
The original publication is available at www.springerlink.com.

Measuring Agent Intelligence via Hierarchies of
Environments

Bill Hibbard

SSEC, University of Wisconsin-Madison,
1225 W. Dayton St., Madison, WI 53706, USA

test@ssec.wisc.edu

Abstract. Under Legg’s and Hutter’s formal measure [1], performance in easy
environments counts more toward an agent’s intelligence than does perform-
ance in difficult environments. An alternate measure of intelligence is proposed
based on a hierarchy of sets of increasingly difficult environments, in a rein-
forcement learning framework. An agent’s intelligence is measured as the ordi-
nal of the most difficult set of environments it can pass. This measure is defined
in both Turing machine and finite state machine models of computing. In the fi-
nite model the measure includes the number of time steps required to pass the
test.

Introduction

This paper proposes an alternative to Legg's and Hutter's measure of intelligence us-
ing a reinforcement learning (RL) model [1]. In a simple reinforcement learning mod-
el, an agent interacts with its environment at a sequence of discrete times, sending ac-
tions to the environment and receiving observations and rewards (rational numbers
between zero and one) from the environment at each time step. The value of an agent
in an environment is the expected sum of rewards over all time steps, weighted so that
the sum lies between zero and one. The intelligence of the agent is the weighted sum
of its value in all computable environments, where the weight of an environment is
determined by its Kolmogorov complexity. Essentially, this is the length of the short-
est program for a prefix universal Turing machine (PUTM) that computes the envi-
ronment [2]. These weights are such that an agent's intelligence lies between zero and
one. The choice of PUTM must be constrained to avoid bias in this measure [3].
There are at least two ways in which this measure is inconsistent with our intuitions
about measuring human intelligence:

1. It gives less credit for environments defined by longer programs even though they

are usually more difficult for agents. Given arbitrarily small ε > 0, total credit for
all but a finite number of environments is less than ε. That is, total credit for all en-
vironments greater than some level C of complexity is less than ε, whereas credit
for a single simple environment will be much greater than ε. This is not the way
we judge human intelligence.

2. It sums rewards from the first time step, with no time to learn. AIXI always makes
optimal actions [4] (as long as it is defined using the same universal Turing ma-
chine used to define the measure [3]), but AIXI is not computable. We allow hu-
mans time to learn before judging their intelligence.

Hernández-Orallo and Dowe address the first difficulty [5] via a modified version

of Legg’s and Hutter’s measure. However, their modified measure employs a finite
number of environments and hence cannot resolve differences between agents above
some finite level of intelligence.

Hierarchies of Environments for Measuring Intelligence

Prediction is the essence of intelligence, as Hutter makes clear [4] with his use of So-
lomonoff's prior [6]. This is the prior probability of sequences based on algorithmic
complexity as measured by lengths of PUTM programs that compute the sequences,
which can be used to estimate the probabilities of sequence continuations. However,
this prior does not account for computing resources. Schmidhuber did this with his
speed prior [7], in which the probability of sequences combines algorithmic complex-
ity and computing time. Taken with Legg's work on sequence prediction [8] this sug-
gests measuring intelligence via a game of adversarial sequence prediction [9], in
which the agent's adversary has a given amount of computing resources. This is re-
lated to Scmidhuber's work on predictability minimization [10], where he defined a
general principle for learning based on a set of units that mutually try to avoid predic-
tion by one another.

This paper defines a framework for measuring agent intelligence using the game of
adversarial sequence prediction against a hierarchy of increasingly difficult sets of
environments. Agent intelligence is measured as the highest level of environments
against which it can win the game. In this framework, N is the set of positive integers,
B = {0, 1} is a binary alphabet, B* is the set of finite binary sequences (including the
empty sequence), and B∞ is the set of infinite binary sequences. An evader e and a
predictor p are defined as programs for a universal Turing machine that implement to-
tal functions B* → B. A pair e and p interact, where e produces a sequence x1 x2 x3 …
∈ B∞ according to xn+1 = e(y1 y2 y3 … yn) and p produces a sequence y1 y2 y3 … ∈ B∞
according to yn+1 = p(x1 x2 x3 … xn). The predictor p wins round n+1 if yn+1 = xn+1 and
the evader e wins if yn+1 ≠ xn+1. We say that the predictor p learns to predict the
evader e if there exists k ∈ N such that ∀n > k, yn = xn and we say the evader e
learns to evade the predictor p if there exists k ∈ N such that ∀n > k, yn ≠ xn.

Let tp(n) denote the number of computation steps performed by p before producing
yn and te(n) denote the number of computation steps performed by e before producing
xn. Given any computable monotonically increasing function f: N → N, define Ef = the
set of evaders e such that ∃k ∈ N, ∀n > k. te(n) < f(n) and define Pf = the set of predic-
tors p such that ∃k ∈ N, ∀n > k. tp(n) < f(n). Then [9] proves the following:

Proposition 1. Given any computable monotonically increasing function f: N → N,
there exists a predictor pf that learns to predict all evaders in Ef and there exists an
evader ef that learns to evade all predictors in Pf.

We can interpret a predictor p as an agent and an evader e as an environment and
say the agent p passes at environment e if p learns to predict e. Note that this is a de-
terministic model of agents and environments. This battle of predictor and evader try-
ing to simulate each other is much like minmax chess algorithms, which themselves
are a metaphor for life's competition.

Let {gi: N → N | i ∈ N} be an enumeration of primitive recursive functions [11],
define hi(k) = max{gi(j) | j ≤ k}, and define f(m): N → N by f(m)(k) = max{hi(k) | i ≤
m}. Then define a hierarchy of sets of environments (evaders) {Ef(m) | m ∈ N} used in
the following definition:

Definition 1. The intelligence of an agent p is measured as the greatest m such that
p learns to predict all e ∈ Ef(m) (use m = 0 if p cannot satisfy this for m = 1).

Proposition 2. In Proposition 1, if f: N → N is primitive recursive then the comput-
ing times of pf and ef constructed in the proposition's proof are primitive recursive.

Proof. First note that primitive recursive functions are precisely the functions that
can be implemented by loop programs (essentially, these are programs that use ordi-
nary arithmetic and for-loops where the number of iterations is computed before the
loop begins) [12]. The proof of Proposition 1 in [9] constructs pf (and equivalently ef)
by, at time step n, enumerating all universal Turing machine programs of length ≤ n
and running each for up to f(n) time steps, then doing some simple computations with
the results. The enumeration of programs with length ≤ n can be done by a loop pro-
gram and f(n) can be computed by a loop program since it is primitive recursive, so pf
is computed by a loop program. The computing time of any loop program is primitive
recursive [12]. �

In order to measure low levels of intelligence, the first enumeration gi of primitive
recursive functions should be ordered to start with functions with small values. For
example, gi(k) = i for i ≤ 100, gi(k) = (i – 100) * k for 100 < i ≤ 200.

Propositions 1 and 2 imply the following property of the intelligence measure in
Definition 1:

Proposition 3. Any agent p whose computing time is bounded by a primitive re-
cursive function must have finite intelligence, and given any integer n ≥ 1 there is an
agent p with intelligence ≥ n whose computing time is primitive recursive.

A Hierarchy of Finite State Machines

According to current physics the universe contains only a finite amount of informa-
tion [13], so finite state machines (FSMs) provide more realistic models than Turing
machines.

So we model predictors and evaders as FSMs. An evader e has a state set Se, an ini-
tial state Ie and a mapping Me : B × Se → Se × B, and similarly for predictor p, state set
Sp, initial state Ip and mapping Mp : B × Sp → Sp × B. The timing is such that (esn+1,
xn+1) = Me(yn, esn) and (psn+1, yn+1) = Mp(xn, psn) (with the convention that x0 = y0 = 0,
es0 = Ie, and ps0 = Ip for the mappings in the initial time step). As in the Turing ma-
chine case, the predictor p wins round n+1 if yn+1 = xn+1 and the evader e wins if yn+1 ≠
xn+1. We say that the predictor p learns to predict the evader e if there exists k ∈

N such that ∀n > k, yn = xn and we say the evader e learns to evade the predictor p if
there exists k ∈ N such that ∀n > k, yn ≠ xn.

Define t(e) and t(p) as the number of states in Se and Sp. Given any m ∈ N, define
Em = the set of evaders e such that t(e) ≤ m and define Pm = the set of predictors p
such that t(p) ≤ m. We can prove the following:

Propostition 4. Given any m ∈ N, there exists a predictor pm that learns to predict
all evaders in Em and there exists an evader em that learns to evade all predictors in Pm.

Proof. Construct a predictor pm as follows:

 // Initialization
 Fix some ordering of Em and initialize W = Em
 For each e ∈ W:
 Initialize e's simulated state se = Ie
 y0 = 0
 // Interacting with an evader
 For time step n ≥ 1:
 If W is empty:
 // Interact with an evader not in Em
 Output 0 and input xn
 Else:
 Pick e as the first member of W
 (s, x) = Me(yn-1, se)
 yn = x
 // Interact with an evader that may be in Em
 Output yn and input xn
 For each e ∈ W:
 (se, x) = Me(yn-1, se)
 If x ≠ xn remove e from W

Em is finite so this predictor pm is a finite state machine. Assume that pm interacts
with an evader e ∈ Em. (If W becomes empty, then the algorithm is interacting with an
evader that is not a member of Em.) For each evader e' previous to e in the fixed order-
ing of Em set ne' = the time step n, in the interaction between pm and e, when e' is re-
moved from W. If e' is never removed from W, set ne' = 0. Set k = max{ne' | e' previous
to e in Em}. Now at each time step n > k, each evader e' previous to e in the ordering
of Em is either removed from W or produces output equal to the output of e. Thus pm
correctly predicts e for all time steps n > k. That is, pm learns to predict e.

Now we can construct an evader em using the program that implements pm modi-
fied to complement the binary symbols it writes to its output tape. The proof that em
learns to evade all predictors in Pm is the same as the proof that pm that learns to pre-
dict all evaders in Em, with the obvious interchange of roles for predictors and evad-
ers. �

As with Proposition 1, interpret a predictor p as an agent and an evader e as an en-
vironment, so at time step n action an = yn, observation on = xn and reward rn = 1 when
yn = xn and rn = 0 when yn+1 ≠ xn+1. Furthermore, say the agent p passes at environment
e if p learns to predict e. Note that this is a deterministic model of agents and envi-
ronments.

Then define a hierarchy of sets of environments (evaders) {Em | m ∈ N} used in the
following definition:

Definition 2. The intelligence of an agent p is measured as the greatest m such that
p learns to predict all e ∈ Em (use m = 0 if p cannot satisfy this for m = 1). If m > 0
then since Em is finite there exists t ∈ N such that p predicts all e ∈ Em past time step t
(i.e., ∀n > t, yn = xn in the interaction between p and all e ∈ Em). We say this t is the
time within which agent p achieves intelligence n. It provides a finer measure of intel-
ligence than m, so we use (m, t) as a detailed measure of p's intelligence. Note that in
(m, t) increasing m and decreasing t indicates increasing intelligence.

Propostion 4 implies the following property of the intelligence measure in Defini-
tion 2:

Proposition 5. Any FSM-based agent p must have finite intelligence, and given
any integer n ≥ 1 there is a FSM-based agent p with intelligence (m, t) where m ≥ n.

Discussion and Conclusion

As presented by Hutter, prediction is fundamental to intelligence [4]. This paper has
showed how to measure intelligence via prediction ability. The measure for FSM-
based agents is universal to all levels of intelligence and, in the Turing machine mod-
el, the measure is universal to all levels of intelligence for agents with primitive recur-
sive computing time. Furthermore, the measures are based on long term behavior of
agents, giving them time to learn. The measure for FSM-based agents includes a term
for the rate at which agents learn. Thus these measures address the two problems dis-
cussed in the introduction.

Agents have finite intelligence according to these measures because they can al-
ways be defeated by environments that use sufficient computing resources, hence
quantity of computing resources is one important component in determining agent in-
telligence. Goertzel defines an “efficient pragmatic general intelligence” measure that
normalizes for quantity of computing resources [14]. This is an interesting idea, but
there is utility in a measure of an agent’s ability to succeed in environments regardless
of the quantity of computing resources it uses.

Tyler has set up a web site for tournaments among agents playing the Matching
Pennies Game, which is mathematically identical with adversarial sequence predic-
tion [15]. He limits the computational resources agents may use.

It would be interesting to investigate an intelligence measure based on Schmid-
huber's speed prior. For example, the measure of Legg and Hutter could be modified
by replacing Kolmogorov complexity by Levin complexity (essentially, the sum of
Kolmogorov complexity and the log of computing time) [16], as used in the speed
prior. Alternatively, the measure in Definition 1 could be modified replacing simple
computing time by Levin complexity. It would be interesting to investigate other gen-
eralizations of the measures in Definitions 1 and 2. We may allow agents to pass their
tests by predicting evaders in some proportion α of time steps less than 1.0 (but
greater than 0.5). We may also be able to define hierarchies of environments with
more than two possible actions and observations.

References

1. Legg, S., Hutter, M.: A Formal Measure of Machine Intelligence. In: 15th Annual Machine
Learning Conference of Belgium and The Netherlands (Benelearn 2006), pp. 73-80. Ghent
(2006) http://www.idsia.ch/idsiareport/IDSIA-10-06.pdf

2. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd
ed.. Springer, New York (1997)

3. Hibbard, B.: Bias and No Free Lunch in Formal Measures of Intelligence. J. of Artificial
General Intelligence. 1, 54-61 (2009)
http://journal.agi-network.org/portals/2/issues/JAGI_1_54-61.pdf

4. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer, Berlin (2004)

5. Hernández-Orallo, J., Dowe, D.: Measuring universal intelligence: Towards an anytime in-
telligence test. Artificial Intelligence. 17, 1508-1539 (2010)

6. Solomonoff, R. J.: A Formal Theory of Inductive Inference: Parts 1 and 2. Information and
Control 7, 1-22 and 224-254 (1964)

7. Schmidhuber, J.: The Speed Prior: A New Simplicity Measure Yielding Near-Optimal
Computable Predictions. In: Proc. 15th Annual Conference on Computational Learning
Theory (COLT 2002), Lecture Notes in Artificial Intelligence, Springer. 216--228, 2002.

8. Legg, S.: Is there an Elegant Universal Theory of Prediction? Tech. Report No. IDSIA-12-
06 (2006) http://www.idsia.ch/idsiareport/IDSIA-12-06.pdf

9. Hibbard, B.: Adversarial Sequence Prediction. In: The First Conference on Artificial Gen-
eral Intelligence (AGI-08). pp. 399-403. IOS Press, Amsterdam (2008)
http://www.ssec.wisc.edu/~billh/g/hibbard_agi.pdf

10. Schmidhuber, J.: Learning Factorial Codes by Predictability Minimization. Neural Compu-
tation 4(6), 863-879 (1992)

11. Liu, S.-C.: An enumeration of the primitive recursive functions without repetition. Tohoku
Math J. 12, 400-402 (1960)

12. Meyer, A.R., Ritchie, D.M.: The complexity of loop programs. Proc. of the ACM National
Meetings. pp. 465-469. ACM, New York (1967)

13. Lloyd, S.: Computational Capacity of the Universe. Phys.Rev.Lett. 88, 237901 (2002)
http://arxiv.org/abs/quant-ph/0110141

14. Goertzel, B.: Toward a Formal Characterization of Real-World General Intelligence. In: The
Third Conference on Artificial General Intelligence (AGI-10). pp. 19-24. Atlantis Press,
Amsterdam (2010) http://agi-conf.org/2010/wp-content/uploads/2009/06/paper_14.pdf

15. Tyler, T.: The Matching Pennies Project. http://matchingpennies.com/
16. Levin, L. A.: Universal Sequential Search Problems. Problems of Information Transmission

9(3), 265-266 (1973)

