignment boxes to find the position of maximal throughput Software positions telescope at ideal position
- 6. Guide star is acquired by moving guider stage and tracking begins
- 7. Science exposures started
- 8. Obtain arc lamp exposure(s)

SCIENCE THEMES

- 1. Discovering First Light
- 2. Star-Formation in the "Desert"
- 3. Baryon Processing in a Mature Universe
- 3. Massive Star-formation at z = 0

We envision surveys generating consortium-wide collaboration

RSS Flux Limits

Sample galactic targets

Cluster ID	z	RA (2000)	DEC (2000)
MS 0011.7+0837	0.163	00h14m21.0s	+08d54m11s
MS 0011.7+0837	0.163	00h14m21.0s	+08d54m11s
ABELL 0041	0.277	00h28m46.8s	+07d50m35s
ABELL 0293	0.1631	02h01m59.9s	+03d46m26s
ABELL 0732	0.203	08h57m54.5s	+03d10m22s
ABELL 1437	0.1339	12h00m27.8s	+03d20m18s
ABELL 1835	0.253	14h01m02.0s	+02d51m32s
MS 1426.4+0158	0.32	14h28m58.7s	+01d45m12s
MS 1532.5+0130	0.320	15h35m02.7s	+01d20m58s
GHO 2146+0406	0.5155	21h48m39.1s	+04d20m53
ABELL 2397	0.224	21h56m09.0s	+01d20m17s
GHO 2201+0258	0.640	22h04m05.0s	+03d12m46s
ABELL 2631	0.273	23h37m39.7s	+00d17m37s
ABELL 2819 NED05	0.16	00h45m49.4s	-63d35m36s
F1557.19TC	0.51	04h12m54.7s	-65d50m58s
ABELL S0910	0.311	20h57m22.0s	-64d39m26s
AM 2250-633	0.2112	22h54m00.5s	-63d14m31s
ABELL 3995	0.186	23h21m35.3s	-69d41m33s

End of Commissioning