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Abstract. Sequence prediction is a key component of intelligence. This can be 
extended to define a game between intelligent agents. An analog of a result of 
Legg shows that this game is a computational resources arms race for agents with 
enormous resources. Software experiments provide evidence that this is also true 
for agents with more modest resources. This arms race is a relevant issue for AI 
ethics. This paper also discusses physical limits on AGI theory.
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Introduction

Schmidhuber, Hutter and Legg have created a novel theoretical approach to artificial 
general intelligence (AGI). They have defined idealized intelligent agents [1, 2] and
used reinforcement learning as a framework for defining and measuring intelligence 
[3]. In their framework an agent interacts with its environment at a sequence of discrete 
times and its intelligence is measured by the sum of rewards it receives over the 
sequence of times, averaged over all environments. In order to maximize this sum, an
intelligent agent must learn to predict future rewards based on past observations and 
rewards. Hence, learning to predict sequences is an important part of intelligence.

A realistic environment for an agent includes competition, in the form of other 
agents whose rewards depend on reducing the rewards of the first agent. To model this 
situation, this paper extends the formalism of sequence prediction to a competition 
between two agents. Intuitively, the point of this paper is that agents with greater 
computational resources will win the competition. This point is established by a proof 
for agents with large resources and suggested by software experiments for agents with 
modest resources. This point has implications for AI ethics.

1. Sequence Prediction

In a recent paper Legg investigates algorithms for predicting infinite computable binary 
sequences [4], which are a key component of his definition of intelligence. He proves 
that there can be no elegant prediction algorithm that learns to predict all computable 
binary sequences. However, as his Lemma 6.2 makes clear, the difficulty lies entirely 
with sequences that are very expensive to compute. In order to discuss this further, we 
need a few brief definitions. N is the set of positive integers, B = {0, 1} is a binary 
alphabet, B* is the set of finite binary sequences (including the empty sequence), and 
B is the set of infinite binary sequences. A generator g is a program for a universal 
Turing machine that writes a sequence w  B to its output tape, and we write w = 



U(g). A predictor p is a program for a universal Turing machine that implements a total 
function B*  B. We say that a predictor p learns to predict a sequence x1 x2 x3 … 
B if there exists r  N such that n > r, p(x1 x2 x3 … xn) = xn+1. Let C  B denote the 
set of computable binary sequences computed by generators. Given a generator g such 
that w = U(g), let tg(n) denote the number of computation steps performed by g before 
the nth symbol of w is written.

Now, given any computable monotonically increasing function f: N  N, define Cf

= {w  C | g. U(g) = w and r  N, n > r. tg(n) < f(n)}. Then Lemma 6.2 can be 
stated as follows:

Paraphrase of Legg's Lemma 6.2. Given  any  computable  monotonically  
increasing  function  f: N  N, there exists a predictor pf that learns to predict all 
sequences in Cf. This is a bit different than Legg's statement of Lemma 6.2, but he does 
prove this statement.

Lloyd estimates that the universe contains no more than 1090 bits of information 
and can have performed no more than 10120 elementary operations during its history 
[5]. If we take the example of f(n) = 2n as Legg does, then for n > 400, f(n) is greater 
than Lloyd's estimate for the number of computations performed in the history of the 
universe. The laws of physics are not settled so Lloyd may be wrong, but there is no 
evidence of infinite information processes in the universe. So in the physical world it is 
reasonable to accept Lemma 6.2 as defining an elegant universal sequence predictor. 
This predictor can learn to predict any sequence that can be generated in our universe. 
But, as defined in the proof of Lemma 6.2, this elegant predictor requires too much 
computing time to be implemented in our universe. So this still leaves open the 
question of whether there exist sequence predictors efficient enough to be implemented 
in this universe and that can learn to predict any sequence that can be generated in this 
universe. It would be useful to have a mathematical definition of intelligence that 
includes a physically realistic limit on computational resources, as advocated by Wang 
[6].

2. Adversarial Sequence Prediction

One of the challenges for an intelligent mind in our world is competition from other 
intelligent minds. The sequences that we must learn to predict are often generated by 
minds that can observe our predictions and have an interest in preventing our accurate 
prediction. In order to investigate this situation define an evader e and a predictor p as 
programs for a universal Turing machine that implement total functions B*  B. A 
pair e and p play a game [7], where e produces a sequence x1 x2 x3 …  B according to 
xn+1 = e(y1 y2 y3 … yn) and p produces a sequence y1 y2 y3 …  B according to yn+1 = 
p(x1 x2 x3 … xn). The predictor p wins round n+1 if yn+1 = xn+1 and the evader e wins if 
yn+1  xn+1. We  say that  the predictor  p learns to predict the evader e  if  there  exists  
r  N such that n > r, yn = xn and we say the evader e learns to evade the predictor p
if there exists r  N such that n > r, yn  xn.

Note that an evader whose sequence of output symbols is independent of the 
prediction sequence is just a generator (the evader implements a function B*  B but is 
actually a program for a universal Turing machine that can write to its output tape 
while ignoring symbols from its input tape). Hence any universal predictor for evaders 
will also serve as a universal predictor for generators.



Also note the symmetry between evaders and predictors. Given a predictor p and 
an evader e, define an evader e' by the program that implements p modified to 
complement the binary symbols it writes to its output tape and define a predictor p' by 
the program that implements e modified to complement the binary symbols it reads 
from its input tape. Then p learns to predict e if and only if e' learns to evade p'.

Given any computable monotonically increasing function f: N  N, define Ef = the 
set of evaders e such that r  N, n > r. te(n) < f(n) and define Pf = the set of 
predictors p such that r  N, n > r. tp(n) < f(n). We can prove the following analogy 
to Legg's Lemma 6.2, for predictors and evaders.

Propostition 1. Given any computable monotonically increasing function f: N 
N, there exists a predictor pf that learns to predict all evaders in Ef and there exists an 
evader ef that learns to evade all predictors in Pf.

Proof. Construct a predictor pf as follows: Given an input sequence x1 x2 x3 … xn

and prediction history y1 y2 y3 … yn (this can either be remembered on a work tape by 
the program implementing pf, or reconstructed by recursive invocations of pf on initial 
subsequences of the input), run all evader programs of length n or less, using the 
prediction history y1 y2 y3 … yn as input to those programs, each for f(n+1) steps or until 
they've generated n+1 symbols. In a set Wn collect all generated sequences which 
contain n+1 symbols and whose first n symbols match the input sequence x1 x2 x3 … xn. 
Order the sequences in Wn according to a lexicographical ordering of the evader 
programs that generated them. If Wn is empty, then return a prediction of 1. If Wn is not 
empty, then return the n+1th symbol from the first sequence in the lexicographical 
ordering.

Assume that pf plays the game with an evader e  Ef whose program has length l, 
and let r  N be the value such that n > r. te(n) < f(n). Define m = max(l, r). Then for 
all n > m the sequence generated by e will be in Wn. For each evader e' previous to e in 
the lexicographical order ask if there exists r'  max(m, length of program 
implementing e') such that te'(r'+1) < f(r'+1), the output of e' matches the output of e for 
the first r' symbols, and the output of e' does not match the output of e at the r'+1th

symbol. If this is the case then this e' may cause an error in the prediction of pf at the 
r'+1th symbol, but e' cannot cause any errors for later symbols. If this is not the case for 
e', then e' cannot cause any errors past the mth symbol. Define r" to be the maximum of 
the r' values for all evaders e' previous to e in the lexicographical order for which such 
r' exist (define r" = 1 if no such r' values exists). Define m' = max(m, r"+2). Then no e' 
previous to e in the lexicographical order can cause any errors past m', so the presence 
of e in Wn for n > m' means that pf will correctly predict the nth symbol for all n > m'. 
That is, pf learns to predict e.

Now we can construct an evader ef using the program that implements pf modified 
to complement the binary symbols it writes to its output tape. The proof that ef learns to 
evade all predictors in Pf is the same as the proof that pf that learns to predict all 
evaders in Ef, with the obvious interchange of roles for predictors and evaders.  �

This tells us that in the adversarial sequence prediction game, if either side has a 
sufficient advantage in computational resources to simulate all possible opponents then 
it can always win. So the game can be interpreted as a computational resources arms 
race.

Note that a predictor or evader making truly random choices of its output symbols, 
with 0 and 1 equally likely, will win half the rounds no matter what its opponent does. 



But Proposition 1 tells us that an algorithm making pseudo-random choices will be 
defeated by an opponent with a sufficient advantage in computing resources.

3. Software Experiments

Adversarial sequence prediction is a computational resources arms race for algorithms 
using unrealistically large computational resources. Whether this is also true for 
algorithms using more modest computational resources can best be determined by 
software experiments. I have done this for a couple algorithms that use lookup tables to 
learn their opponent's behavior. The size of the lookup tables is the measure of 
computational resources. The predictor and evader start out with the same size lookup 
tables (a parameter can override this) but as they win or lose at each round the sizes of 
their lookup tables are increased or decreased. The software includes a parameter for 
growth of total computing resources, to simulate non-zero-sum games. Occasional 
random choices are inserted into the game, at a frequency controlled by a parameter, to 
avoid repeating the same outcome in the experiments. The software for running these 
experiments is available on-line [8].

Over a broad range of parameter values that define the specifics of these 
experiments, one opponent eventually gets and keeps all the computing resources. Thus 
these experiments provide evidence that adversarial sequence prediction is an unstable 
computational resources arms race for reasonable levels of computational resources.

Interestingly, the game can be made stable, with neither opponent able to keep all 
the resources, by increasing the frequency of random choices. It is natural and desirable 
that simple table-lookup algorithms should be unable to predict the behavior of the 
system's pseudo-random number algorithm. But more sophisticated algorithms could 
learn to predict pseudo-random sequences.

The adversarial sequence prediction game would make an interesting way to 
compare AGI implementations. Perhaps future AGI conferences could sponsor 
competitions between the AGI systems of different researchers.

4. AI Ethics

Artificial intelligence (AI) is often depicted in science fiction stories and movies as a 
threat to humans, and the issue of AI ethics has emerged as a serious subject [9, 10, 
11]. Yudkowsky has proposed an effort to produce a design for AGI whose friendliness 
toward humans can be proved as it evolves indefinitely into the future [12]. Legg's blog 
includes a debate with Yudkowsky over whether such a proof is possible [13]. Legg 
produced a proof that it is not possible to prove what an AI will be able to achieve in 
the physical world, and Yudkowsky replied that he is not trying to prove what an AI 
can achieve in the physical world but merely trying to prove that the AI maintains 
friendly intentions as it evolves into the indefinite future. But intentions must be 
implemented in the physical world, so proving any constraint on intentions requires 
proving that the AI is able to achieve a constraint on the implementation of those 
intentions in the physical world. That is, if you cannot prove that the AI will be able to 
achieve a constraint on the physical world then you cannot prove that it will maintain a 
constraint on its intentions.



Adversarial sequence prediction highlights a different sort of issue for AI ethics. 
Rather than taking control from humans, AI threatens to give control to a small group 
of humans. Financial markets, economic competition in general, warfare and politics 
include variants of the adversarial sequence prediction game. One reasonable 
explanation for the growing income inequality since the start of the information 
economy is the unstable computational resources arms race associated with this game. 
Particularly given that in the real world algorithm quality is often an important 
computational resource. As the general intelligence of information systems increases, 
we should expect increasing instability in the various adversarial sequence prediction 
games in human society and consequent increases in economic and political inequality. 
This will of course be a social problem, but will also provide an opportunity to generate 
serious public interest in the issues of AI ethics.
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