

Self-Modeling Agents Evolving in Our Finite Universe

Bill Hibbard

SSEC, University of Wisconsin, Madison, WI 53706, USA

and Machine Intelligence Research Institute

test@ssec.wisc.edu

Abstract: This paper proposes that we should avoid infinite sets in definitions

of AI agent and their environments. For agents that evolve to increase their fi-

nite resources it proposes a self-modeling agent definition that avoids assump-

tions about the agent's future form. And it proposes a consistent and complete

logical theory for reasoning by AI agents in our finite universe.

1 Finitely Computable Agents

According to current physics [1] our universe has a finite information capacity of no

more than 10120 bits (1090 bits excluding gravitational degrees of freedom). Modeling

artificial intelligence (AI) agents and environments with infinite sets, such as Peano

arithmetic and the infinite tape of a Turing machine, introduces unnecessary theoreti-

cal complexity into our understanding of AI. Thus in my recent papers [2, 3] I have

replaced the universal Turing machine in Hutter's [4] universal AI with finite stochas-

tic programs (limited to finite memory, for which the halting problem is decidable).

Specifically, at each of a discrete series of time steps t {0, 1, 2, ..., T}, for some

large T, the agent sends an action at A to the environment and receives an observa-

tion ot O from the environment, where A and O are finite sets. Let ht = (a1, o1, ..., at,

ot) H be an interaction history where H is the set of all histories for t ≤ T.

The agent's actions are motivated by a utility function u : H → [0, 1] which assigns

utilities between 0 and 1 to histories. Future utilities are discounted according to a

geometric temporal discount 0 < < 1. The agent computes a prior probability (h) of

history h. The value v(h) of a possible future history h is defined recursively by:

 v(h) = u(h) + max aA v(ha) (1)

 v(ha) = ∑oO ρ(o | ha) v(hao) (2)

The recursion terminates with v(ht) = 0 for t > T. The agent (or policy) is defined

to take, after history ht, the action:

 (ht) := at+1 = argmax aA v(hta) (3)

Given a history ht, the agent models the environment by the program [2]:

 qt = λ(ht) := argmax qQ P(ht | q) (q) (4)

Here Q is a prefix-free language for finite stochastic programs, (q) = 2-|q| is the

prior probability of program q Q where |q| is the length of q in bits, and P(ht | q) is

the probability that q computes the history ht (this is the probability that the stochastic

program q computes the observations oi in response to the actions ai for 1 i t).

Then the prior probability of a possible future interaction history h for use in (2) is:

 (h) = P(h | qt) (5)

2 Self-Modeling Agents

Limited resources are essential to Wang's [5] definition of intelligence and a practical

reality for agents in our universe. Although the model λ(ht) in (4) can be finitely com-

puted [3], the resources necessary to compute it grow exponentially with the length of

history ht. Furthermore computing the value v(h) of a possible future history h in (1)

and (2) requires an expensive recursion. Hence an agent with limited resources must

compute approximations. Increasing the accuracy of these approximations will im-

prove the agent's ability to maximize its utility function, and hence the agent will

choose actions to increase its computing resources and so increase accuracy.

Such self-improvement must be expressible by actions in set A. However, the

agents of Section 1 cannot adequately evaluate self-improvement actions. If the agent

is computing approximations to the model λ(ht) and to values v(h) using its limited

computing resources, then it cannot use those limited resources to compute and evalu-

ate what it would compute with greater resources. In real time interactions between

the agent and the environment, the environment will not wait for the agent to slowly

simulate what it would compute with greater resources.

In the agents of Section 1 values v(ha) are computed by future recursion in (1) and

(2). Here we define a revised agent in which values v(ha) are computed for initial sub-

intervals of the current history and in which the environment model includes the com-

putation of such values. Given ht = (a1, o1, ..., at, ot), for i ≤ t define:

 ov(hi-1ai) = discrete((∑i≤j≤t j-i u(hj)) / (1 - t-i+1)) (6)

Here hj = (a1, o1, ..., aj, oj), discrete() samples real values to a finite subset R of the

reals (e.g., floating point numbers) and division by (1 - t-i+1) scales values of finite

sums to values as would be computed by infinite sums. Define o'i = (oi, ov(hi-1ai)) and

h't = (a1, o'1, ..., at, o't). That is, values ov(hi-1ai) computed from past interactions are

included as observables in an expanded history h't so the model λ(h't) includes an

algorithm for computing them:

 qt = λ(h't) := argmax qQ P(h't | q) (q) (7)

Define (h') = P(h' | qt). Then compute values of possible next actions by:

 v(hta) = ∑rR ρ(ov(hta) = r | h'ta) r (8)

Here h't = (a1, o'1, ..., at, o't) and ht = (a1, o1, ..., at, ot). As in (3) define the agent's

policy (ht) = at+1 = argmax aA v(hta). Because λ(h't) models the agent's value compu-

tations I call this the self-modeling agent. It is finitely computable. There is no look

ahead in time beyond evaluation of possible next actions and so no assumption about

the form of the agent in the future. λ(h't) is a unified model of agent and environment,

and can model how possible next actions may increase values of future histories by

any modification of the agent and its embedding in the environment [6].

The game of chess provides an example of learning to model value as a function of

computing resources. Ferreira [7] demonstrated an approximate functional relation

between a chess program's ELO rating and its search depth, which can be used to

predict the performance of an improved chess-playing agent before it is built. Similar-

ly the self-modeling agent will learn to predict the increase of its future utility due to

increases in its resources.

Utility functions defined in terms of the environment model λ(h't) are a way to

avoid the unintended behavior of self-delusion [8, 2]. They are also natural for com-

plex AI agents. Rather than having preprogrammed environment models, complex AI

agents must explore and learn models of their environments. But the designers of an

AI agent will express their intentions for the agent's behavior choices in terms of their

own knowledge of the agent's environment. Thus it is natural that they define an

agent's utility function in terms of a procedure to be applied to the agent's learned

environment model. I presented an example of such a procedure at AGI-12 [3]. Defin-

ing its utility function in terms of its environment model introduces a potential circu-

larity in the self-modeling agent: ov(hi-1ai) depends on u(hj) in (6), u(hj) depends on

λ(h't) in defining the utility function in terms of the model, and λ(h't) depends on ov(hi-

1ai) in (7). This circularity can be avoided by defining the utility function u used in

equation (6) in terms of an environment model from a previous time step.

The agent's environment model is an approximation because the model is based on

a limited history of interactions with the environment and, for agents in our universe,

because of limited resources for computing the model. Thus a utility function com-

puted from the model is also an approximation to an ideal utility function which is the

true expression of the intention of the agent designers. Such an approximate utility

function is a possible source of AI behavior that violates its design intention.

3 Consistent and Complete Logic for Agents

Any AI agent based on a logical theory that includes Peano arithmetic (PA) faces

problems of decidability, consistency and completeness. Yudkowsky and Herreshoff

[9] discuss such problems related to Löb's Theorem for a sequence of evolving agents.

Our universe has finite information capacity [1]. I suggest that an agent can pursue its

goal in such a finite environment without any need for PA and its theoretical prob-

lems.

An environment with finite information capacity has a finite number of possible

states. In this case it is reasonable to assume a finite limit on the length of interaction

histories, that the action set A and the observation set O never grow larger than the

information capacity of the environment, and that probabilities and utility function

values are constrained to a finite subset of the reals (only a finite subset can be ex-

pressed in a finite environment). Then, for a given finite limit on environment size,

there are finite numbers of possible objects of these types: environments (expressed as

Markov decision processes), histories, utility functions, policies, environment models

that optimize equation (4) or (7) for possible histories, and agent programs (assuming

agent memory is limited by the information capacity of the environment, there are a

finite number of programs and their halting problem is decidable). There are also

finite numbers of possible predicates and probability distributions over these types of

objects and combinations of them. So, for a given finite limit on environment size, the

theory of these types of objects, predicates and probability distributions is decidable,

consistent and complete (quantifiers over finite sets can be eliminated, reducing the

theory to propositional calculus). In our universe with no more than 10120 bits, agents

can use this theory to avoid the logical problems of PA. I suggest that more serious

problems for agents in our universe are the inaccuracy of their environment models

and the limits on their memory capacity and speed for reasoning in real time.

References

1. Lloyd, S. Computational Capacity of the Universe. Phys.Rev.Lett. 88 (2002) 237901.

2. Hibbard, B. 2012a. Model-based utility functions. J. Artificial General Intelligence 3(1),

pp. 1-24.

3. Hibbard, B. 2012b. Avoiding unintended AI behavior. In: Bach, J., and Iklé, M. (eds) AGI

2012. LNCS (LNAI), vol. 7716, pp. 107-116. Springer, Heidelberg.

4. Hutter, M. 2005. Universal artificial intelligence: sequential decisions based on algorith-

mic probability. Springer, Heidelberg.

5. Wang, P. 1995. Non-Axiomatic Reasoning System --- Exploring the essence of intelli-

gence. PhD Dissertation, Indiana University Comp. Sci. Dept. and the Cog. Sci. Program.

6. Orseau, L. and Ring, M. 2012. Space-Time Embedded Intelligence. In: Bach, J., and Iklé,

M. (eds) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209-218. Springer, Heidelberg.

7. Ferreira, D. R. 2013. The Impact of Search Depth on Chess Playing Strength, ICGA Jour-

nal 36(2), pp. 67-80.

8. Ring, M., and Orseau, L. 2011. Delusion, survival, and intelligent agents. In: Schmidhu-

ber, J., Thórisson, K.R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11-

20. Springer, Heidelberg.

9. Yudkowsky, E., and Herreshoff, M. 2013. Tiling Agents for Self-Modifying AI, and the

Löbian Obstacle. http://intelligence.org/files/TilingAgents.pdf

http://intelligence.org/files/TilingAgents.pdf

