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Abstract. Under Legg’s and Hutter’s formal measure [1], performance in easy 
environments counts more toward an agent’s intelligence than does perform-
ance in difficult environments. An alternate measure of intelligence is proposed 
based on a hierarchy of sets of increasingly difficult environments, in a rein-
forcement learning framework. An agent’s intelligence is measured as the ordi-
nal of the most difficult set of environments it can pass. This measure is defined 
in both Turing machine and finite state machine models of computing. In the fi-
nite model the measure includes the number of time steps required to pass the 
test. 

Introduction 

This paper proposes an alternative to Legg's and Hutter's measure of intelligence us-
ing a reinforcement learning (RL) model [1]. In a simple reinforcement learning mod-
el, an agent interacts with its environment at a sequence of discrete times, sending ac-
tions to the environment and receiving observations and rewards (rational numbers 
between zero and one) from the environment at each time step. The value of an agent 
in an environment is the expected sum of rewards over all time steps, weighted so that 
the sum lies between zero and one. The intelligence of the agent is the weighted sum 
of its value in all computable environments, where the weight of an environment is 
determined by its Kolmogorov complexity. Essentially, this is the length of the short-
est program for a prefix universal Turing machine (PUTM) that computes the envi-
ronment [2]. These weights are such that an agent's intelligence lies between zero and 
one. The choice of PUTM must be constrained to avoid bias in this measure [3]. 
There are at least two ways in which this measure is inconsistent with our intuitions 
about measuring human intelligence: 

 
1. It gives less credit for environments defined by longer programs even though they 

are usually more difficult for agents. Given arbitrarily small ε > 0, total credit for 
all but a finite number of environments is less than ε. That is, total credit for all en-
vironments greater than some level C of complexity is less than ε, whereas credit 
for a single simple environment will be much greater than  ε. This is not the way 
we judge human intelligence. 



2. It sums rewards from the first time step, with no time to learn. AIXI always makes 
optimal actions [4] (as long as it is defined using the same universal Turing ma-
chine used to define the measure [3]), but AIXI is not computable. We allow hu-
mans time to learn before judging their intelligence. 

 
Hernández-Orallo and Dowe address the first difficulty [5] via a modified version 

of Legg’s and Hutter’s measure. However, their modified measure employs a finite 
number of environments and hence cannot resolve differences between agents above 
some finite level of intelligence. 

Hierarchies of Environments for Measuring Intelligence 

Prediction is the essence of intelligence, as Hutter makes clear [4] with his use of So-
lomonoff's prior [6]. This is the prior probability of sequences based on algorithmic 
complexity as measured by lengths of PUTM programs that compute the sequences, 
which can be used to estimate the probabilities of sequence continuations. However, 
this prior does not account for computing resources. Schmidhuber did this with his 
speed prior [7], in which the probability of sequences combines algorithmic complex-
ity and computing time. Taken with Legg's work on sequence prediction [8] this sug-
gests measuring intelligence via a game of adversarial sequence prediction [9], in 
which the agent's adversary has a given amount of computing resources. This is re-
lated to Scmidhuber's work on predictability minimization [10], where he defined a 
general principle for learning based on a set of units that mutually try to avoid predic-
tion by one another. 

This paper defines a framework for measuring agent intelligence using the game of 
adversarial sequence prediction against a hierarchy of increasingly difficult sets of 
environments. Agent intelligence is measured as the highest level of environments 
against which it can win the game. In this framework, N is the set of positive integers, 
B = {0, 1} is a binary alphabet, B* is the set of finite binary sequences (including the 
empty sequence), and B∞ is the set of infinite binary sequences. An evader e and a 
predictor p are defined as programs for a universal Turing machine that implement to-
tal functions B* → B. A pair e and p interact, where e produces a sequence x1 x2 x3 … 
∈ B∞ according to xn+1 = e(y1 y2 y3 … yn) and p produces a sequence y1 y2 y3 … ∈ B∞ 
according to yn+1 = p(x1 x2 x3 … xn). The predictor p wins round n+1 if yn+1 = xn+1 and 
the evader e wins if yn+1 ≠ xn+1. We  say that  the predictor  p learns to predict the 
evader e  if  there  exists  k ∈ N such that ∀n > k, yn = xn and we say the evader e 
learns to evade the predictor p if there exists k ∈ N such that ∀n > k, yn ≠ xn. 

Let tp(n) denote the number of computation steps performed by p before producing 
yn and te(n) denote the number of computation steps performed by e before producing 
xn. Given any computable monotonically increasing function f: N → N, define Ef = the 
set of evaders e such that ∃k ∈ N, ∀n > k. te(n) < f(n) and define Pf = the set of predic-
tors p such that ∃k ∈ N, ∀n > k. tp(n) < f(n). Then [9] proves the following: 

Proposition 1. Given any computable monotonically increasing function f: N → N, 
there exists a predictor pf that learns to predict all evaders in Ef and there exists an 
evader ef that learns to evade all predictors in Pf. 



We can interpret a predictor p as an agent and an evader e as an environment and 
say the agent p passes at environment e if p learns to predict e. Note that this is a de-
terministic model of agents and environments. This battle of predictor and evader try-
ing to simulate each other is much like minmax chess algorithms, which themselves 
are a metaphor for life's competition. 

Let {gi: N → N | i ∈ N} be an enumeration of primitive recursive functions [11], 
define hi(k) = max{gi(j) | j ≤ k}, and define f(m): N → N by f(m)(k) = max{hi(k) | i ≤ 
m}. Then define a hierarchy of sets of environments (evaders) {Ef(m) | m ∈ N} used in 
the following definition: 

Definition 1. The intelligence of an agent p is measured as the greatest m such that 
p learns to predict all e ∈ Ef(m) (use m = 0 if p cannot satisfy this for m = 1). 

Proposition 2. In Proposition 1, if f: N → N is primitive recursive then the comput-
ing times of pf and ef constructed in the proposition's proof are primitive recursive. 

Proof. First note that primitive recursive functions are precisely the functions that 
can be implemented by loop programs (essentially, these are programs that use ordi-
nary arithmetic and for-loops where the number of iterations is computed before the 
loop begins) [12]. The proof of Proposition 1 in [9] constructs pf  (and equivalently ef) 
by, at time step n, enumerating all universal Turing machine programs of length ≤ n 
and running each for up to f(n) time steps, then doing some simple computations with 
the results. The enumeration of programs with length ≤ n can be done by a loop pro-
gram and f(n) can be computed by a loop program since it is primitive recursive, so pf 
is computed by a loop program. The computing time of any loop program is primitive 
recursive [12]. � 

In order to measure low levels of intelligence, the first enumeration gi of primitive 
recursive functions should be ordered to start with functions with small values. For 
example, gi(k) = i for i ≤ 100, gi(k) = (i – 100) * k for 100 < i ≤ 200. 

Propositions 1 and 2 imply the following property of the intelligence measure in 
Definition 1: 

Proposition 3. Any agent p whose computing time is bounded by a primitive re-
cursive function must have finite intelligence, and given any integer n ≥ 1 there is an 
agent p with intelligence ≥ n whose computing time is primitive recursive. 

A Hierarchy of Finite State Machines 

According to current physics the universe contains only a finite amount of informa-
tion [13], so finite state machines (FSMs) provide more realistic models than Turing 
machines. 

So we model predictors and evaders as FSMs. An evader e has a state set Se, an ini-
tial state Ie and a mapping Me : B × Se → Se × B, and similarly for predictor p, state set 
Sp, initial state Ip and mapping Mp : B × Sp → Sp × B. The timing is such that (esn+1, 
xn+1) = Me(yn, esn) and (psn+1, yn+1) = Mp(xn, psn) (with the convention that x0 = y0 = 0, 
es0 = Ie, and ps0 = Ip for the mappings in the initial time step). As in the Turing ma-
chine case, the predictor p wins round n+1 if yn+1 = xn+1 and the evader e wins if yn+1 ≠ 
xn+1. We  say that  the predictor  p learns to predict the evader e  if  there  exists  k ∈ 



N such that ∀n > k, yn = xn and we say the evader e learns to evade the predictor p if 
there exists k ∈ N such that ∀n > k, yn ≠ xn. 

Define t(e) and t(p) as the number of states in Se and Sp. Given any m ∈ N, define 
Em = the set of evaders e such that t(e) ≤ m and define Pm = the set of predictors p 
such that t(p) ≤ m. We can prove the following: 

Propostition 4. Given any m ∈ N, there exists a predictor pm that learns to predict 
all evaders in Em and there exists an evader em that learns to evade all predictors in Pm. 

Proof. Construct a predictor pm as follows: 

 // Initialization 
 Fix some ordering of Em and initialize W = Em 
 For each e ∈ W: 
  Initialize e's simulated state se = Ie 
 y0 = 0 
 // Interacting with an evader 
 For time step n ≥ 1: 
  If W is empty: 
   // Interact with an evader not in Em 
   Output 0 and input xn 
  Else: 
   Pick e as the first member of W 
   (s, x) = Me(yn-1, se) 
   yn = x 
   // Interact with an evader that may be in Em 
   Output yn and input xn 
   For each e ∈ W: 
    (se, x) = Me(yn-1, se) 
    If x ≠ xn remove e from W 

Em is finite so this predictor pm is a finite state machine. Assume that pm interacts 
with an evader e ∈ Em. (If W becomes empty, then the algorithm is interacting with an 
evader that is not a member of Em.) For each evader e' previous to e in the fixed order-
ing of Em set ne' = the time step n, in the interaction between pm and e, when e' is re-
moved from W. If e' is never removed from W, set ne' = 0. Set k = max{ne' | e' previous 
to e in Em}. Now at each time step n > k, each evader e' previous to e in the ordering 
of Em is either removed from W or produces output equal to the output of e. Thus pm 
correctly predicts e for all time steps n > k. That is, pm learns to predict e. 

Now we can construct an evader em using the program that implements pm modi-
fied to complement the binary symbols it writes to its output tape. The proof that em 
learns to evade all predictors in Pm is the same as the proof that pm that learns to pre-
dict all evaders in Em, with the obvious interchange of roles for predictors and evad-
ers.  � 

As with Proposition 1, interpret a predictor p as an agent and an evader e as an en-
vironment, so at time step n action an = yn, observation on = xn and reward rn = 1 when 
yn = xn and rn = 0 when yn+1 ≠ xn+1. Furthermore, say the agent p passes at environment 
e if p learns to predict e. Note that this is a deterministic model of agents and envi-
ronments. 



Then define a hierarchy of sets of environments (evaders) {Em | m ∈ N} used in the 
following definition: 

Definition 2. The intelligence of an agent p is measured as the greatest m such that 
p learns to predict all e ∈ Em (use m = 0 if p cannot satisfy this for m = 1). If m > 0 
then since Em is finite there exists t ∈ N such that p predicts all e ∈ Em past time step t 
(i.e., ∀n > t, yn = xn in the interaction between p and all e ∈ Em). We say this t is the 
time within which agent p achieves intelligence n. It provides a finer measure of intel-
ligence than m, so we use (m, t) as a detailed measure of p's intelligence. Note that in 
(m, t) increasing m and decreasing t indicates increasing intelligence. 

Propostion 4 implies the following property of the intelligence measure in Defini-
tion 2: 

Proposition 5. Any FSM-based agent p must have finite intelligence, and given 
any integer n ≥ 1 there is a FSM-based agent p with intelligence (m, t) where m ≥ n. 

Discussion and Conclusion 

As presented by Hutter, prediction is fundamental to intelligence [4]. This paper has 
showed how to measure intelligence via prediction ability. The measure for FSM-
based agents is universal to all levels of intelligence and, in the Turing machine mod-
el, the measure is universal to all levels of intelligence for agents with primitive recur-
sive computing time. Furthermore, the measures are based on long term behavior of 
agents, giving them time to learn. The measure for FSM-based agents includes a term 
for the rate at which agents learn. Thus these measures address the two problems dis-
cussed in the introduction. 

Agents have finite intelligence according to these measures because they can al-
ways be defeated by environments that use sufficient computing resources, hence 
quantity of computing resources is one important component in determining agent in-
telligence. Goertzel defines an “efficient pragmatic general intelligence” measure that 
normalizes for quantity of computing resources [14]. This is an interesting idea, but 
there is utility in a measure of an agent’s ability to succeed in environments regardless 
of the quantity of computing resources it uses. 

Tyler has set up a web site for tournaments among agents playing the Matching 
Pennies Game, which is mathematically identical with adversarial sequence predic-
tion [15]. He limits the computational resources agents may use. 

It would be interesting to investigate an intelligence measure based on Schmid-
huber's speed prior. For example, the measure of Legg and Hutter could be modified 
by replacing Kolmogorov complexity by Levin complexity (essentially, the sum of 
Kolmogorov complexity and the log of computing time) [16], as used in the speed 
prior. Alternatively, the measure in Definition 1 could be modified replacing simple 
computing time by Levin complexity. It would be interesting to investigate other gen-
eralizations of the measures in Definitions 1 and 2. We may allow agents to pass their 
tests by predicting evaders in some proportion α of time steps less than 1.0 (but 
greater than 0.5). We may also be able to define hierarchies of environments with 
more than two possible actions and observations. 
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