

DEPARTMENT OF ASTRONOMY

The University of Wisconsin-Madison 475 N Charter Street Madison Wisconsin 53706-1582 Telephone: (608) 262-3071 FAX: (608) 263-6386 http://www.astro.wisc.edu

DOCUMENT IDENTIFICATION:

PROJECT:	SOUTHERN AFRICAN LARGE TELESCOPE ROBERT STOBIE SPECTROGRAPH NEAR INFRARED INSTRUMENT
DOCUMENT TITLE:	THERMAL STRAY LIGHT ANALYSIS
DOCUMENT #:	SALT-3501AA0002
FILENAME:	
REVISION:	-
KEYWORDS:	

APPROVALS:

AUTHOR:		Date
	Marsha Wolf	Dute
	Project Scientist	
ENGINEERING:		
		_ Date:
	Don Thielman	
	System Engineer	
QUALITY:		
		Date:
	Tom Demke	
	Quality Assurance	
PROJECT:		
		Date:
	Andrew Sheinis	
	Principal Investigator	

REVISION HISTORY:

Rev	ECN	Description	Date	Approval
Draft	NA	Original Document	7 May 2009	

Contents

1		Intro	oduct	ion	5			
2		Instrument Overview						
3		Common Components7						
	3.	1	Slit M	Masks	7			
		3.1.3	1	Long slits	7			
	3.	2	Colli	mator Mounts	9			
	3.	3	Field	Lens Mounts	. 10			
	3.	4	Wav	eplate Mounts	. 11			
	3.	5	Opti	cal Elements	. 11			
		3.5.2	1	Ambient Optics	. 11			
		3.5.2	2	Pre-Dewar Optics	. 12			
4		Pre-	Dewa	ar	.13			
	4.	1	Initia	al Estimates	. 13			
5		Tele	scope	e	.14			
6		The	mal /	Analysis	.15			
	6.	1	Calib	pration of ASAP	. 16			
	6.	2	Spec	ctroscopy Mode	. 17			
	6.	3	NIR	Sky Background	. 18			
		6.3.2	1	Spectral Resolution	. 19			
	6.	4	Iden	tification of Critical Objects	. 20			
	6.	5	Resu	Ilts for Ambient Temperature Components	. 24			
		6.5.2	1	Problem Component Identified	. 25			
		6.5.2	2	Slit Cooling	. 26			
		6.5.3	3	Ambient Temperature Optics	. 28			
		6.5.4	1	Telescope	. 29			
		6.5.5	5	Shorter Cutoff Wavelengths	. 29			
		6.5.6	5	Environmental Conditions at SALT and Implications on Operability	. 30			
7		Long	g Wav	velength Cutoff	. 33			
	7.	1	Dete	ector Quantum Efficiency Falloff	. 33			
	7.	2	Long	g Wavelength Blocking Filters	. 35			

8	Similar Instruments	. 35
9	Summary and Conclusions	. 36
10	Future Work	.37
11	References	. 38

1 Introduction

The near infrared arm of the Robert Stobie Spectrograph (RSS-NIR) on the Southern African Large Telescope (SALT) is a semi-warm instrument, working in a regime where a number of spectrographs have not been successful. Therefore, from the beginning, detailed thermal stray light analysis has been a high priority for the project, and is integral to the entire design. Our analysis is performed using the Advanced Systems Analysis Program (ASAP) by Breault Research Organization. The optical design of SALT, RSS, and the NIR arm are directly imported into ASAP from Zemax and the mechanical designs of mounts and structures are directly imported from SolidWorks. Every component can be made into a thermal emitter with the proper temperature, emissivity, and scattering characteristics. Initially, our model of the NIR arm in ASAP was largely conceptual, but allowed us to roughly determine required operating temperatures of regions of components early in the project. As the mechanical design of the instrument matures, the ASAP model will be used to design baffles, the cold pupil mask, and radiation shields within the cooled areas. Preliminary results of the instrument thermal backgrounds predicted from ASAP have already been incorporated into our instrument performance simulator.

A brief overview of RSS-NIR is given in Section 2. Section 3 contains a description of the ambient temperature components that are common to both the visible and NIR instrument arms. We began the thermal analysis with the ambient temperature components for two reasons: 1) we expect them to be the largest contributors to the instrument thermal background, and 2) they already exist for the visible side of the instrument, so details of their thermal emission could be analyzed early in our NIR instrument design phases. Section 4 describes our initial estimates for the required operating temperature of a cooled pre-dewar section, using an early conceptual design of the pre-dewar. Further analysis of the details in this section will continue once the mechanical designs mature. Section 5 describes the parts of the telescope that are included in the thermal analysis. Thermal background results are presented in Section 6, including an analysis of SALT temperature data and translating them into amounts of time during the year that different observations will be possible. Section 7 discusses issues related to the long wavelength cutoff of the instrument, including detector quantum efficiency fall-off at long wavelengths and our preliminary selection of long wavelength blocking filters. Other semi-warm NIR spectrographs are contrasted in Section 9.

2 Instrument Overview

A model of the RSS system is shown in **Figure 1**. The beam comes up from the telescope below to a focus at the slit plane. The slit, waveplates, collimator, and dichroic beamsplitter form the common optical path. At the dichroic the visible beam splits off to the right and the NIR beam is transmitted up to a fold mirror which sends the light to the left.

RSS-NIR was originally conceived to have three different temperature environments, as depicted in **Figure 2**: cryogenic, below ambient, and ambient. A cryogenic dewar houses the detector, long wavelength blocking filters, and last 2 camera optics, one of which is the entrance window. A predewar, cooled to approximately -40 °C, contains all components between the cryogenic dewar and the NIR collimator doublet. These components include the NIR doublet lenses (the first element is the window between the pre-dewar and the ambient observatory), the fold mirror, order sorting filters for Fabry-Perot mode, the Fabry-Perot etalon, the spectroscopic gratings, the polarizing beamsplitter, the first 5 camera optics, and mounts and actuators for all of these components. The final section is not cooled and floats at the ambient temperature. These are the common optics: the dichroic beamsplitter, the collimator optics, the waveplates, the field lens, and the slit mechanism.

3 Common Components

3.1 Slit Masks

3.1.1 Long slits

The slit plane is located at the bottom of the RSS, and is the first element with which photons interact in the instrument. It is common to both the visible and NIR arms of RSS. We refer to the first side that photons see as the bottom and the side facing the detector as the top. The long slits, shown in **Figure 3**, consist of a stainless steel slit blank that is assembled in its mount at an 11° angle so that the SALTICAM slit viewing camera has access to the bottom side. The blank has a 1 arcsec wide slit cut into it. The

surfaces that are set up to be thermal emitters in the analysis are listed in **Table 1**. All surfaces are assumed to be gold coated with ε =0.02. Only top surfaces facing the detector are analyzed.

Source	Component				
1	flat portion of long slit blank				
2	top surface of slit blank				
3	1 st indentation toward slit				
4	inner indentation for slit				
5	long slit beam				
6	baffle				
7	baffle				

Table 1. Thermally emitting surfaces in the long slit assembly.

 Table 2. Thermally emitting surfaces in the collimator lens mounts.

Source	Label	Component
1	BC1S1F11	BLADDER_COVER_1_surface1_Face11
2	BC1S1F1	BLADDER_COVER_1_surface1_Face1
3	BC1S1F2	BLADDER_COVER_1_surface1_Face2
4	E7RR1S1F0	ELEMENT_7_RETAINING_RING_1_surface1_Face0
5	E7RR1S1F4	ELEMENT_7_RETAINING_RING_1_surface1_Face4
6	E7RR1S1F1	ELEMENT_7_RETAINING_RING_1_surface1_Face1
7	E7RR1S1F3	ELEMENT_7_RETAINING_RING_1_surface1_Face3
8	E7C1S2F0	ELEMENT_7_CELL_1_surface2_Face0
9	E7C1S2F1	ELEMENT_7_CELL_1_surface2_Face1
10	E6B1S1F0	ELEMENT_6_BEZEL_1_surface1_Face0
11	E6B1S1F2	ELEMENT_6_BEZEL_1_surface1_Face2
12	E5B1S1F4	ELEMENT_5_BEZEL_1_surface1_Face4
13	E5B1S1F1	ELEMENT_5_BEZEL_1_surface1_Face1
14	E5B1S1F2	ELEMENT_5_BEZEL_1_surface1_Face2
15	E5RR1S1F0	ELEMENT_5_RETAINING_RING_1_surface1_Face0
16	E4RR21S1F5	ELEMENT_4_RETAINING_RING_2_1_surface1_Face5
17	E4RR21S1F1	ELEMENT_4_RETAINING_RING_2_1_surface1_Face1
18	E4RR21S1F4	ELEMENT_4_RETAINING_RING_2_1_surface1_Face4
19	E4RR21S1F6	ELEMENT_4_RETAINING_RING_2_1_surface1_Face6
20	E4RR21S1F0	ELEMENT_4_RETAINING_RING_2_1_surface1_Face0
21	E4B21S1F0	ELEMENT_4_BEZEL_2_1_surface1_Face0
22	E4B21S1F1	ELEMENT_4_BEZEL_2_1_surface1_Face1
23	E3B1S1F2	ELEMENT_3_BEZEL_1_surface1_Face2
24	E3B1S1F3	ELEMENT_3_BEZEL_1_surface1_Face3
25	C2S1S1F5	CELL_2_SEAT_1_surface1_Face5
26	C2S1S1F6	CELL_2_SEAT_1_surface1_Face6
27	C2S1S1F3	CELL_2_SEAT_1_surface1_Face3

3.2 Collimator Mounts

The mounts for the common RSS optics are black anodized aluminum, assuming ε =0.88. All surfaces that face lens surfaces, retaining rings and cell walls, or that face toward the detector or slit, top and bottom horizontal rings, are set up as thermal emitters. These surfaces for the collimator mounts are shown in **Figure 4** and listed in **Table 2**.

Figure 4. Thermally emitting surfaces in the collimator lens mounts. The components are listed in Table 2. All surfaces are assumed to be black anodized aluminum with ε =0.88 and the scattering properties of black paint, a polynomial BRDF.

3.3 Field Lens Mounts

The field lens is the first optical element after the slit plane. The surfaces that are set up as thermal emitters are shown in **Figure 5**. The surfaces are all are black anodized aluminum with ε =0.88.

Table 3. Thermally emitting surfaces in the field lens mounts.

Source	Label	Component
1	FL_RR_FACE	FL_RR_FACE
2	FL_RR_S1_F1&0	FL_RR_S1_F0
3	FL_RR_S1_F1&0	FL_RR_S1_F1
4	FL_FLANGE	FL_FLANGE
5	E1C1S2F0&1	Element_1_Cell_1_surface2_Face0
6	E1C1S2F0&1	Element_1_Cell_1_surface2_Face1
7	E2C1S2F1&3	Element_2_Cell_1_surface2_Face1
8	E2C1S2F1&3	Element_2_Cell_1_surface2_Face3
9	E2RR1S1F1	Element_2_Retaining_Ring_1_surface1_Face1
10	E2RR1S1F16	Element_2_Retaining_Ring_1_surface1_Face16
11	E2RR1S1F18	Element_2_Retaining_Ring_1_surface1_Face18

3.4 Waveplate Mounts

For spectroscopy mode observations the half waveplate will be out of the beam and the quarter waveplate will be in the clear compensator position. Therefore, only the quarter waveplate (QWP) is

included in the thermal analysis. A compensator made of fused quartz with twice the thickness of a waveplate is in the clear position of the QWP mount.

The waveplate mounts are shown in **Figure 6**. Three parts are set up as thermal emitters: the top of the QWP mount, the top retaining ring of the clear compensator, and the bottom of the QWP mount. All are assumed to have ε =0.88, that of black anodized aluminum.

3.5 Optical Elements

3.5.1 Ambient Optics

Optical elements included in the ambient portion of the instrument are the field lens, the waveplate compensator, the common elements of the collimator, the dichroic beamsplitter, and the first element of the NIR doublet. These elements are listed with their assumed optical properties in **Table 4**. Emissivities are calculated with Equation (1), where α is the absorption coefficient per mm of the glass at $\lambda = 1.7 \mu$ m and *t* is the thickness of the element. The absorption coefficients were taken from glass catalogs, or estimated from similar materials in the case of fused quartz.

$$\mathcal{E} = 1 - e^{-\alpha t} \tag{1}$$

Element	ASAP Label	Material	Radii	Thickness	n(λ)	α	3
			(mm)	(mm)	(0.9 <i>,</i> 1.7 μm)	(mm⁻¹)	
Field lens #1	LENS_1.Z_11_12	fused	93.95,	10	1.45194882	5 e-5	0.0005
		quartz	64.2		1.44218867		
		тозон					
Field lens #2	LENS_1.Z_13_14	CaF ₂	64.2,	51	1.42965613	2 e-6	0.0001
			266.58		1.425357297		
Waveplate	PLT_2	Fused	∞,	23.96	1.45184721	5 e-5	0.0012
compensator		quartz	∞		1.442289604		
Collimator #1	LENS_2.Z_20_21	fused	-67.09,	10	1.45194882	5 e-5	0.0005
		quartz	198.89		1.44218867		
		тозон					
Collimator #2	LENS_3.Z_24_25	fused	-726.34,	30	1.45194882	5 e-5	0.0015
		quartz	-140.99		1.44218867		
		TOSOH					
Collimator	LENS_4.Z_28_29	CaF ₂	914.4,	55	1.42965613	2 e-6	0.0001

 Table 4. Optical elements and properties in the ambient temperature section of RSS-NIR.

triplet #1			-133.1		1.425357297		
Collimator	LENS_4.Z_30_31	NaCl	-133.1,	15	1.53366415	2.532	0.037
triplet #2			-224.84		1.527619461	e-3	
Collimator	LENS_4.Z_32_33	CaF ₂	-224.84,	37	1.42965613	2 e-6	0.00007
triplet #3			-141.12		1.425357297		
Dichroic	DBS	fused	∞,	10	1.45184721	5 e-5	0.0005
beamsplitter		quartz	∞		1.442289604		
NIR doublet #1	LENS_5.Z_36_37	fused	∞,	15	1.45175396	1 e-3	0.015
		silica	187.77		1.44202000		

Each optical element can contribute thermal radiation either from the second surface directly toward the detector, or from the first surface toward the slit, which can then be reflected back into the beam toward the detector. Therefore, thermal emission must be assigned to both sides of the optical elements. We do this by calculating emissivities for each surface using half of the total component thickness. This assumes that half of the radiation from an element is emitted in each direction, which may not be completely correct given specific lens geometries and the center thicknesses used to calculate emissivities, but should be close enough for our analysis.

3.5.2 Pre-Dewar Optics

The optical elements in the pre-dewar include the second lens in the NIR doublet, the fold mirror, the grating (or etalon and blocking filter for Fabry-Perot mode), the first three camera lenses, and the polarizing beamsplitter (only for polarimetry mode). Note that these analyses were all done with an earlier NIR collimator doublet and camera design. The current camera, which took the system from f/2 to f/1.4, contains one more element and slightly different materials. The new camera is not discussed in this report because its design was completed after these thermal analyses were done.

Element	ASAP Label	Material	Radii	Thickness	n(λ.)	α	3
			(mm)	(mm)	(0.9 <i>,</i> 1.7 μm)	(mm⁻¹)	0
NIR doublet #2	LENS_5.Z_38_39	CaF ₂	187.77,	51	1.42965613	2 e-6	0.0001
			-544.587		1.425357297		
Fold mirror	FM	Al	∞				0.06
Grating	G1	fused	∞	20	1.45184721	5 e-5	0.001
		quartz			1.442289604		
Polarizing		calcite					
beamsplitter							
Camera #1	LENS_6.Z_43_44	CaF ₂	291.00,	43	1.42965613	2 e-6	0.00009
			-327.36		1.425357297		
Camera #2	LENS_7.Z_45_46	S-LAM66	-291.78,	7	1.78122433	3 e-4	0.002
			-829.03		1.740000000		
Camera #3	LENS_8.Z_47_48	CaF ₂	170.65,	52	1.42965613	2 e-6	0.0001
			-331.61		1.425357297		
Camera #4	LENS_9.Z_49_50	Silica	-222.83,	10	1.45175395	1 e-3	0.0099
			-1942.54		1.44202000		
Camera #5	LENS_10.Z_51_52	I-FPL51Y	83.27,	13	1.49125332	1.5 e-4	0.002
			442.82		1.48486000		
Camera #6	LENS_11.Z_53_54	S-LAM66	-163.31,	4	1.78122433	3 e-4	0.0012
			164.26		1.74000000		

Table 5. Optical components housed in the pre-dewar, which will operate at -40 $^{\circ}$ C.

4 Pre-Dewar

The pre-dewar contains all mounts for the optics in the previous section, along with mechanisms for inserting the gratings, etalons, blocking filters, and polarizing beamsplitter into the beam, as shown in **Figure 1**. However, to get an initial estimate of the required operating temperature of the pre-dewar before the mechanical designs were mature, we used a conceptual design of the pre-dewar enclosure, and assumed that all components within the enclosure reached the stated pre-dewar temperature. **Figure 7** shows a top view of the conceptual pre-dewar used in our ASAP thermal model. The cyan structure is the pre-dewar enclosure,

the blue background is the telescope primary mirror, the white circles are the SAC mirrors, and the purple square is the NIR fold mirror. The blue arrows are rays that reflect off of the fold mirror to the

angled grating where they get diffracted to the camera and inside the dewar to the detector. A fraction of the rays are also transmitted through the grating and scatter off of the pre-dewar walls.

4.1 Initial Estimates

The thermal emission reaching the detector for a cutoff wavelength of $\lambda_{cutoff} = 1.7 \ \mu m$ is shown in **Figure 8** as a function of pre-dewar temperature. All ambient temperature components shown are assumed to be at a temperature of +20 °C. Based on these estimates, a working operating

Figure 8. Preliminary estimates of pre-dewar operating temperature. This plot shows the thermal emission from instrument components that reaches the detector as a function of the pre-dewar temperature. **PDO** is the optical components in the pre-dewar, **PD** is the pre-dewar enclosure itself, and **NCB** is the NIR camera barrel lens mounts. Ambient temperature components are assumed to be at $T_{amb} = +20$ °C. **AO** is the ambient optics, **CM** is the collimator mounts, and **GS** is the gold long slit. Sky continuum levels at the detector are shown for a range of spectral resolutions, assuming an instrument efficiency of 0.3.

temperature of -40 °C was chosen for the pre-dewar. This put the total background from the pre-dewar components a factor of ~5 below the lowest ambient temperature component, and ~20 below the sky at R=7000. Mil specs for many mechanisms go down to -50 °C, so -40 °C also seemed to be a reasonable level from the operational side.

5 Telescope

The telescope is modeled in ASAP as a circular primary mirror with 11 meter diameter, but including the effective thermal emissivity of the actual gaps between segments. The estimate of this emissivity, scaled by relative areas of segments and gaps, is shown in **Figure 9**. A mirror emissivity of $\varepsilon = 0.1$ is assumed for both the primary mirror segments and the spherical aberration corrector (SAC) mirrors, to simulate dirty mirrors. The effective value for the primary mirror with gaps between segments is $\varepsilon = 0.125$.

Two configurations are analyzed in ASAP: one with the payload centered above the spherical primary, and one at the tracker extremes of angle and translation such that the pupil is partially off of the primary mirror. In the second case, the floor emits with $\varepsilon = 1$. These two configurations are shown in **Figure 10**. Components included in the analysis are listed in **Table 6** with the assumed thermal emissivities. As a worst case estimate, this analysis does not include the telescope moving baffle to mask the floor.

Figure 10. Two configurations for thermal stray light analysis of the telescope. *Left*: Payload centered on the primary mirror. *Right*: Payload tracked to the extreme with the surrounding floor as an extra thermal emitter. An artificial 11-m diameter pupil is shown in wireframe for this case.

Tuble 0: component		
Element	ASAP Label	Emissivity
Primary mirror	PM.Z_1	0.125
mirror segments		0.1
segment gaps		0.95
SAC M2	SM.Z_3	0.1
SAC M3	TM.Z_4	0.1
SAC M4	QM.Z_7	0.1
SAC M5	MIR_5.Z_8	0.1
Back of M2	SM.BACK_3	0.95
Back of M4	QM.BACK_7	0.95
Floor around primary	FLOOR	1.0

Table 6.	Components in the telescope model.
----------	------------------------------------

6 Thermal Analysis

The conceptual ASAP model of RSS-NIR is shown in **Figure 11**. The optical components were imported from Zemax and the mechanical components were imported from SolidWorks. In this figure the instrument is configured for grating spectroscopy at the longest wavelength, $\lambda = 1.7 \mu m$, with the grating at an angle of 34° and the camera articulated to 68° (see grating efficiency contours in **Figure 13**).

6.1 Calibration of ASAP

As an initial calibration, we checked the results of the ASAP ray traces against two independent back of the envelope (BOE) calculations of the thermal emission from the slit assembly that reaches the detector with the instrument in imaging configuration (no grating in place, no camera articulation). The first BOE calculation was performed by Wolf. She constructed a simple Mathcad model in which a Hawaii-2RG detector array with $A_{det} = (18 \ \mu m \ x \ 2048)^2 = 1359 \ mm^2$ receives light from our camera via an f/2.025 beam (focal length = 302 mm) over the wavelength range of $\lambda = 0.8 - 2.5 \ \mu m$. The thermal radiation at each wavelength is calculated as the blackbody integral between λ_{min} and λ_{max} , as given in Equation (2). N_{TB} is the thermal background in $e^{-} s^{-1}$, η_{det} is a detector efficiency factor (set to 1), F_{λ} is the optics transmission (set to 1), h is the Planck constant, c is the speed of light, k is the Boltzmann constant, and T1 is the ambient temperature.

$$N_{TB} = A_{det} \cdot \Omega \cdot \int_{\lambda_{1}}^{\lambda_{2}} \eta_{det} \cdot F_{\lambda} \cdot \left(\frac{2 \cdot c}{\lambda^{4} \cdot exp\left(\frac{h \cdot c}{\lambda \cdot k \cdot T1} - 1\right)} \right) d\lambda$$
(2)

Results from the Wolf BOE calculation are shown in **Figure 12** for temperatures of 0 °C and -80 °C. At $\lambda = 1.7 \ \mu\text{m}$ and $T_{amb} = 0 \ ^{\circ}\text{C}$, the thermal background rate at the detector is $1.7 \ x \ 10^{-6} \ \text{e}^{-} \ \text{s}^{-1} \ \text{pixel}^{-1}$, or $1.67 \ x \ 10^{-16} \ \text{J} \ \text{s}^{-1} \ \text{mm}^{-2}$, converting it to the default units used in ASAP. At $\lambda = 1.3 \ \mu\text{m}$, the background rate is $2.65 \ x \ 10^{-20} \ \text{J} \ \text{s}^{-1} \ \text{mm}^{-2}$.

An ASAP ray trace of thermal emission from the long slit assembly results in a background level of 1.68 x 10^{-16} J s⁻¹ mm⁻² at $\lambda = 1.7$ µm at the detector plane. For this ray trace, all optical coatings were set to be completely transmitting since no optical losses were assumed in the BOE calculation.

6.2 Spectroscopy Mode

We began with analysis of the spectroscopy modes of the instrument, since sky-limited spectroscopy of faint targets at high resolution will be the observations most affected by the instrument thermal background preventing us from reaching the sky continuum limit. Spectroscopy mode observing is classical grating spectroscopy using volume phase holographic

gratings (VPHGs). To take advantage of the superblaze efficiency function of these gratings, the grating and camera articulate (0 to 50° for the grating and 0 to 100° for the camera). The initial proposed suite

of gratings for RSS-NIR (at the time of PDR) is shown in **Figure 13**. Because the longest wavelength in the spectral range contributes the most instrument thermal background, the thermal analysis for this observing mode is done for a configuration that has high efficiency at our long wavelength cutoff of $\lambda = 1.7 \mu m$. At this wavelength we chose a configuration with the 660 l/mm grating at an angle of 34° and the camera at an angle of 68° as the default for analysis.

For analyzing instrument thermal backgrounds at shorter cutoff wavelengths we need to tune the grating to the optimum coupling angle for each wavelength. To exactly determine the most efficient grating angles we ran a series of quick ray traces (1000 rays for each emitting surface, rather than the standard 10,000 rays) for slit emission at different grating angles. The results are shown in Figure 14 for an ambient temperature of +20 °C. The flux at the detector will go down by approximately a factor of 10 per ΔT_{amb} = -20 °C. Optimum coupling angles for the 660 l/mm grating

are 28°, 29°, 30°, 31°, 32°, and 34° for λ_c = 1.4, 1.45, 1.5, 1.55, 1.6, and 1.7 μ m, respectively.

6.3 NIR Sky Background

High resolution NIR spectra of the SALT site at Sutherland do not exist. Therefore, we use data from Maunea Kea in Hawaii, shown in Figure 15. Broadband measurements from both sites are taken from Taka Nagayama's thesis and shown as symbols. Values are given in Table 7. Because the broadband measurements are close, and for lack of better information, we think it is reasonable to use the Maunea Kea night sky for estimating sky backgrounds for SALT. We smooth this spectrum to the proposed resolutions available on RSS-NIR and take the sky continuum levels for each in between OH emission lines near 1.7 μ m. These sky values are multiplied by the estimated instrument throughput, 0.3, and used for comparison to our instrument thermal backgrounds throughout the analysis. Sky continuum values at $\lambda = 1.7 \,\mu\text{m}$ with instrument efficiency applied are given in **Table 8**.

Table 7. Broadband measurements of the NIR hight sky (from Taka Nagayama's thesis).							
Site	J (mag)	H (mag)	Ks (mag)	Source			
Mauna Kea	15.6	13.6	13.4	UKIRT/UFTI (web)			
Sutherland	15.0 - 15.5	13.2 – 14.4	12.0 - 13.2	IRSF/SIRIUS (thesis)			

Table 7	Broadband	measurements	of the	NIR night sky	(from	Taka Nagaw	ama's thesis)
Table /.	Di Gaubanu	measurements	UI LITE	INITY HIGHL SKY	y (monn	i aka wagay	anna s thesisj.

Resolution (R)	1000	2000	4000	7000	8000
Sky cont. (W)	2.80033E-13	1.40512E-13	7.02588E-14	4.02132E-14	3.5206E-14

6.3.1 Spectral Resolution

Because we will be providing gratings at low spectral resolutions for use on bright objects, a discussion of resolution in the presence of night sky emission lines is important. We smooth the night sky emission spectrum to spectral resolutions of interest and plot them in **Figure 16**. At R < 4000 the majority of night sky lines are blended and observations of objects cannot reach the true sky continuum between these lines. This is fine for bright objects, but not for faint sky-limited observations. Simulations for the FIRE instrument on the Magellan Telescope have shown that only at R > 3500 is less than half of the J-band affected by night sky lines. They find an optimal resolution of R \approx 6000 when considering both the sky and instrument sensitivity. Our analysis shows that over the RSS-NIR spectral range of $\lambda = 0.9 - 1.7 \mu m$, at R=2000, 33% of the spectrum is free of sky emission lines; at R=4000, 47% is free; and at R=7000, 54% is free. Therefore, although upcoming plots may show that our instrument background is below the sky continuum at low spectral resolutions, this continuum is contaminated by sky emission lines over most of the range and not the actual sky minimum between lines. Observations of faint objects should be made at R \geq 4000 to achieve the true sky continuum limit within specific atmospheric windows.

Figure 16. The same sky spectrum from **Figure 15** (in black) with expanded scales showing R=7000 overplotted in red and R=2000 in blue. Our analysis shows that for the spectral range of RSS-NIR, at R=2000, 33% of the spectrum is free of sky emission; at R=4000, 47% is free; and at R=7000, 54% is free. The FIRE instrument (NIR spectrograph for Magellan) team determined that their optimal spectral resolution was $R \approx 6000$ when considering both the sky and instrument sensitivity.

6.4 Identification of Critical Objects

The first step in an ASAP analysis is to identify all the critical objects in the system. This is done by placing an emitting source at the detector and ray tracing backwards through the system. Once this is done a list can be generated that contains the geometrical configuration factors (GCF), or view factors, of all surfaces that the detector sees. These factors can be used to gauge the relative importance of each surface to be considered as a thermal emitter in the system. Critical objects for our system are given in **Table 9**.

Object #	# Rays	GCF	Object name in ASAP	
377	2280	295.0483	LENS_11.Z_53	
379	2080	269.8813	LENS_11.EDGE_53_54	
229	1584	177.6527	Default.NIR OPTICS BODY-2-surface1.Face1	
228	1512	169.965	Default.NIR OPTICS BODY-2-surface1.Face0	
376	775	90.13571	LENS_10.EDGE_51_52	
248	636	82.95987	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face18	
250	619	81.10886	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face20	
240	618	81.0479	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face10	
238	618	80.71067	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face8	
236	615	80.38665	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face6	
254	613	80.28001	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face24	
252	602	78.66436	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face22	

Table 9. Critical objects identified in ASAP, sorted by GCF.

1 146 604 78.19604 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face16 242 457 59.70745 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face12 237 452 59.25385 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face3 234 428 55.77671 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face3 234 428 55.63490 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 54.966481 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 53.3780 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face5 243 317 53.35780 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face6 245 23.37611 Default.ND-70_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face13 233 233 22.8641 Default.ND OPTICS BODY-1-surface1.Face2 245 23.37611 Default.ND OPTICS BODY-1-surface1.Face1 252 242 23.208611 Default.NP OPTICS BODY-1-surface1.Face1 264 23.7577 MIR_5.BACK_9 S 278	Object #	# Ravs	GCF	Object name in ASAP		
15 051 0512001 0512001 242 457 59.70745 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face12 237 452 59.2385 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face3 244 428 55.767.01 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face14 234 426 55.41135 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 54.96481 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 235 387 50.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 243 317 35.337580 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face5 243 317 35.337580 Default.NN FOUNSC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 234 225.3261 LEMS_9.9.8ACK_PLANE_Z 5.0 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face1 236 126 32.24408 PM.Z 1 237 131 14.01043 LEMS 9.EBGE_49_50 368 126 32.253832 Default.NIR OPTICS BODY-1-surface1.Face1 </td <td>246</td> <td>604</td> <td>78 19604</td> <td colspan="3">Default ND-10 WISC CONCEPT MODEL 4-1/PART1-1-surface1 Face16</td>	246	604	78 19604	Default ND-10 WISC CONCEPT MODEL 4-1/PART1-1-surface1 Face16		
131 132 132 133 134 133 134 133 134 133 134 133 134 133 134 133 134 133 <th133< th=""> <th134< th=""> <th133< th=""></th133<></th134<></th133<>	240	457	59 70745	Default ND-10 WISC CONCEPT MODEL 4-1/PART1-1-surface1 Face12		
123 428 55.77671 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face3 244 428 55.63499 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 234 426 55.43135 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 54.96481 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 235 387 50.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 233 23.37581 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 233 23.37581 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 231 453 22.44088 PM.Z_1 233 22.59261 LENS_9_BACK_PLANE_Z 50 234 233 22.37611 Default.NIR OPTICS BODY-1-surface1.Face1 234 233 22.44088 PM.Z_1 1 234 233 28.37571 MIR_5.BACK_9LANE_Z 48 1 336 19 8.257573 MIR_5.BACK_3 2 233 54 5.25373 SM.BACK_3 2 233	242	452	59.76745	Default ND-10_WISC_CONCEPT_MODEL_4_1/DAPT1_1_surface1_Ecco7		
23 426 55.6349 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face14 234 428 55.6349 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 54.96481 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 53.3179 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 233 323 25.9261 LENS 9.BACK_PLANE_ZONCEPT_MODEL_4-1/PART1-1-surface1.Face5 243 317 35.35789 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 234 223 25.9261 LENS 9.BACK_PLANE_Z 50 224 223 20.86611 Default.NR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS 9.BACK_PLANE_Z 48 316 19 8.72577 MIR_S.BACK_0 316 19 8.72577 MIR_S.BACK_3 223 54 5.258392 Default.NR OPTICS BODY-1-surface1.Face0 310 119 5.718073 SM.BACK_3 223 54 5.258392 Default.NR OPTICS BODY-1-surface1.Face3 310	237	432	55 77671	Default ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1 Face3		
234 426 53.03335 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face4 239 424 54.96481 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 235 387 50.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 236 387 50.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 237 233 25.9261 LENS_9.BACK_PLANE_Z_50 244 245 23.37611 Default.NR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PM.Z_1 244 223 20.88611 Default.NR OPTICS BODY-1-surface1.Face1 377 131 14.0104 LENS_9.EDGE_49_50 369 126 13.24288 LENS_8.BACK_9LANE_Z_48 310 198 8.725787 MIR_5.BACK_8 323 14.50040 DM.EDGE 3.0119 330 19 5.238932 Default.NIR OPTICS BODY-1-surface1.Face0 3310 104 4.560789 QM.BACK_3 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.F	233	420	55.77071			
239 420 53.4133 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-I-surface1.Face9 241 406 53.3179 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face11 235 387 50.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face13 241 406 53.3179 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face1 243 317 233 25.9261 LENS_9.BACK_PLANE_Z_50 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.4098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.EDGE_49_50 366 199 8.757877 MIR_5.BACK_8 316 199 8.757873 SB.ACK_8 310 19 S.218099 TM.BACK_3 224 5.4 S.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 226 5.4 S.163016 Default.NIR OPTICS BODY-1-sur	244	420	55.05499	Default ND 10_WISC_CONCEPT_MODEL_4-1/PART1-1-Sufface14		
239 424 34.9648. Default.ND-10_WISC_CONCEPT_MODEL_4-1/PARTI-1-surface1.Face5 231 406 53.317 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PARTI-1-surface1.Face5 233 317 35.35789 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PARTI-1-surface1.Face13 235 325.9261 LENS_9.BACK_PLANE_Z_50 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PML_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.BACK_PLANE_Z_48 372 131 14.01043 LENS_9.BACK_8 372 131 14.01043 LENS_9.BACK_8 373 233 Default.NIR OPTICS BODY-1-surface1.Face1 374 38 6.367104 DML BOE 375 SMLBACK_3 Default.NIR OPTICS BODY-1-surface1.Face3 376 4.56708 QMLBACK_4 Default.NIR OPTICS BODY-1-surface1.Face3 371 14 4.560789 QMLBACK_4 Default.PIS COLLIMATOR ASSEMBLY 090703-1/FIS COLIMATOR BARREL BL	234	420	55.41135	Default ND 10_WISC_CONCEPT_MODEL_4-1/PART1-1-SUNACE1.Face4		
241 406 53:31/9 Default.ND-10_WISC_CONCEPT_MODEL_41/PART1-1:surface1.Face11 235 387 50:38651 Default.ND-10_WISC_CONCEPT_MODEL_41/PART1-1:surface1.Face5 243 317 35:35789 Default.ND-10_WISC_CONCEPT_MODEL_41/PART1-1:surface1.Face65 243 317 35:35789 Default.NIR OPTICS BODY-1:surface1.Face2 212 223 224 223 20.88611 Default.NIR OPTICS BODY-1:surface1.Face1 224 223 20.88611 Default.NIR OPTICS BODY-1:surface1.Face1 373 326 126 13:24288 LENS_9.BACK_PLANE_Z.48 366 316 199 8.725787 MIR_S.BACK_8 368 316 199 8.725787 MIR_S.BACK_4 366 306 80 5.759573 SM.BACK_3 366 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face3 310 310 119 5.218099 TM.BACK_4 367 226 54 5.8731 COVER-1-surface1.Face3 313 104 4.56078	239	424	54.96481	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surrace1.Face9		
235 387 S0.38651 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face13 373 233 25.9261 LENS_9.BACK_PLANE_Z_50 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.EDGE_49_50 369 126 13.24288 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 336 6.367104 DM.EDGE 306 80 5.759573 310 19 5.218099 310 19 5.218099 313 104 4.560789 0 Patilt.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 0 Patilt.PIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR BARREL BLADDER 226 54 5.163016 231 137 04/ER-1.Face2 24 3.878713 <t< td=""><td>241</td><td>406</td><td>53.3179</td><td>Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face11</td></t<>	241	406	53.3179	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face11		
243 317 35.35789 Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face13 373 233 25.921 LENS_9.BACK_PLANE_Z_50 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.EDGE_49_50 369 126 13.24288 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 306 80 5.759573 SM.BACK_3 223 54 5.5258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.153016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR BARREL BLADDER 24 54 3.878713 27 91 3.670911 DM.BACK 351 42	235	387	50.38651	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face5		
373 233 25.9261 LINS_9.BACK_PLANE_Z_50 225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.EDGE_49_50 369 126 13.242488 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 336 104 5.367104 DM.EDGE 306 80 5.759573 SM.BACK_3 223 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.PIFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 115 59 4.162119 surface1.Face2 226 54 3.878713 COVER-1-surface1.Face11 222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.2.36 364	243	317	35.35789	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face13		
225 245 23.37611 Default.NIR OPTICS BODY-1-surface1.Face2 301 453 22.44098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_9.EDGE_49_50 369 126 13.24288 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.16316 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR BARREL BLADDER 2 42 54 3.878713 COVER-1-surface1.Face1 222 51 3.790533 FM.EDGE 24 9 3.670311 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28	373	233	25.9261	LENS_9.BACK_PLANE_Z_50		
301 453 32.44098 PM.Z_1 224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 3 88 6.367104 DM.EDGE 306 80 5.755575 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.63016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 9 A.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR BARREL BLADDER 42 54 3.878713 COVER-1-surface1.Face11 222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 3 364 28 2.787236 368 28 2.787236 LENS_F.5.Z.36 361 17	225	245	23.37611	Default.NIR OPTICS BODY-1-surface1.Face2		
224 223 20.88611 Default.NIR OPTICS BODY-1-surface1.Face1 372 131 14.01043 LENS_B.BGE (49_50) 369 126 13.2428 LENS_B.BACK_PLANE_Z.48 3 88 6.367104 DM.EDGE 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 311 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 22 54 3.878713 COVER-1-surface1.Face11 2122 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z 36 364 28 2.519003 LENS_6.BACK_PLANE_Z 44 Default.PFIS Field Lens Assembly 082603-1/Field Lens	301	453	22.44098	PM.Z_1		
372 131 14.01043 LENS_9.EDGE_49_50 369 126 13.24288 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.63016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 2 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z.36 364 28 2.787236 LENS_5.Z.36 364 28 2.519003 LENS_7.FRONT_PLANE_Z.45 361 17 1.419935 LENS_6.BACK_PLANE_Z.44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-	224	223	20.88611	Default.NIR OPTICS BODY-1-surface1.Face1		
369 126 13.24288 LENS_8.BACK_PLANE_Z_48 316 199 8.725787 MIR_5.BACK_8 3 88 6.367104 DM.EDGE 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 222 51 3.790533 FM.EDGE ENS_8.EDGE 47_48 364 28 2.787236 LENS_8.EDGE 47_48 ENS_8.EDGE 47_48 364 28 2.787236 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS C	372	131	14.01043	LENS_9.EDGE_49_50		
316 199 8.725787 MIR_5.BACK_8 33 88 6.367104 DM.EDGE 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/FIS COLIMATOR ELEMENT 7 CELL-1- 55 54 3.670911 9 0efault.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 42 54 3.878713 COVER-1-surface1.Face1 2 24 9 3.670911 364 28 2.787236 ENS_5.5.236 2.51003 364 28 2.519003 11.91581 surface1.Face3 203 160 1.131581 364 28 2.519003 11.9159 Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1-	369	126	13.24288	LENS_8.BACK_PLANE_Z_48		
3 88 6.367104 DM.EDGE 306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 200418.748.243.243.243.243.243.243.243.243.243.243	316	199	8.725787	MIR_5.BACK_8		
306 80 5.759573 SM.BACK_3 223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER COVER-1-surface1.Face1 222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_6.EDGE_47_48 361 17 1.419935 LENS_0.E.BACK_PLANE_Z_45 361 17 1.419935 LENS_0.E.BACK_PLANE_Z_44 Default.PFIS Fold Lens Assembly 090703-1/COLLIMATORFLANGEINTERFACE-1- Surface1.Face3 319 20 1.037534 LENS_0.EDGE_43_44 7 243 1.097504 <td>3</td> <td>88</td> <td>6.367104</td> <td>DM.EDGE</td>	3	88	6.367104	DM.EDGE		
223 54 5.258392 Default.NIR OPTICS BODY-1-surface1.Face0 310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 242 54 3.878713 2222 51 3.790533 FM.EDGE 249 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.787236 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 319 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.050718 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS Field Lens Assembly 082	306	80	5.759573	SM.BACK 3		
310 119 5.218099 TM.BACK_4 226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 42 54 3.878713 COVER-1-surface1.Face11 222 51 3.790533 FM.EDGE PM.BACK 351 42 3.116849 LENS_5.Z_36 ENS_5.Z_36 368 28 2.787236 LENS_5.RDGE_47_48 ENS_5.Z_36 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face2 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1 360 14 1.0969 LENS_6.EDGE_43_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.05734 LENS_1.EDGE_11_12 Default.PFIS COLLIMATOR ASSEMB	223	54	5.258392	 Default.NIR OPTICS BODY-1-surface1.Face0		
226 54 5.163016 Default.NIR OPTICS BODY-1-surface1.Face3 313 104 4.560789 QM.BACK_7 15 59 4.162119 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- surface1.Face2 14 2.54 3.878713 COVER-1-surface1.Face1 15 59 4.162119 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 15 54 3.878713 COVER-1-surface1.Face1 16 1.790533 FM.EDGE Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 2 49 3.670911 DM.BACK DM.BACK 351 42 3.116849 LENS_5.Z_36 DEfault.PFIS 364 28 2.787236 LENS_7.FRONT_PLANE_Z_45 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.07354 LENS_6.E	310	119	5.218099	TM.BACK 4		
313 104 4.560789 QM.BACK_7 15 59 4.162119 surface1.Face2 16 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 17 24 3.878713 COVER-1-surface1.Face11 17 222 51 3.790533 FM.EDGE 17 249 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_5.Z_36 361 17 1.419935 LENS_6.BACK_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 17 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 19 1.281411 surface1.Face3 19 1.281411 surface1.Face3 19 1.131581 surface1.Face2 360 14 1.0997504 1.131581 surface1.Face2 360 14 1.097504 24 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 <t< td=""><td>226</td><td>54</td><td>5.163016</td><td>Default.NIR OPTICS BODY-1-surface1.Face3</td></t<>	226	54	5.163016	Default.NIR OPTICS BODY-1-surface1.Face3		
Dis Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7 CELL-1- 15 59 4.162119 surface1.Face2 2 befault.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER 222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.2_36 368 28 2.787236 LENS_5.2_36 364 28 2.787236 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 19 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 36 360 14 1.10969 LENS_6.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/FIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- Default.PFIS COLLIMATO	313	104	4 560789	OM BACK 7		
15 59 4.162119 Surface1.Face2 2 54 3.878713 COVER-1-surface1.Face11 2222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 19 1 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 1.131581 surface1.Face2 360 14 1.00969 LENS_6.EDGE_43_44 7 7 243 1.097504 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-1- 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIM	515	101	11500705	Default PEIS COLUMATOR ASSEMBLY 090703-1/PEIS COLUMATOR FLEMENT 7 CELL-1-		
10 10<	15	59	4.162119	surface1.Face2		
42 54 3.878713 COVER-1-surface1.Face11 222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 0 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.10969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 0 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face1 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-<				Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER		
222 51 3.790533 FM.EDGE 2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.10969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-1 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 5 14 55 14 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/C	42	54	3.878713	COVER-1-surface1.Face11		
2 49 3.670911 DM.BACK 351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.10969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 <td< td=""><td>222</td><td>51</td><td>3.790533</td><td>FM.EDGE</td></td<>	222	51	3.790533	FM.EDGE		
351 42 3.116849 LENS_5.Z_36 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.0969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTER	2	49	3.670911	DM.BACK		
361 12 5110013 Extra_ous 368 28 2.787236 LENS_8.EDGE_47_48 364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 9 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 9 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.10969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 9 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 9 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 9 0.861514 surface1.Face4 311 16 <td>351</td> <td>42</td> <td>3 116849</td> <td>1ENS 5.7.36</td>	351	42	3 116849	1ENS 5.7.36		
364 28 2.519003 LENS_7.FRONT_PLANE_Z_45 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 360 14 1.00969 LENS_6.EDGE_43_44 7 243 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-1- 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 52 24 0.861514 surface1.Face4 311 16	368	28	2 787236	LENS_8 EDGE 47 48		
364 20 2.515005 2.1710041_1 EARL_2_15 361 17 1.419935 LENS_6.BACK_PLANE_Z_44 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 51 19 1.281411 surface1.Face3 0 Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1- 203 160 1.131581 surface1.Face2 360 14 1.10969 LENS_6.EDGE_43_44 7 243 1.097504 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3 319 20 1.073534 LENS_1.EDGE_11_12 0 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 52 24 0.861514 surface1.Face4 311 16 0.701493 OMZ 7	364	20	2 519003	LENS_0.2002_47_40		
301171.413933LENS_0.BACK_FLANK_2_440Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-51191.281411surface1.Face3Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1-2031601.131581surface1.Face236014360141.09691.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.0735341.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.0735341.0507181-surface1.Face18179201.0507181.surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face4311311160.701493311160.701493301160.7014933020M.7314304.7	261	17	1 /10025	LENS 6 BACK DIANE 7 44		
51191.281411Surface1.Face32031601.131581Surface1.Face2360141.10969LENS_6.EDGE_43_4472431.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-1179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-52240.861514surface1.Face4311160.701493OM.7	501	17	1.415555	Default DEIS COLUMATOR ASSEMBLY 000703-1/COLUMATORELANGEINTEREACE-1-		
Jin 191.201411Jundee1.1 dee32031601.131581Surface1.Face2360141.10969LENS_6.EDGE_43_4472431.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-52240.861514surface1.Face4311160.701493QM.ZZ	51	19	1 281411	surface1 Face3		
2031601.131581surface1.Face2360141.10969LENS_6.EDGE_43_4472431.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-52240.861514surface1.Face4311160.701493QM.ZZ	51	15	1.201411	Default PEIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1-		
1001101001Sundefinited360141.10969LENS_6.EDGE_43_4472431.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-52240.861514surface1.Face4311160.701493QM.7	203	160	1 131581	surface1 Face2		
300141.10303LENS_1.EDGL_13_4472431.097504Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face3319201.073534LENS_1.EDGE_11_12Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-179201.0507181-surface1.Face18Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-55141.017841surface1.Face7Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-52240.861514surface1.Face4311160.701493QM.ZZ	360	14	1 10969	LENS 6 EDGE 43 44		
319 20 1.057354 Default.115 COLLIMATOR ASSEMBLY 050705 1/CELE 2 SEAT 1 surface1.1 acc3 319 20 1.073534 LENS_1.EDGE_11_12 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 20 1.050718 1-surface1.Face18 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 52 24 0.861514 311 16 0.701493	7	2/13	1.10505	Default PEIS COLUMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1 Face3		
319 20 1.073334 LLN3_1.LDGL_11_12 0 Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring- 179 179 20 1.050718 1-surface1.Face18 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 55 14 1.017841 surface1.Face7 0 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 52 24 54 0.861514 surface1.Face4 311 16 0.701493 QM.7	, 210	245	1.037504	LENS 1 EDGE 11 12		
179 20 1.050718 1-surface1.Face18 179 20 1.050718 1-surface1.Face18 179 1.017841 Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 55 14 1.017841 surface1.Face7 152 24 0.861514 surface1.Face4 311 16 0.701493 QM.7	515	20	1.073534	Default DEIS Eigld Long Assembly 082602-1/DEIS Eigld Long Element 2 Pataining Ping-		
175 20 1.050718 1 surface1.race18 55 14 1.017841 Surface1.Face7 52 24 0.861514 Surface1.Face4 311 16 0.701493 QM.7	179	20	1 050718	1-surface1 Face18		
55 14 1.017841 surface1.Face7 52 24 0.861514 surface1.Face4 311 16 0.701493 OM Z	1/3	20	1.030/10			
Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1- 52 24 0.861514 surface1.Face4 311 16 0.701493 QM.Z. Z	55	14	1 017841	surface1 Face7		
52 24 0.861514 surface1.Face4 311 16 0.701493 QMZ 7		14	1.01/041	Default PEIS COLUMATOR ASSEMBLY 090703-1/COLUMATORELANGEINTEREACE-1-		
311 16 0.701493 OMZ 7	52	24	0 861514	surface1 Face4		
	211	16	0 701493	OM 7 7		

Object #	# Rays	GCF	Object name in ASAP			
357	14	0.564417	LENS 5.EDGE 38 39			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7			
28	9	0.563395	RETAINING RING-1-surface1.Face2			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-			
53	7	0.50556	surface1.Face5			
353	33	0.374565	LENS_5.EDGE_36_37			
365	4	0.355342	LENS_7.EDGE_45_46			
324	5	0.276372	LENS_1.FRONT_PLANE_Z_13			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER			
32	4	0.275513	COVER-1-surface1.Face1			
312	6	0.263085	QM.EDGE_7			
378	2	0.21968	LENS 11.Z 54			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLLIMATOR ELEMENT 3			
120	199	0.162256	BEZEL-1-surface1.Face6			
			Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1-			
201	7	0.137067	surface1.Face0			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLIMATOR BARREL BLADDER			
33	2	0.131792	COVER-1-surface1.Face2			
227	1	9.64E-02	Default.NIR OPTICS BODY-1-surface1.Face4			
			Default.PFIS Field Lens Assembly 082603-1/Field Lens Element 1 Retaining Ring-1-			
202	7	9.20E-02	surface1.Face1			
304	2	8.77E-02	SM.Z 3			
323	256	8.04E-02	LENS 1.Z 14			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Bladder Cover-1-			
210	519	7.78E-02	surface1.Face5			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 4			
106	2	7.39E-02	RETAINING RING 2-1-surface1.Face0			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 4			
112	1	7.28E-02	RETAINING RING 2-1-surface1.Face6			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-			
50	10	7.06E-02	surface1.Face2			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/BELLEVILLE B0637-032-12-			
90	1	7.04E-02	surface1.Face1			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/BELLEVILLE B0637-032-12-			
89	1	7.04E-02	surface1.Face0			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/DIN 912_M6 X 1_100_NONE-12-			
88	1	7.04E-02	surface1.Face0			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 1 Protective			
218	1524	2.20E-02	Ring-1-surface1.Face6			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Bladder Cover-1-			
211	358	1.63E-02	surface1.Face6			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Bladder Cover-1-			
205	425	1.50E-02	surface1.Face0			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/COLLIMATORFLANGEINTERFACE-1-			
57	14	1.31E-02	surface1.Face9			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-			
180	20	1.24E-02	1-surface2.Face0			
333	10	1.03E-02	LENS_2.EDGE_20_21			
187	66	7.40E-03	Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Cell-1-			

Object #	# Rays	GCF	Object name in ASAP			
			surface2.Face3			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLLIMATOR SHIM RING-1-			
11	9	6.89E-03	surface1.Face0			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-			
161	10	6.77E-03	1-surface1.Face0			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-			
162	9	6.60E-03	1-surface1.Face1			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-			
177	6	6.55E-03	1-surface1.Face16			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Retaining Ring-			
178	7	5.88E-03	1-surface1.Face17			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 2 Cell-1-			
185	37	2.23E-03	surface2.Face1			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/BELLEVILLE B0637-032-13-			
125	1	2.14E-03	surface1.Face0			
314	2	1.93E-03	MIR_5.Z_8			
221	1	1.93E-03	FM.BACK			
			Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 1 Protective			
212	547	1.88E-03	Ring-1-surface1.Face0			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/BELLEVILLE B0637-032-14-			
128	1	1.80E-03	surface1.Face1			
383	9	1.75E-03	BAFFLE.T2			
355	1	1.54E-03	LENS_5.EDGE_37_38			
8	2	1.53E-03	Default.PFIS COLLIMATOR ASSEMBLY 090703-1/CELL 2 SEAT-1-surface1.Face4			
			Default.PFIS Field Lens Assembly 082603-1/DIN 912_M4 X 0~7_16_NONE2-2-			
149	2	1.34E-03	surface1.Face0			
336	1	1.25E-03	LENS_3.EDGE_24_25			
380	2	8.97E-04	FP.Z_56			
382	21	8.67E-04	BAFFLE.T1			
			Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLIMATOR ELEMENT 7			
26	1	7.94E-04	RETAINING RING-1-surface1.Face0			
110	4	7.005.04	Default.PFIS COLLIMATOR ASSEMBLY 090703-1/PFIS COLLIMATOR ELEMENT 3			
118	1	7.66E-04	BEZEL-1-surface1.Face4			
331	1	7.61E-04	LENS_2.Z_21			
104	1		Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Element 1 Cell-1-			
194	1	0.01E-04	SuridLes.FdLeu			
204	1		Default.PFIS Field Lefts Assembly 082003-1/Field Lefts Element 1 Retaining Ring-1-			
204	1	5.75E-04	Sullace2.Face0			
209	3	2 54F-04	surface1 FaceA			
203	5	2.341-04	Default PEIS COLUMATOR ASSEMBLY 090703-1/COLUMATORELANGEINTEREACE-1-			
54	14	2 40F-04	surface1 Face6			
54	14	2.402 04	Default PEIS Field Lens Assembly 082603-1/PEIS Field Lens Bladder Cover-1-			
207	5	2.07F-04	surface1.Eace2			
	5		Default.PFIS Field Lens Assembly 082603-1/DIN 912 M4 X 0~7 16 NONF2-1-			
147	4	1.06E-04	surface1.Face0			
		-	Default.PFIS Field Lens Assembly 082603-1/DIN 912 M4 X 0~7 16 NONE2-1-			
148	2	3.41E-05	surface1.Face1			
208	10	2.59E-05	Default.PFIS Field Lens Assembly 082603-1/PFIS Field Lens Bladder Cover-1-			

Object #	# Rays	GCF	Object name in ASAP	
			surface1.Face3	
325	1	2.11E-05	LENS_1.EDGE_13_14	
230	1	7.72E-07	Default.ND-10_WISC_CONCEPT_MODEL_4-1/PART1-1-surface1.Face0	
359	1	3.63E-09	LENS_6.Z_44	
	2407			
TOTAL	2	2326.301		

6.5 Results for Ambient Temperature Components

We analyze the thermal emitters in the system in groups to reduce computational time for each run and to simplify interpretation of the results. The groups within the ambient temperature common components are those described in Section 3. Results of the ray traces are shown in **Figure 17**. This is a plot of the flux that reaches the detector from each of the component groups, at a long wavelength cutoff of $\lambda = 1.7 \mu m$, as a function of the ambient temperature. The dashed horizontal lines mark the sky continuum levels for spectral resolutions of R = 1000, 2000, 4000, 7000 at $\lambda = 1.7 \mu m$, assuming an

cutoff of 1.7 μm.

instrument efficiency of 0.3. For sky-limited observations the total instrument background must be below the sky continuum level. The solid vertical lines mark the median winter and summer temperatures at SALT, and the dotted lines denote the minimum winter temperature and maximum summer temperature. The top black curve with filled circles is for a black long slit assembly with ε = 0.95, the yellow curve is for ε = 0.06 (that of aluminum), and the gold curve is for ε = 0.02 (that of gold). We see that even if the long slit assembly is gold-coated, sky-limited observations at λ = 1.7 µm would never be possible because the emission from the slit alone is at the sky limit for the lowest spectral resolution at the minimum winter temperature.

The rest of the curves show the background from the optics and mounts, as indicated in the legend. The slit assembly contributes the highest background of all components. Breakdown of this radiation by component is given in **Table 10** as a percentage of the total flux reaching the detector from the long slit assembly.

Component	Percentage
beam covering part of slit blank	31.10
baffle on one side	23.83
inner indentation to slit location	20.18
1st indentation to slit location	15.06
flat top of slit blank	8.73
angled cut in top of slit blank	1.10
baffle on other side	0.00

Table 10.	Breakdown of therm	al radiation at the d	etector from the	long slit assembly.

6.5.1 Problem Component Identified

One component group to note in **Figure 17** is the field lens mount. The emission from this group is nearly as much as the slit. Upon investigation of where the rays originate, we see the reason in **Figure 18**. The bottom retaining ring follows the angle of the first element in the field lens. It is a 5 mm thick black anodized ring that emits straight into the highly curved lens surface and this radiation is refracted

into the center of beam and makes it through the entire system to the detector. *This is a strong radiation path that likely would not have been identified before the instrument was built without the prior thermal stray light analysis in ASAP.* We are having this ring cut down from a width of 5 mm to 2 mm and placing low emissivity gold foil on the surface facing the lens. We estimate that this will take the thermal emission down to that from other components. No surfaces in the collimator lens mounts seem to pose a similar problem because the radiation from them is not coupled into the beam nearly as efficiently as the field lens retaining ring case.

6.5.2 Slit Cooling

Because the slit is the limiting factor, we now investigate the effects of cooling it. If we assume that the field lens mount modification will make the thermal background from the first retaining ring negligible, total backgrounds reaching the detector are shown in **Figure 19**. The upper orange curve is the total radiation reaching the detector from all ambient temperature components. The other curves, listed in the legend, show the totals with the slit assembly held constant at different temperatures, some cooled below ambient, and the rest of the components floating at the ambient temperature. We see that even with the slit cooled to -20 °C, sky-limited observations at R=7000 and $\lambda = 1.7 \,\mu\text{m}$ would only be possible at the minimum winter temperatures. With the slit cooled to -40 °C these observations could be possible for T_{amb} < +10 °C, still excluding the summer months. Cooling the slit even more would make no

difference because the limiting factor then becomes the ambient temperature optics. At that point the collimator and field lens would need to be actively cooled to improve performance.

We should note that **Figure 19** assumes the best conditions where the emissivity of the slit is assumed to be ε = 0.02, the value for a gold mirror. In reality, the slit coating will likely have a higher emissivity, increasing the slit

radiation by a factor of 3-5 (for ε = 0.06-0.1). If the slit emissivity is increased, the totals would change as shown by the shaded regions in **Figure 21**. A slit emissivity of 0.1 would preclude sky-limited observations at R ≥ 4000 with the slit cooled to -20 °C, requiring further cooling to -40 °C for operation

at T_{amb} < +10 $^{\circ}$ C.

Even though the cooled slit would be purged with dry gas, local relative humidity and due points may limit how far below ambient temperatures we can practically cool the slit without creating condensation. Therefore, it is useful to replot the previous data as a function of slit temperature below ambient, dT_{slit}, rather than as absolute slit temperatures. This is

done in **Figure 20** for $\lambda_{cutoff} = 1.7 \mu m$. Preliminary analysis of the SALT relative humidity and due point data suggests that $dT_{slit} = -20$ to $-30 \degree C$ should be possible to achieve, while minimizing condensation, under most conditions.

6.5.3 Ambient Temperature Optics

The next highest contribution of thermal background from **Figure 17** comes from the ambient temperature optics. The breakdown of thermal emission from the optical components is shown in **Table 11**, given as a percentage of the total background on the detector from the optics. The direction of the thermal emission from the element is given in the second column. Radiation initially headed toward the detector goes directly there through the optical system. Radiation initially headed toward the slit reflects off of it and then directly into the beam. The highest contribution comes from the flattest optics, for which the thermal radiation is emitted most directly into the beam along the optical axis.

Element	Emission Direction	Percentage	
NIR doublet	slit	24.04	
waveplate compensator	detector	23.50	
waveplate compensator	slit	14.55	
collimator L3	detector	12.45	
collimator L3	slit	7.87	
collimator L2	detector	7.07	
field lens 1	slit	3.58	
collimator L2	slit	3.23	
dichroic	detector	1.26	
field lens 2	detector	1.17	
dichroic	slit	0.71	
collimator triplet 1	slit	0.36	
collimator triplet 3	detector	0.22	

Table 11. Breakdown of the thermal background at the detector from the optical elements.

A similar breakdown of the thermal radiation from components in the collimator lens mounts is given in **Table 12**. The highest contributor is the top ring facing the detector and the second highest is the bottom ring facing the slit. Both of these could be reduced if necessary by adding low emissivity angled radiation shields to the mount.

Source	Component	Percent					
1	BLADDER_COVER_1_surface1_Face11	65.46					
27	CELL_2_SEAT_1_surface1_Face3	33.35					
18	ELEMENT_4_RETAINING_RING_2_1_surface1_Face4	0.42					
17	ELEMENT_4_RETAINING_RING_2_1_surface1_Face1	0.37					
5	ELEMENT_7_RETAINING_RING_1_surface1_Face4	0.31					
25	CELL_2_SEAT_1_surface1_Face5	0.08					

Table 12. Breakdown of the thermal background at the detector from the collimator mounts.

6.5.4 Telescope

Thermal emission from the telescope is not a problem for spectroscopy because the slit block most of the radiation. **Figure 22** shows the thermal background from the telescope that reaches the detector.

payload tracked to the maximum extreme. These two traces overlap on the plot.

6.5.5 Shorter Cutoff Wavelengths

Because the environmental conditions under which sky-limited spectroscopy out to $\lambda = 1.7 \ \mu m$ at high spectral resolution will be very limited, we now explore the instrument background for shorter cutoff wavelengths. **Figure 23** shows the total thermal background due to the long slit and the ambient temperature components for $\lambda_{cut} = 1.65$, 1.6, 1.55, and 1.5 μm . For $\lambda_{cut} = 1.6 \ \mu m$ (top right) we see that performance with no slit cooling, $dT_{slit} = 0 \ C$, is nearly equal to that with $dT_{slit} = -30 \ C \ at \ \lambda_{cut} = 1.7 \ \mu m$ (**Figure 20**). With no slit cooling, $\lambda_{cut} = 1.55 \ \mu m$ would allow sky-limited observations at the highest spectral resolutions up to the median summer temperature. With the slit cooled to $dT_{slit} = -20 \ C$, the cutoff wavelength could be pushed out to $\lambda_{cut} = 1.65 \ \mu m$ for the same performance. With the slit cooled to $dT_{slit} = -30 \ C$, $\lambda_{cut} = 1.7 \ \mu m$ observations at R=4000 would be close to the sky limit at the summer median temperature.

6.5.6 Environmental Conditions at SALT and Implications on Operability

Previously we analyzed the expected RSS-NIR thermal backgrounds at various temperatures. In this section we investigate SALT historical environmental data to translate the predicted instrument performance into operability on the telescope throughout the year. Average night time temperatures and distributions for the SALT site are shown in **Figure 24**. The top plot shows monthly night time averages over the period of Jan 2007 – Feb 2008. The lower two plots show temperature distributions for the hours between 18° astronomical twilight over the same time period.

Combining these data with our previous instrument background predictions, we now derive the percentages of astronomical hours during which sky-limited grating spectroscopy could be successfully obtained for our range of spectral resolutions. These percentages are shown in **Figure 25** for different long wavelength cutoffs as a function of the amount of slit cooling below the ambient temperature. The top left plot shows that for observations out to $\lambda_{cutoff} = 1.7 \mu m$ with no slit cooling, sky-limited observations will never be possible, even at the lowest spectral resolution. Cooling the slit to 20 °C below ambient brings the available hours up to 19% of the time for R=7000, 47% for R=4000, and 74% for R=7000. Cooling the slit even more to 30 °C below ambient gives a vast improvement: 41% for R=7000, 69% for R=4000, and 97% for R=2000.

wavelength cutoffs of 1.65 µm (top left), 1.6 µm (top right), 1.55 µm (bottom left), and 1.5 µm (bottom right).

Figure 24. Temperature data for the SALT site. These measurements are from the 10-m external weather tower, and match up with SALT payload temperatures to within 5 $^{\circ}$ C when the dome is open.

An alternative to cooling the slit is to limit observations to a shorter cutoff wavelength. If the slit is not cooled at all, $\lambda_{cutoff} = 1.6 \ \mu m$ (lower left plot) would allow sky-limited observations for comparable fractions of the time to the previous case of dT_{slit} = -30 °C out to λ = 1.7 μm : 47% at R=7000, 74% at R=4000, and 97% at R=2000. Cooling the slit to 40 °C below ambient does not gain much over 30 °C, and is not worth considering.

Table 13 summarizes the results for all cases analyzed using measured temperatures during astronomical twilight hours from Jan 2007 to Feb 2008 and predicted instrument thermal backgrounds for these temperatures. Column (1) is the assumed long wavelength cutoff (μ m), column (2) is the amount of slit cooling below the ambient temperature (°C), column (3) is the ambient temperature (°C) below which sky-limited observations are possible for R=7000, column (4) is the number of hours for which this occurs, column (5) is the percentage of hours for which this occurs, column (6) is the ambient temperature (°C) below which sky-limited observations are possible for R=4000, column (7) is the number of hours for which this occurs, column (8) is the percentage of hours for which this occurs, column (9) is the ambient temperature (°C) below which skylimited observations are possible for R=2000, column (10) is the number of hours for which this occurs, and column (11) is the percentage of hours for which this occurs.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		<u>R=7000</u>			<u>R=4000</u>		<u>R=2000</u>			
λ_{cutoff}	dT _{slit}	T _{amb}	# hrs	% hrs	T _{amb}	# hrs	% hrs	T _{amb}	# hrs	% hrs
1.7	0	-12	0	0.0	-8	0	0.0	-2.5	48	1.4
1.7	-20	3	666	19.2	8	1627	46.9	13	2577	74.4
1.7	-30	7	1417	40.9	12	2385	68.8	18	3353	96.7
1.7	-40	9	1822	52.6	14	2784	80.3	20	3440	99.2
1.65	0	0	251	7.2	5	1000	28.9	11	2205	63.6
1.65	-20	16	3122	90.1	20	3440	99.2	22	3460	99.8
1.65	-30	20	3440	99.2	> 24	3466	100.0	> 24	3466	100.0
1.65	-40	> 22	3460	99.8	> 24	3466	100.0	> 24	3466	100.0
1.6	0	8	1627	46.9	13	2577	74.4	18	3353	96.7
1.6	-20	22	3460	99.8	> 22	3466	100.0	> 22	3466	100.0
1.6	-30	> 22	3466	100.0	> 22	3466	100.0	> 22	3466	100.0
1.6	-40	> 22	3466	100.0	> 22	3466	100.0	> 22	3466	100.0
1.55	0	15	2977	85.9	> 23	3464	99.9	> 23	3464	99.9
1.55	-20	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0
1.55	-30	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0
1.55	-40	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0
1.5	0	> 22	3460	99.8	> 23	3464	99.9	> 23	3464	99.9
1.5	-20	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0
1.5	-30	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0
1.5	-40	> 24	3466	100.0	> 24	3466	100.0	> 24	3466	100.0

Table 13. Hours available for sky-limited spectroscopy with RSS-NIR at SALT over the period of a year.

7 Long Wavelength Cutoff

7.1 Detector Quantum Efficiency Falloff

Little data exist on the falloff of detector quantum efficiency (QE) much beyond the cutoff wavelength. **Figure 26** shows a theoretical prediction from Teledyne (top). They claim that the detector sensitivity falls to a negligible level by 10% beyond the cutoff wavelength, which would be at $\lambda = 1.87 \mu m$ for a $\lambda_c =$ 1.7 μm cutoff detector. The two lower plots show a fit to the QE decrease of a HAWAII-2RG-1.7 μm detector from the SNAP program (Schubnell et al. 2008, Ferlet 2008). When these data were measured, the SNAP test setup could only measure an absolute QE to 3-4% accuracy. Therefore, the data points only went to $\lambda = 1.76 \mu m$ (Schubnell, private communication). This fit was extrapolated to longer wavelengths by Ferlet when analyzing thermal stray light for the FMOS fiber-fed NIR spectrographs on Subaru. The measured data show that the QE for this particular detector was down to 0.03 at $\lambda = 1.76 \mu m$. Assuming that the fit extrapolation holds, it predicts that the detector QE will be down to 2.46E-04 by $\lambda = 1.87 \mu m$, the Teledyne theoretical prediction of the point where sensitivity should be negligible.

Once we find out our exact detector cutoff wavelength, based on the upcoming Teledyne manufacturing runs and their results, these existing detector QE data will be used to develop the final specifications for our long wavelength cutoff filter performance requirements.

7.2 Long Wavelength Blocking Filters

We have a 5 position filter wheel in the cryogenic dewar. One position will be open (or contain a filter that begins blocking at a wavelength beyond our detector cutoff to allow narrow band Fabry-Perot observations to go out as far as possible), one position is blocked off for detector calibrations, and 3 positions are for long wavelength cutoff filters. Based on the estimated instrument thermal backgrounds and the temperature statistics for the SALT site, we can pick long wavelength cutoffs that will allow sky-limited spectroscopy to be carried out in different ambient conditions. **Figure 25** gives the typical percentages of astronomically dark hours available for sky-limited spectroscopic observations over the course of a year. We are currently baselining no slit cooling, with it left as a future upgrade path. This means that the filters we choose now should assume no slit cooling.

We have initially chosen cutoff wavelengths of $\lambda_{cutoff} = 1.65-1.67 \ \mu m$, 1.6 μm , and 1.55 μm for our 3 blocking filters. The longest range is to allow observations of the Fe II 1.644 μm line, desired by many science programs. Thermal modeling to date has shown that with a cutoff at 1.65 μm , sky-limited spectroscopy could be done 29% of the time at R=4000 and 7% of the time at R=7000. Further modeling will determine just how far beyond 1.65 μm we can push so that observations of the 1.644 μm line will not be compromised and we will still have acceptable thermal background levels. The 1.6 and 1.55 μm cutoffs will be selectable based on nightly ambient temperatures and what observations are in the SALT queue. At 1.55 μm , sky-limited spectroscopy at R=7000 should be possible 86% of the time. Shortening this wavelength any would quickly get into the atmospheric absorption trough at 1.35-1.45 μm , making the extra ~0.5 μm hardly worth the incremental extra coverage. After further detailed thermal analyses and science case development, the exact wavelengths of these 3 cutoff filters can be modified before the critical design stage with no impact to the instrument design.

8 Similar Instruments

A number of NIR instruments have attempted designs that were not fully cryogenic and relied on long wavelength blocking filters. Some were successful and some were not, where the level of success seems to depend heavily on the correct implementation of blocking filters.

CIRPASS (Parry et al. 2004) was a very successful fiber-fed NIR spectrograph used as a visiting instrument on Gemini and on the William Herschel Telescope. It operates at a spectral resolution of R~3000 out to wavelengths of 1.67 or 1.8 μ m. The spectrograph resides inside a freezer operating at -40 °C. Long wavelength blocking filters are contained within the cryogenic dewar. One with a cutoff at 1.85 μ m stays permanently mounted in the beam, and additional filters with cutoffs at 1.4 and 1.67 μ m are selectable via a filter wheel. FMOS (Dalton et al. 2006) is a fiber-fed spectrograph currently being commissioned on Subaru. Its design is partly based on CIRPASS. The spectrograph resides in a -70 °C freezer. The detector is sensitive out to λ = 2.5 µm, but light beyond 1.8 µm is blocked with a single cutoff filter. Initial commissioning revealed that the cutoff filter had not been properly specified for blocking far enough beyond the 2.5 µm detector cutoff. A filter leak at ~2.7 µm led to a large thermal background reaching the detector. The cutoff filter was corrected, and now instrument thermal backgrounds match very closely the levels predicted by their thermal modeling using ASAP (Gavin Dalton, private communication).

LRS-J (Tufts et al. 2004) was an extension to the Low Resolution Spectrograph (LRS) on the Hobby-Eberly Telescope (HET). It suffered from similar thermal background problems as FMOS. It used a 2.5 μ m sensitive detector with a cutoff filter blocking $\lambda > 1.35 \mu$ m because no instrument cooling was implemented upstream of the cryogenic dewar containing the blocking filter, camera optics, and detector. The thermal background difference at $\lambda = 1.35$ and 2.5 μ m is 7 orders of magnitude – too much blocking to get from a single filter.

All of these instruments used a detector that was sensitive out to $\lambda = 2.5 \ \mu$ m. We believe that our selection of a detector cutoff wavelength of 1.7 μ m will be a large step in the right direction of making our implementation a success. Our required blocking level at 1.7 μ m will be 5 orders of magnitude below the background at $\lambda = 2.5 \ \mu$ m. This fact, coupled with our extensive thermal analysis and ray tracing, and the fact that we have planned a number of cutoff filters that can be used in different ambient operating conditions, should all work together to make RSS-NIR a success.

9 Summary and Conclusions

Pre-dewar operating at -40 °C. Our initial thermal analysis of RSS-NIR used a conceptual instrument design, with existing components common to RSS-VIS, to estimate the required operating temperature of the pre-dewar. This was important early in the project as part of the instrument feasibility study. We determined that with an operating temperature of -40 °C, the thermal emission from the pre-dewar and its components will be negligible. The total background from the pre-dewar components will be a factor of ~5 below the lowest ambient temperature component and a factor of ~20 below the sky for spectroscopy at R=7000. This temperature is also good from the practical standpoint that a number of commercial mechanisms are rated for operation down to this temperature.

Slit cooling. We performed an analysis of the effects of cooling the slit. Thermal emission from this component is the largest contributor to the instrument's thermal background. We determined that cooling the slit to 30 °C below ambient would significantly increase the operability of RSS-NIR for sky-limited spectroscopy on faint targets (Section 6.5.6). An engineering feasibility study identified viable methods for implementing the cooling. However, at this time slit cooling is left as a future upgrade path (due to budgetary reasons) and not included in the baseline instrument design. For sky-limited spectroscopy, an ambient temperature slit will limit our long wavelength cutoff to $\lambda \sim 1.65 \,\mu m$, achievable in typical annual conditions 7% of the time at R=7000 and 29% of the time at R=4000.

<u>Gold-coating the slits</u>. All thermal analyses have assumed low emissivity gold coated slits. This is essential for operation beyond the J-band. Gold coating is relatively straightforward for the long slits. We are currently investigating methods for gold coating the carbon fiber multi-object spectroscopy slit masks. Since the slits in these masks are custom cut with a laser at the SALT facility, we will have to develop a process for doing so on gold-coated mask substrates. Carbon fiber mask blanks are currently being gold coated by 2 different companies and laser cutting tests at the SALT facility will follow. Our initial plan is to develop a process by which pre-coated blanks are supplied to SALT with either a durable enough coating to surviving slit cutting process, or with an overcoat that can be peeled off after slit cutting. (See the RSS-NIR Midterm Review Redbook for more details.)

Long wavelength cutoffs. Based on our thermal analyses, we have designed a 5-position cryogenic filter wheel inside the detector dewar. One position is open to allow observations out to the detector sensitivity cutoff, one is blanked off for detector calibrations, and three are for different long wavelength blocking filters. This will allow flexibility in sky-limited spectroscopic observations in varying ambient observatory temperatures. The longest wavelength will be at 1.65-1.67 μ m. An [Fe II] feature at 1.644 μ m is one desired by many science observations in the nearby ISM and star forming regions. Further thermal analysis will determine whether we can push this cutoff out far enough to not compromise this line, while still maintaining a reasonable instrument background. The other two cutoff wavelengths will be at $\lambda = 1.6$ and 1.55 μ m. These will allow sky-limited spectroscopy to be conducted most of the time at SALT (Section 6.5.6). We will use all information available on our specific detector long wavelength quantum efficiency falloff to specify the performance requirements on our blocking filters.

Identification of problem components. Our ASAP analysis has already identified one component that would have contributed significant instrument thermal background. This was the retaining ring on the field lens mount in the common optical path. We have modified this component to bring its thermal emission down to a tolerable level. This was an unexpected result that would have prevented the instrument from meeting its performance specifications, and one that we would not have caught without the ASAP analysis. It is also a good example of the interactive design philosophy between thermal analysis and mechanical design that we have adopted for RSS-NIR.

10 Future Work

Now that the mechanical design is maturing, detailed pre-dewar thermal analyses with actual components will be conducted. In these analyses we will determine required operating temperatures of key components like the NIR collimator doublet. This doublet is the window into the pre-dewar and the second element is a CaF₂ lens, which is very sensitive to thermal gradients. We will analyze in ASAP the maximum allowable temperature for this element to keep its thermal background down, and minimize the induced thermal stresses to this element in the mechanical mount and cooling designs. Other components, such as the articulation rail and pivot hub, penetrate through the pre-dewar floor. These components may not reach the nominal pre-dewar temperature, so ASAP analyses will determine where we require radiation shields to protect the detector from the radiation from such components. We will

design all radiation shielding, baffling, and the cold pupil mask within the pre-dewar by iterating between ASAP thermal analyses and detailed mechanical designs.

To date, only spectroscopic modes of RSS-NIR have been thermally analyzed. The next steps will include the Fabry-Perot instrument modes. We expect to be able to observe out to the detector cutoff with these modes, since only a narrow spectral band is transmitted by the etalon. Nevertheless, this will be thoroughly analyzed in ASAP, including the effects of the large etalon lineshape wings in the presence of bright night sky emission lines.

Finally, we will perform a detailed ghost analysis of the instrument in ASAP. This will include all thermal scattered light, as well as a VPHG ghost analysis as was done for FMOS (Ferlet 2008).

11 References

Dalton, G.B., Lewis, I.J., Bonfield, D.G., Holmes, A.R., Brooks, C.B., Lee, H., Tosh, I.A.J., Froud, T.R., Patel, M., Dipper, N.A., Blackburn, C., 2006, Proc. SPIE, 6269, 62694A-1.

Ferlet, M.J., 2008, Proc. SPIE, 7014, 701436.

- Parry, I., Bunker, A., Dean, A, Doherty, M., Horton, A., King, D., Lemoine-Busserole, M., Mackay, C., McMahon, R., edlen, S., harp, R., Smith, J., 2004, Proc. SPIE, 5492, 1135.
- M. Schubnell, M., Brown, M. G., Karabina, A., Lorenzon, W, Mostek, N., Mufson, S.,. Tarlé, G, Weaverdyck, C., 2008, Proc. SPIE 7021, 70210L.

Tufts, J.R., Hill, G.J., MacQueen, P.J., Wolf, M.J., 2004, Proc. SPIE, 5492, 1150.