
A Lattice Model for Data Display

William L. Hibbard1&2, Charles R. Dyer2 and Brian E. Paul1

1Space Science and Engineering Center
2Computer Sciences Department

University of Wisconsin - Madison

Abstract We will try to address the need for a formal
foundation for visualization by taking an analytic
approach to defining D. Since an arbitrary function
D: U → V will not produce displays D(u) that effectively
communicate the information content of data objects
u ∈ U, we seek to define conditions on D to ensure that it
does. For example, we may require that D be injective
(i.e., one-to-one), so that no two data objects have the
same display. However, this is clearly not enough. If we
let U and V both be the set of images of 512 by 512 pixels
with 24 bits of color per pixel, then any permutation of U
can be interpreted as an injective function D from U to V.
But an arbitrary permutation of images will not
effectively communicate information. Thus we need to
define stronger conditions on the function D. Our
investigation depends on some complex mathematics,
although we will only present the conclusions in this
paper. The details are available in [7].

In order to develop a foundation for visualization,
we develop lattice models for data objects and displays
that focus on the fact that data objects are
approximations to mathematical objects and real
displays are approximations to ideal displays. These
lattice models give us a way to quantize the information
content of data and displays and to define conditions on
the visualization mappings from data to displays.
Mappings satisfy these conditions if and only if they are
lattice isomorphisms. We show how to apply this result
to scientific data and display models, and discuss how it
might be applied to recursively defined data types
appropriate for complex information processing.

1 Introduction

2 Lattices as data and display modelsRobertson et.al. have described the need for formal
models that can serve as a foundation for visualization
techniques and systems [13]. Models can be developed
for data (e.g., the fiber bundle data model [4] describes
the data objects that computational scientists use to
approximate functions between differentiable manifolds),
displays (e.g., Bertin's detailed analysis of static 2-D
displays [1]), users (i.e., their tasks and capabilities),
computations (i.e., how computations are expressed and
executed), and hardware devices (i.e., their capabilities).

The purpose of data visualization is to communicate
the information content of data objects in displays. Thus
if we can quantify the information content of data objects
and displays this may give us a way to define conditions
on the visualization function D. The issue of information
content has already been addressed in the study of
programming language semantics [14], which seeks to
assign meanings to programs. This issue arises because
there is no algorithmic way to separate non-terminating
programs from terminating programs, so the set of
meanings of programs must include an undefined value
for non-terminating programs. This value contains less
information (i.e., is less precise) than any of the values
that a program might produce if it terminates, and thus
introduces an order relation based on information content
into the set of program meanings. In order to define a
correspondence between the ways that programs are
constructed, and the sets of meanings of programs, Scott

Here we focus on the process of transforming data
into displays. We define a data model as a set U of data
objects, a display model as a set V of displays, and a
visualization process as a function D: U → V. The usual
approach to visualization is synthetic, constructing the
function D from simpler functions. The function may be
synthesized using rendering pipelines [5, 11, 12],
defining different pipelines appropriate for different types
of data objects within U. Object oriented programming
may be used to synthesize a polymorphic function D [9,
15] that applies to multiple data types within U.

developed an elegant lattice theory for the meanings of
programs [16].

objects and real displays are restricted to countable
subsets of U and V.

Scientists have data with undefined values, although
their sources are numerical problems and failures of
observing instruments rather than non-terminating
computations. An undefined value for pixels in satellite
images contains less information than valid pixel
radiances and thus creates an order relation between data
values. Data are often accompanied by metadata [18]
that describe their accuracy, for example as error bars,
and these accuracy estimates also create order relations
between data values based on information content (i.e.,
precision). Finally, array data objects are often
approximations to functions, as for example a satellite
image is a finite approximation (i.e., a finite sampling in
both space and radiance) to a continuous radiance field,
and such arrays may be ordered based on the resolution
with which they sample functions.

3 Conditions on visualization functions

The lattice structures of U and V provide a way to
quantize information content and thus to define
conditions on functions of the form D: U → V. In order
to define these conditions we draw on the work of
Mackinlay [10]. He studied the problem of automatically
generating displays of relational information and defined
expressiveness conditions on the mapping from
relational data to displays. His conditions specify that a
display expresses a set of facts (i.e., an instance of a set
of relations) if the display encodes all the facts in the set,
and encodes only those facts.

In order to interpret the expressiveness conditions
we define a fact about data objects as a logical predicate
applied to U (i.e., a function of the form P: U → { false,
true}). However, since data objects are approximations
to mathematical objects, we should avoid predicates such
that providing more precise information about a
mathematical object (i.e., going from u1 to u2 where
u1 ≤ u2) changes the truth value of the predicate (e.g.,
P(u1) = true but P(u2) = false). Thus we consider
predicates that take values in { undefined, false, true}
(where undefined < false and undefined < true), and we
require predicates to preserve information ordering (that
is, if u1 ≤ u2 then P(u1) ≤ P(u2); functions that preserve
order are called monotone). We also observe that a
predicate of the form P: U → {undefined, false, true} can
be expressed in terms of two predicates of the form
P: U → { undefined, true}, so we will limit facts about
data objects to monotone predicates of the form
P: U → {undefined, true}.

In general scientists use computer data objects as
finite approximations to the objects of their mathematical
models, which contain infinite precision numbers and
functions with infinite ranges. Thus metadata for
missing data indicators, numerical accuracy and function
sampling are really central to the meaning of scientific
data and should play an important role in a data model.
We define a data model U as a lattice of data objects,
ordered by how precisely they approximate mathematical
objects. To say that U is a lattice [2] means that there is
a partial order on U (i.e., a binary relation such that, for
all u1, u2, u3 ∈ U, u1 ≤ u1, u1 ≤ u2 & u2 ≤ u1 ⇒ u1 = u2
and u1 ≤ u2 & u2 ≤ u3 ⇒ u1 ≤ u3) and that any pair
u1, u2 ∈ U have a least upper bound (denoted by u1 ∨ u2)
and a greatest lower bound (denoted by u1 ∧ u2).

The notion of precision of approximation also
applies to displays. They have finite resolutions in space,
color and time (i.e., animation). 2-D images and 3-D
volume renderings are composed of finite numbers of
pixels and voxels and are finite approximations to
idealized mathematical displays. Thus we will assume
that our display model V is a lattice and that displays are
ordered according to their information content (i.e.,
precision of approximation to ideal displays). In Sections
4 and 5 we will present examples of scientific data and
display lattices.

The first part of the expressiveness conditions says
that every fact about data objects is encoded by a fact
about their displays. We interpret this as follows:

Condition 1. For every monotone predicate
P: U → { undefined, true}, there is a monotone predicate
Q: V → { undefined, true} such that P(u) = Q(D(u)) for
each u ∈ U.

We assume that U and V are complete lattices, so
that they contain the mathematical objects and ideal
displays that are limits of sets of data objects and real
displays (a lattice is complete if any subset has a least
upper bound and a greatest lower bound). Just as we
study functions of rational numbers in the context of
functions of real numbers (the completion of the rational
numbers), we will study visualization functions between
the complete lattices U and V, recognizing that data

This requires that D be injective (if u1 ≠ u2 then
there are P such that P(u1) ≠ P(u2), but if D(u1) = D(u2)
then Q(D(u1)) = Q(D(u2)) for all Q, so we must have
D(u1) ≠ D(u2)).

The second part of the expressiveness conditions
says that every fact about displays encodes a fact about
data objects. We interpret this as follows:

Condition 2. For every monotone predicate
Q: V → { undefined, true}, there is a monotone predicate
P: U → { undefined, true} such that Q(v) = P(D-1(v)) for
each v ∈ V.

denote the least element of a lattice), and also includes
all closed real intervals. We interpret the closed real
interval [x, y] as an approximation to an actual value that
lies between x and y. In our lattice structure, these
intervals are ordered by the inverse of set containment,
since a smaller interval provides more precise
information than a containing interval. Figure 1
illustrates the order relation on a continuous scalar type.
Of course, an actual implementation can only include a
countable number of closed real intervals (such as the set
of rational intervals).

This requires that D-1 be a function from V to U, and
hence that D be bijective (i.e., one-to-one and onto).
However, it is too strong to require that a data model
realize every possible display. Since U is a complete
lattice it contains a maximal data object X (the least
upper bound of all members of U). Then D(X) is the
display of X and the notation ↓D(X) represents the
complete lattice of all displays less than D(X). We
modify Condition 2 as follows:

⊥

[0.0, 1.0]

[0.0, 0.1]

[0.0, 0.01]

[0.0, 0.0] [0.01, 0.01] [0.5, 0.5]

[0.9, 1.0]

[0.93, 0.95]

[0.945, 0.945]

[0.94, 0.97]

Condition 2'. For every monotone predicate
Q: ↓D(X) → { undefined, true}, there is a monotone
predicate P: U → { undefined, true} such that Q(v) =
P(D-1(v)) for each v ∈ ↓D(X).

Figure 1. The order relations among a few values of a
continuous scalar.

These conditions quantify the relation between the
information content of data objects and the information
content of their displays. We use them to define a class
of functions: We also define discrete scalars to represent integer

and string variables, such as year, frequency_count and
satellite_name. If s is discrete then Is includes ⊥ and a
countable set of incomparable values (no integer is more
precise than any other integer). Figure 2 illustrates the
order relation on a discrete scalar type.

Definition. A function D: U → V is a display
function if it satisfies Conditions 1 and 2'.

In [7] we prove the following result about display
functions:

⊥

0 1 2 3 . . .-1-2-3. . .

Proposition 1. A function D: U → V is a display
function if and only if it is a lattice isomorphism from U
onto ↓D(X) [i.e., for all u1, u2 ∈ U, D(u1 ∨ u2) =
D(u1) ∨ D(u2) and D(u1 ∧ u2) = D(u1) ∧ D(u2)].

Figure 2. The order relations among a few values of a
discrete scalar.This result may be applied to any complete lattice

models of data and displays. In the next three sections
we will explore its consequences in one setting. Complex data types are constructed from scalar data

types as arrays and tuples. An array data type represents
a function between mathematical variables. For
example, a function from time to temperature is
approximated by data objects of the type (array [time] of
temperature;). We say that time is the domain type of
this array, and temperature is its range type. Values of
an array type are sets of 2-tuples that are (domain, range)
pairs. The set {([1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1], [5.0,
5.2]), ([6.1, 6.4], [6.2, 6.5])} is an array data object that
contains three samples of a function from time to
temperature. The domain value of a sample lies in the
first interval of a pair and the range value lies in the
second interval of a pair, as illustrated in Figure 3.
Adding more samples, or increasing the precision of

4 A Scientific data model

We will develop a scientific data model that
integrates metadata for missing data indicators,
numerical accuracy and function sampling. We will
develop this data model in terms of a set of data types,
starting with scalar types used to represent the primitive
variables of mathematical models. Given a scalar type s,
let Is denote the set of possible values of a data object of
the type s. First we define continuous scalars to
represent real variables, such as time, temperature and
latitude. If s is continuous then Is includes the undefined
value, which we denote by the symbol ⊥ (usually used to

samples, will create a more precise approximation to the
function. Figure 4 illustrates the order relation on an
array data type. The domain of an array must be a scalar
type, but its range may be any scalar or complex type (its
definition may not include the array's domain type).

defined from disjoint sets of scalars). A tuple data object
x is less than or equal to a tuple data object y if every
element of x is less than or equal to the corresponding
element of y, as illustrated in Figure 5.

(⊥, ⊥)

([0.3, 0.4], [2.3, 2.4])

([0.0, 0.9], [2.3, 2.4]) ([0.3, 0.4], [2.0, 2.9])

([0.0, 0.9], [2.0, 2.9])(⊥, [2.3, 2.4]) ([0.3, 0.4], ⊥)

([0.0, 0.9], ⊥)(⊥, [2.0, 2.9])
[1.1, 1.6] [3.6, 4.1] [6.1, 6.4]

[3.1, 3.4]

[5.0,5.2]

[6.2, 6.5]

Figure 3. An array samples a real function as a set of
pairs of intervals.

Figure 5. The order relations among a few tuples.

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1, 6.4], [6.2, 6.5])}

([3.6, 4.1], [5.0, 5.2]),

{([1.1, 1.6], ⊥),

([6.1, 6.4], ⊥)}

{([1.33, 1.40], [3.21, 3.24]),

([3.72, 3.73], [5.09, 5.12]),

([6.21, 6.23], [6.31, 6.35])}

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1, 6.4], [6.2, 6.5]),

([7.3, 7.5], [8.1, 8.4])}

φ (the empty set)

This data model is applied to a particular application
by defining a finite set S of scalar types (these would
represent the primitive variables of the application), and
defining T as the set of all types that can be constructed
as arrays and tuples from the scalar types in S. For each
type t ∈ T we can define a countable set Ht of data
objects of type t (these correspond to the data objects that
are realized by an implementation).

In order to apply our lattice theory to this data
model, we must define a single lattice U and embed each
Ht in U. First define X = X{ Is | s ∈ S} as the cross
product of the value sets of the scalars in S. Its members
are tuples with one value from each scalar in S, ordered
as illustrated in Figure 5. Now we would like to define U
as the power set of X (i.e., the set of all subsets of X).
However, power sets have been studied for the semantics
of parallel languages and there is a well known problem
with constructing order relations on power sets [14]. We
expect this order relation to be consistent with the order
relation on X and also consistent with set containment.
For example, if a, b ∈ X and a < b, we would expect that
{ a} < { b}. Thus we might define an order relation
between subsets of X by:

Figure 4. The order relations among a few arrays.

Tuple data types represent tuples of mathematical
objects. For example, a 2-tuple of values for temperature
and pressure is represented by data objects of the type
struct{ temperature; pressure;}. Data objects of this type
are 2-tuples (temp, pres) where temp ∈ Itemperature
and pres ∈ Ipressure. We say that temperature and
pressure are element types of the tuple. The elements of
a tuple type may be any complex types (they must be

(1) ∀ A, B ⊆ X. (A ≤ B ⇔ ∀ a ∈ A. ∃ b ∈ B. a ≤ b)

However, given a < b, (1) implies that { b} ≤ { a, b} and
{ a, b} ≤ { b} are both true, which contradicts { b} ≠
{ a, b}. This problem can be resolved by restricting the
lattice U to sets of tuples such every tuple is maximal in
the set. That is, a set A ⊆ X belongs to the lattice U if

a < b is not true for any pair a, b ∈ A. The members of
U are ordered by (1), as illustrated in Fig. 6, and form a
complete lattice (see [7] for more details).

[time] of temperature;). A data object of this type
consists of a set of pairs of (time, temp). This array data
object can be embedded in U as a set of tuples of the form
(time, temp, ⊥). Figure 8 illustrates this embedding.
The basic ideas presented in Figs. 7 and 8 can be
combined to embed complex data types, defined as
hierarchies of tuples and arrays, in data lattices (see [7]
for details).

(the empty set)

{(⊥, ⊥, ⊥)}

{(Α, ⊥, ⊥)} {(⊥, Β, ⊥)}

{(Α, ⊥, ⊥), (⊥, Β, ⊥)}

{(Α, Β, ⊥)}

φ

5 A scientific display model

For our scientific display model, we start with
Bertin's analysis of static 2-D displays [1]. He modeled
displays as sets of graphical marks, where each mark was
described by an 8-tuple of graphical primitive values
(i.e., two screen coordinates, size, value, texture, color,
orientation and shape). The idea of a display as a set of
tuple values is quite similar to the way we constructed the
data lattice U. Thus we define a finite set DS of display
scalars to represent graphical primitives, we define Y =
X{ Id | d ∈ DS} as the cross product of the value sets of
the display scalars in DS, and we define V as the
complete lattice of all subsets A of Y such that every tuple
is maximal in A.

Figure 6. The order relations among a few members
of a data lattice U defined by three scalars.

(temp1, pres1) ⊥{(, temp1, pres1)}

object of a
tuple type

set of one tuple with
time value = ⊥

Figure 7. An embedding of a tuple type into a lattice. set of animation steps:

(time, x, y, z, red, green, blue)

red green blue

tuple of display
scalar values
for a graphical
mark

location and size
of mark in volume

interval that mark
persists during
animation

x

z

y

ranges of values
of mark's color
components

⊥{(time1, temp1,),

⊥ (time2, temp2,),

⊥ (time3, temp3,),

⊥ (timeN, tempN,)}

. . .

{(time1, temp1),

 (time2, temp2),

 (timeN, tempN)}

. . .

 (time3, temp3),

array of temperature
values indexed by
time values

⊥
set of tuples with
pressure values =

Figure 8. An embedding of an array type into a lattice.

To see how the data objects in Ht are embedded in
U, consider a data lattice U defined from the three scalars
time, temperature and pressure. Objects in the lattice U
are sets of tuple of the form (time, temperature,
pressure). We can define a tuple data type
struct{ temperature; pressure;}. A data object of this type
is a tuple of the form (temp, pres) and can be mapped to
a set of tuples (actually, it is a set consisting of one tuple)
in U with the form {(⊥ , temp, pres)}. This embeds the
tuple data type in the lattice U, as illustrated in Figure 7.

Figure 9. The roles of display scalars in an animated
3-D display model.

We can define a specific lattice V to model animated
3-D displays in terms of a set of seven continuous display
scalars: (x, y, z, red, green, blue, time}. A tuple of
values of these display scalars represents a graphical
mark. The interval values of x, y and z represent the

Similarly, we can embed array data types in the data
lattice. For example, consider an array data type (array

locations and sizes of graphical marks in the volume, the
interval values of red, green and blue represent the
ranges of colors of marks, and the interval values of time
represent the place and duration of persistence of marks
in an animation sequence. This is illustrated in Figure 9.
A display in V is a set of tuples, representing a set of
graphical marks.

of designing displays as an assumption, but that it is a
consequence of a more fundamental set of expressiveness
conditions. Figure 10 provides examples of mappings
from scalars to display scalars (lat_lon is a real2d scalar,
as described in Section 7).

x

z

y

red green blue

type image_sequence =

array [time] of array [lat_lon] of structure {ir; vis;}

a
n
i
m
a
t
i
o
n

s
t
e
p
s

Display scalars can be defined for a wide variety of
attributes of graphical marks, and need not be limited to
simple values. For example, a discrete display scalar
may be an index into a set of complex shapes (i.e., icons).

6 Scalar mapping functions

Proposition 1 said that a function of the form
D: U → V satisfies the expressiveness conditions (i.e., is
a display function) if and only if D is a lattice
isomorphism from U onto ↓D(X), a sublattice of V. We
can now apply this to the scientific data and display
lattices described in Section 4 and 5.

The scalar and display scalar types play a special
role in characterizing display functions in the context of
our scientific models. Given a scalar type s ∈ S, define
Us ⊆ U as the set of embeddings of objects of type s in U.
That is, Us consists of sets of tuples of the form
{(⊥ ,...,b,...,⊥)} (this notation indicates that all
components of the tuple are ⊥ except the s component,
which is b). Similarly, given a display scalar type
d ∈ DS, define Vd ⊆ V as the set of embeddings of
objects of type d in V. In [7] we prove the following
result:

Figure 10. Mappings from scalars to display scalars.

In [7] we present a precise definition (the details are
complex) of scalar mapping functions and show that
D: U → V is a display function if and only if it is a scalar
mapping function. Here we will just describe the
behavior of display functions on continuous scalars. If s
is a continuous scalar and MAPD(s) = d, then D maps Us
to Vd. This can be interpreted by a pair of functions
gs:R × R → R and hs:R × R → R (where R denotes the
real numbers) such that for all {(⊥ ,...,[x, y],...,⊥)} in Us,
D({(⊥ ,...,[x, y],...,⊥)}) = {(⊥ ,...,[gs(x, y), hs(x, y)],...,⊥)},
which is a member of Vd. Define functions g's:R → R
and h's:R → R by g's(z) = gs(z, z) and h's(z) = hs(z, z).
Then the functions gs and hs can be defined in terms of
g's and h's as follows:

Proposition 2. If D: U → V is a display function,
then we can define a mapping MAPD: S → POWER(DS)
(this is the power set of DS) such that for all scalars s ∈ S
and all for a ∈ Us, there is d ∈ MAPD(s) such that
D(a) ∈ Vd. The values of D on all of U are determined
by its values on the scalar embeddings Us. Furthermore, (2) gs(x, y) = min{ g's(z) | x ≤ z ≤ y} and

(3) hs(x, y) = max{ h's(z) | x ≤ z ≤ y}.(a) If s is discrete and d ∈ MAPD(s) then d is
discrete,

These functions must satisfy the conditions illustrated in
Figure 11.

(b) If s is continuous then MAPD(s) contains a
single continuous display scalar.

Although the complete lattices U and V include
members containing infinite numbers of tuples (these are
mathematical objects and ideal displays) in [7] we prove
the following:

(c) If s ≠ s' then MAPD(s) ∩ MAPD(s') = φ.

This tells us that display functions map scalars,
which represent primitive variables like time and
temperature, to display scalars, which represent
graphical primitives like screen axes and color
components. Most displays are already designed in this
way, as, for example, a time series of temperatures may
be displayed by mapping time to one axis and
temperature to another. The remarkable thing is that
Proposition 2 tells us that we don't have to take this way

Proposition 3. Given a display function D: U → V,
a data type t ∈ T and an embedding of a data object from
Ht to a ∈ U, then a contains a finite number of tuples
and D(a) ∈ V contains a finite number of tuples.

g's

sh'

no upper bound

no lower bound

interval in a
continuous scalar

abovesh' g's

andsh' g's both continuous
and increasing (could
both be decreasing)

interval in a
continuous
display

determine

andsh' g's

mapping to

scalar

marks), as well as a real3d display scalar for vector (to
be interpreted by flow rendering techniques).

VIS-AD is available by anonymous ftp from
iris.ssec.wisc.edu (144.92.108.63) in the pub/visad
directory. Get the README file for complete
installation instructions.

8 Recursively defined data types

The data model in Section 4 is adequate for scientific
data, but is inadequate for complex information
processing which involves recursively defined data types
[14]. For example, binary trees may be defined by the
type bintree = struct{ bintree; bintree; value;} (a leaf
node is indicated when both bintree elements of the tuple
are undefined). Several techniques have been developed
to model such data using lattices. In the current context,
the most promising is called universal domains [3, 17].
Just as we embedded data objects of many different types
in the domain U in Section 4, data objects of many
different recursively defined data types are embedded in a
universal domain (which we also denote by U).
However, these embeddings have been defined in order to
study programming language semantics, and have a
serious problem in the visualization context. Data
objects of many different types are mapped to the same
member of U. For example, an integer and a function
from the integers to the integers may be mapped to the
same member of U, and thus any display function of the
form D: U → V will generate the same display for these
two data objects. Thus, in order to extend our lattice
theory of visualization to recursively defined data types,
other embeddings into universal domains must be
developed.

Figure 11. The behavior of a display function D on a
continuous scalar interpreted in terms of the
behavior of functions h's and g's.

7 Implementation

The data and display models described in Sections 4
and 5, and the scalar mapping functions described in
Section 6, are implemented in our VIS-AD system [6, 8].
This system is intended to help scientists experiment
with their algorithms and steer their computations. It
includes a programming language that allows users to
define scalar and complex data types and to express
scientific algorithms. The scalars in this language are
classified as real (i.e., continuous), integer (discrete),
string (discrete), real2d and real3d. The real2d and
real3d scalars have no analog in the data model
presented in Section 4, but are very useful as the domains
of arrays that have non-Cartesian sampling in two and
three dimensions. Users control how data are displayed
by defining a set of mappings from scalar types (that they
declare in their programs) to display scalar types. By
defining a set of mappings a user defines a display
function D: U → V that may be applied to display data
objects of any type.

A suitable display lattice V must also be developed
such that there exist lattice isomorphisms from a
universal domain U into V. Displays involving diagrams
and hypertext links are analogous to the pointers usually
used to implement recursively defined data types. Thus
the interpretation of V as a set of actual displays may
involve these graphical techniques. However, since a
large class of recursively defined data types can be
embedded in U, and since V is isomorphic to U, these
graphical techniques must be applied in a very abstract
manner to define a suitable lattice V.

The VIS-AD display model includes the seven
display scalars described for animated 3-D displays in
Section 5, and also includes display scalars named
contour and selector. Multiple copies of each of these
may exist in a display lattice (the numbers of copies are
determined by the user's mappings). Scalars mapped to
contour are depicted by drawing isolevel curves and
surfaces through the field defined by the contour values
in graphical marks. For each selector display scalar, the
user selects a set of values and only those graphical
marks whose selector values that overlap this set are
displayed. Contour is a real display scalar and selector
display scalars take the type of the scalar mapped to
them. We plan to add real display scalars for
transparency and reflectivity to the system (to be
interpreted by complex volume rendering of graphical

9 Conclusions

It is easy to think of metadata as secondary when we
are focused on the task of making visualizations of data.
However, it is central to the meaning of scientific data
that they are approximations to mathematical objects,
and lattices provide a way to integrate metadata about
precision of approximation into a data model. By

bringing the approximate nature of data and displays into
central focus, lattices provide a foundation for
understanding the visualization process and an analytic
approach to defining the mapping from data to displays.
While Proposition 2 just confirms standard practice in
designing displays, it is remarkable that this practice can
be deduced from the expressiveness conditions.

[11] Nadas, T. and A. Fournier, 1987; GRAPE: An
environment to build display processes, Computer Graphics
21(4), 103-111.

[12] Potmesil, M. and E. Hoffert, 1987; FRAMES: Software
tools for modeling, animation and rendering of 3D scenes,
Computer Graphics 21(4), 75-84.

[13] Robertson, P. K., R. A. Earnshaw, D. Thalman, M. Grave,
J. Gallup and E. M. De Jong, 1994; Research issues in the
foundations of visualization. Computer Graphics and
Applications 14(2), 73-76.

Although we have not derived any new rendering
techniques by using lattices, the high level of abstraction
of scalar mapping functions do provide a very flexible
user interface for controlling how data are displayed.

[14] Schmidt, D. A., 1986; Denotational Semantics.
Wm.C.Brown.

[15] Schroeder, W. J., W. E. Lorenson, G. D. Montanaro and C.
R. Volpe, 1992; VISAGE: An object-oriented scientific
visualization system, Proc. Visualization '92, 219-226.

There will be considerable technical difficulties in
extending this work to recursively defined data types, but
we are confident that the results will be interesting. [16] Scott, D. S., 1971; The lattice of flow diagrams. In

Symposium on Semantics of Algorithmic Languages, E.
Engler. ed. Springer-Verlag, 311-366.Acknowledgments

[17] Scott, D. S., 1976; Data types as lattices. Siam J. Comput,
5(3), 522-587.This work was support by NASA grant NAG8-828,

and by the National Science Foundation and the Defense
Advanced Research Projects Agency under Cooperative
Agreement NCR-8919038 with the Corporation for
National Research Initiatives.

[18] Treinish, L. A., 1991; SIGGRAPH '90 workshop report:
data structure and access software for scientific
visualization. Computer Graphics 25(2), 104-118.

References

[1] Bertin, J., 1983; Semiology of Graphics. W. J. Berg, Tr.
University of Wisconsin Press.

[2] Davey, B. A. and H. A. Priestly, 1990; Introduction to
Lattices and Order. Cambridge University Press.

[3] Gunter, C. A. and Scott, D. S., 1990; Semantic domains. In
the Handbook of Theoretical Computer Science, Vol. B., J.
van Leeuwen ed., The MIT Press/Elsevier, 633-674.

[4] Haber, R. B., B. Lucas and N. Collins, 1991; A data model
for scientific visualization with provisions for regular and
irregular grids. Proc. Visualization 91. IEEE. 298-305.

[5] Haberli, P., 1988; ConMan: A visual programming language
for interactive graphics; Computer Graphics 22(4),
103-111.

[6] Hibbard, W., C. Dyer and B. Paul, 1992; Display of
scientific data structures for algorithm visualization.
Visualization '92, Boston, IEEE, 139-146.

[7] Hibbard, W. L., and C. R. Dyer, 1994; A lattice theory of
data display. Tech. Rep. # 1226, Computer Sciences
Department, University of Wisconsin-Madison. Also
available as compressed postscript files by anonymous ftp
from iris.ssec.wisc.edu (144.92.108.63) in the pub/lattice
directory.

[8] Hibbard, W. L., B. E. Paul, D. A. Santek, C. R. Dyer, A. L.
Battaiola, and M-F. Voidrot-Martinez, 1994; Interactive
visualization of Earth and space science computations.
IEEE Computer special July issue on visualization.

[9] Hultquist, J. P. M., and E. L. Raible, 1992; SuperGlue: A
programming environment for scientific visualization. Proc.
Visualization '92, 243-250.

[10] Mackinlay, J., 1986; Automating the design of graphical
presentations of relational information; ACM Transactions
on Graphics, 5(2), 110-141.

