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Abstract

In order to developa foundationfor visualization,
we developlattice modelsfor data objectsand displays
that focus on the fact that data objects are
approximations to mathematical objects and real
displays are approximationsto ideal displays. These
lattice modelsgive us a way to quantizethe information
contentof dataand displaysand to defineconditionson
the visualization mappings from data to displays.
Mappingssatisfytheseconditionsif and only if theyare
lattice isomorphisms.We showhow to apply this result
to scientificdata and displaymodels,and discusshow it
might be applied to recursively defined data types
appropriate for complex information processing.

1 Introduction

Robertsoret.al. have describedthe needfor formal
modelsthat can serveas a foundationfor visualization
techniquesand systemg13]. Models can be developed
for data(e.g.,the fiber bundledatamodel [4] describes
the data objects that computational scientists use to
approximategunctionsbetweendifferentiablemanifolds),
displays (e.g., Bertin's detailed analysis of static 2-D
displays[1]), users(i.e., their tasks and capabilities),
computationg(i.e., how computationsare expressedind

executed), and hardware devices (i.e., their capabilities).

Here we focus on the processof transformingdata
into displays. We definea datamodelasa setU of data
objects,a display model as a setV of displays,and a
visualizationprocessasa functionD: U — V. Theusual
approachto visualizationis synthetic, constructingthe
function D from simplerfunctions. The function may be
synthesized using rendering pipelines [5, 11, 12],

defining different pipelines appropriate for different types

of dataobjectswithin U. Objectorientedprogramming
may be usedto synthesizea polymorphicfunction D [9,
15] that applies to multiple data types witkin

We will try to addressthe need for a formal
foundation for visualization by taking an analytic
approachto defining D. Sincean arbitrary function
D: U - Vwill notproducedisplaysD(u) that effectively
communicatethe information content of data objects
u 0 U, we seek to define conditions Bnto ensurethatit
does. For example,we may requirethat D be injective
(i.e., one-to-one),so that no two data objectshave the
same display.However thisis clearlynot enough. If we
let U andV both be the set of images of 512 by pbzels
with 24 bits of colomper pixel, thenany permutationof U
can be interpreted as an injective functidfrom U to V.
But an arbitrary permutation of images will not
effectively communicatenformation. Thuswe needto
define stronger conditions on the function D. Our
investigation dependson some complex mathematics,
althoughwe will only presentthe conclusionsin this
paper. The details are available in [7].

2 Lattices as data and display models

The purposeof datavisualizationis to communicate
theinformationcontentof dataobjectsin displays. Thus
if we canquantifythe informationcontentof dataobjects
anddisplaysthis may give us a way to define conditions
on the visualization functioD. The issu®f information
content has already been addressedin the study of
programminglanguagesemantics[14], which seeksto
assignmeaninggo programs. This issuearisesbecause
thereis no algorithmic way to separatenon-terminating
programs from terminating programs, so the set of
meaningsof programsmustinclude an undefinedvalue
for non-terminatingorograms. This value containsless
information (i.e., is lessprecise)than any of the values
that a programmight produceif it terminatesand thus
introduces an order relation basedimiormationcontent
into the setof programmeanings. In orderto define a
correspondencéetween the ways that programs are
constructedandthe setsof meaningsof programs,Scott



developedan elegantlattice theory for the meaningsof
programs [16].

Scientistshavedatawith undefinedvalues,although
their sourcesare numerical problems and failures of
observing instruments rather than non-terminating
computations. An undefinedvaluefor pixelsin satellite
images contains less information than valid pixel
radianceaindthuscreatesan orderrelationbetweerdata
values. Data are often accompanieddy metadata[18]
that describetheir accuracy,for exampleas error bars,
and theseaccuracyestimatesalso createorder relations
betweendatavaluesbasedon information content(i.e.,
precision). Finally, array data objects are often
approximationsto functions, as for examplea satellite
imageis afinite approximation(i.e., a finite samplingin
both spaceandradiance)to a continuousradiancefield,
andsucharraysmay be orderedbasedon the resolution
with which they sample functions.

In generalscientistsuse computer data objects as
finite approximations tohe objectsof their mathematical
models, which contain infinite precision numbersand
functions with infinite ranges. Thus metadata for
missingdataindicators,numericalaccuracyandfunction
samplingare really centralto the meaningof scientific
dataandshouldplay animportantrole in a datamodel.
We define a datamodel U as a lattice of data objects,
orderedby how preciselythey approximatemathematical
objects. To saythatU is a lattice [2] meanghatthereis
a partialorderon U (i.e., a binary relation suchthat, for
allu, u,,us 00U, Uy SuUj, U SU & U, Suyp O up =,
and u; <u, & U, <u; O u; <ug) andthatany pair
uy, U, 0 U havea leastupperbound(denotedoy u; [ u,)
and a greatest lower bound (denotedipy. us).

The notion of precision of approximation also
applies to displays. They have finiesolutionsn space,
color andtime (i.e., animation). 2-D imagesand 3-D
volume renderingsare composedof finite numbersof
pixels and voxels and are finite approximationsto
idealizedmathematicaldisplays. Thuswe will assume
thatour displaymodelV is a lattice andthat displaysare
ordered according to their information content (i.e.,

precision of approximation to ideal displays). In Sections

4 and 5 we will presentexamplesof scientific dataand
display lattices.

We assumethat U and V are completelattices, so
that they contain the mathematicalobjects and ideal
displaysthat are limits of setsof data objectsand real
displays(a lattice is completeif any subsethasa least
upper bound and a greatestiower bound). Justas we
study functions of rational numbersin the context of
functionsof real numbers(the completionof the rational
numbers)we will study visualizationfunctionsbetween
the complete lattices U and V, recognizingthat data

objects and real displays are restricted to countable
subsets ot andV.

3 Conditions on visualization functions

The lattice structuresof U andV provide a way to
guantize information content and thus to define
conditionson functionsof theform D: U — V. In order
to define these conditions we draw on the work of
Mackinlay [10]. He studiedthe problemof automatically
generatinglisplaysof relationalinformationand defined
expressivenessconditions on the mapping from
relationaldatato displays. His conditionsspecifythat a
display expresses setof facts (i.e., an instanceof a set
of relations)if the displayencodesll thefactsin the set,
and encodes only those facts.

In order to interpret the expressivenessonditions
we definea fact aboutdataobjectsasa logical predicate
appliedto U (i.e., a function of theform P: U - {falsg
true}). However,since dataobjectsare approximations
to mathematicabbjects,we shouldavoid predicatesuch
that providing more precise information about a
mathematical object (i.e., goingfromu; tou, where
U; < u,) changeshe truth value of the predicate(e.g.,
P(u;) = true but P(u,) = falsg. Thus we consider
predicatesthat take valuesin {undefined false true}
(whereundefinedk false and undefined< true), and we
requirepredicatego preserveinformation ordering(that
is, if u; < u, thenP(uy) < P(u,); functionsthat preserve
order are called monotong We also observethat a
predicate of the forr®: U - {undefinedfalse true} can
be expressedn terms of two predicatesof the form
P: U - {undefined true}, sowe will limit facts about
data objects to monotone predicates of the form
P: U - {undefinedtrue}.

The first part of the expressivenessonditionssays
that every fact about data objectsis encodedby a fact
about their displays. We interpret this as follows:

Condition 1. For every monotone predicate
P: U - {undefinedtrue}, thereis a monotonepredicate
Q: V - {undefinedtrue} suchthat P(u) = Q(D(u)) for
eachu O U.

This requiresthat D be injective (if u; # u, then
thereareP suchthatP(u,) # P(u,), butif D(u;) = D(u,)
then Q(D(uy)) = Q(D(u,)) for all Q, so we must have
D(up) # D(u,)).

The second part dhe expressivenessonditions
saysthat every fact aboutdisplaysencodesa fact about
data objects. We interpret this as follows:



Condition 2. For every monotone predicate
Q: V - {undefinedtrue}, thereis a monotonepredicate
P: U - {undefinedtrue} suchthatQ(v) = P(D"L(v)) for
eachv O V.

This requires thab™1 be afunctionfrom V to U, and
hencethat D be bijective (i.e., one-to-oneand onto).
However, it is too strongto require that a data model
realize every possibledisplay. Since U is a complete
lattice it containsa maximal data object X (the least
upper boundof all membersof U). Then D(X) is the
display of X and the notation | D(X) representsthe
complete lattice of all displays less than D(X). We
modify Condition 2 as follows:

Condition 2. For every monotone predicate
Q: ID(X) - {undefined true}, thereis a monotone
predicateP: U — {undefined true} suchthat Q(v) =
P(DY(v)) for eachv O 1 D(X).

Theseconditions quantify the relation betweenthe
information contentof dataobjectsand the information
contentof their displays. We usethemto definea class
of functions:

Definition. A function D: U - V is a display
functionif it satisfies Conditions 1 and 2'.

In [7] we prove the following result about display
functions:

Proposition 1. A functionD: U - V is a display
functionif andonly if it is a latticeisomorphismfrom U
onto {D(X) [i.e., forall u;, up OU, D(uy C uy) =
D(u;) C D(uy) andD(u, C u,) =D(u;) C D(u,)].

This result may be appliedto any completelattice
modelsof dataand displays. In the next three sections
we will explore its consequences in one setting.

4 A Scientific data model

We will develop a scientific data model that
integrates metadata for missing data indicators,
numerical accuracyand function sampling. We will
developthis datamodelin termsof a setof datatypes,
startingwith scalartypesusedto representhe primitive
variablesof mathematicamodels. Givena scalartypes,
let I denotethe setof possiblevaluesof a dataobjectof
the type s. First we define continuous scalars to
representreal variables,such as time, temperatureand
latitude. If sis continuoughenlgincludesthe undefined
value,which we denoteby the symbol ] (usuallyusedto

denotethe leastelementof a lattice), and also includes
all closedreal intervals. We interpretthe closedreal

interval [x, y] as an approximatioto an actualvaluethat
lies betweenx andy. In our lattice structure,these
intervalsare orderedby the inverseof setcontainment,
since a smaller interval provides more precise
information than a containing interval. Figure 1

illustratesthe orderrelation on a continuousscalartype.

Of course,an actualimplementationcan only include a

countablenumberof closedrealintervals(suchasthe set
of rational intervals).

[0.0,0.0] [0.01,0.01] [0.5,0.5] [0.945, 0.945]
[0.0, 0.01] [0.93,0.95] [0.94,0.97]
[0.0,0.1] [0.9, 1.0]

\ [0.0, 1.0]/
!

Figure 1. The order relations among a few values of a
continuous scalar.

We also define discretescalarsto represeninteger
and string variables,suchas year, frequency_counand
satellite_name If sis discretethenlg includes] anda
countablesetof incomparablevalues(no integeris more
precisethan any otherinteger). Figure 2 illustratesthe
order relation on a discrete scalar type.

Figure 2. The order relations among a few values of a
discrete scalar.

O

Complexdatatypesare constructedrom scalardata
typesasarraysandtuples. An arraydatatyperepresents
a function between mathematical variables. For
example, a function from time to temperature is
approximatedy dataobjectsof the type (array [time] of
temperaturg. We saythat time is the domain type of
this array,andtemperatureis its rangetype. Valuesof
an array type are seb 2-tuplesthatare (domain,range)
pairs. The set{([1.1, 1.6], [3.1,3.4]), ([3.6,4.1], [5.0,
5.2]), ([6.1,6.4], [6.2,6.5])} is an arraydataobjectthat
contains three samplesof a function from time to
temperature The domainvalue of a samplelies in the
first interval of a pair and the rangevalue lies in the
secondinterval of a pair, as illustrated in Figure 3.
Adding more samples,or increasingthe precision of



sampleswill createa more preciseapproximationto the
function. Figure 4 illustratesthe order relation on an
array dataype. Thedomainof anarraymustbea scalar
type, butits rangemay be any scalaror complextype (its
definition may not include the array's domain type).

[6.2, 6.5] -

[5.0,5.2] -

[3.1,3.4]
A

[1.1,1.6] [3.6,4.1] [6.1,6.4]

Figure 3. An array samples a real function as a set of
pairs of intervals.

{([1.33, 1.40], [3.21, 3.24]),
(3.72, 3.73], [5.09, 5.12]),  ([3.6, 4.1], [5.0, 5.2]),
([6.21, 6.23], [6.31, 6.35])}  ([6.1, 6.4], [6.2, 6.5]),

\ ([7.3, 7.5], [8.1, 8.4])}

{([1.1, 1.6], [3.1, 3.4)),
(3.6, 4.1], [5.0, 5.2]),
(6.1, 6.4], [6.2, 6.5])}

{([1.1,16], 0),
(3.6, 4.1], [5.0, 5.2]),
(6.1, 6.4], O)}

{([1.1, 1.6], [3.1, 3.4]),

¢ (the empty set)

Figure 4. The order relations among a few arrays.

Tuple data types representtuples of mathematical
objects. For example a 2-tupleof valuesfor temperature
and pressureis representedy data objectsof the type
struc{ temperaturepressure}. Dataobjectsof this type
are 2-tuples (temp pre§ where temp U ligmperature
and pres U lpesqure  We say that temperatureand
pressureare elementypesof the tuple. The elementsof
a tuple type may be any complex types (they must be

definedfrom disjoint setsof scalars).A tuple dataobject
X is lessthan or equalto a tuple dataobjecty if every
elementof x is lessthan or equalto the corresponding
element ofy, as illustrated in Figure 5.

([0.3, 0.4], [2.3, 2.4])

/

([0.0, 0.9], [2.3, 2.4])

N

([0.3, 0.4], [2.0, 2.9])
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N
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Figure 5. The order relations among a few tuples.

This data model iappliedto a particularapplication
by defining a finite setS of scalartypes (thesewould
representhe primitive variablesof the application),and
defining T asthe setof all typesthat can be constructed
asarraysandtuplesfrom the scalartypesin S For each
typet O T we can define a countableset H; of data
objectsof typet (thesecorrespondo the dataobjectsthat
are realized by an implementation).

In order to apply our lattice theory to this data
model,we mustdefinea singlelattice U andembedeach
Hi in U. First define X = X{lg | s O § asthe cross
productof the valuesetsof the scalaran S. Its members
aretupleswith onevaluefrom eachscalarin S ordered
as illustrated in Figure 5. Now we would liteedefineU
asthe powersetof X (i.e., the setof all subsetsof X).
However,powersetshavebeenstudiedfor the semantics
of parallellanguagesndthereis a well known problem
with constructingorderrelationson powersets[14]. We
expectthis orderrelationto be consistenwith the order
relation on X and also consistentwith set containment.
For exampleif a, b 0 X anda < b, we would expectthat
{a} < {b}. Thus we might define an order relation
between subsets &fby:

(1) OABOX. (A<B - DJaJA [CbOB.a<h)

However,givena < b, (1) impliesthat{b} < {a, b} and
{a, b} <{b} are both true, which contradicts {b} #
{a, b}. This problemcan be resolvedby restrictingthe
lattice U to setsof tuplessucheverytupleis maximalin
theset. Thatis, aset A0 X belongsto thelattice U if



a<bisnottruefor anypaira, b 0 A. The membersof
U areorderedby (1), asillustratedin Fig. 6, andform a
complete lattice (see [7] for more details).

{(A, B, D}

{(A, LD (BB, D}

[\

{(A, IO} {(tB, O}

N/

{(QOR

@ (the empty set)

Figure 6. The order relations among a few members
of a data lattice U defined by three scalars.

(temp1l, presl) H {(O, templ, presl)}

object of a
tuple type

set of one tuple with
time value =00

Figure 7. An embedding of a tuple type into a lattice.

{(timel, temp1l), {(timel, temp1,0),

(time2, temp2), (time2, temp2,0),

(time3, temp3), > (time3, temp3,0),

(timeN, tempN)} (timeN, tempN,O)}

array of temperature
values indexed by
time values

set of tuples with
pressure values = [J

Figure 8. An embedding of an array type into a lattice.

To seehow the dataobjectsin H; are embeddedn
U, consider a data lattid¢¢ defined from the three scalars
time, temperatureand pressure Objectsin the lattice U
are sets of tuple of the form (time temperature
pressurg. We can define a tuple data type
struc{ temperaturepressure}. A data object of this type
is a tuple of the form (temp pre9 and canbe mappedto
a set of tuples (actuallyt, is a setconsistingof onetuple)
in U with the form {(O, temp presg}. This embedshe
tuple data type in the lattide, as illustrated in Figure 7.

Similarly, we canembedarraydatatypesin the data
lattice. For example,consideran array datatype (array

[timg of temperaturg. A data object of this type
consistsof a setof pairsof (time temp. This arraydata
object can be embeddedlnas a set of tuples tifie form

(time, temp 0). Figure 8 illustrates this embedding.
The basic ideas presentedin Figs. 7 and 8 can be
combined to embed complex data types, defined as
hierarchiesof tuplesandarrays,in datalattices(see[7]

for details).

5 A scientific display model

For our scientific display model, we start with
Bertin'sanalysisof static2-D displays[1]. He modeled
displays as sets of graphical manktereeachmarkwas
describedby an 8-tuple of graphical primitive values
(i.e., two screencoordinatessize, value, texture, color,
orientationandshape). The ideaof a displayasa setof

tuple values is quite similar to the way we constructed the

datalattice U. Thuswe definea finite setDS of display
scalarsto represengraphicalprimitives, we defineY =
X{lq | d O DS asthe crossproductof the value setsof
the display scalarsin DS, and we define V as the
complete lattice of all subseAsof Y suchthateverytuple
is maximal inA.

location and size

set of animation steps:
] of mark in volume

) X
| _{ interval that mark

| | persists during

animation

-
ih g A

tuple of display
scalar values
for a graphical
mark

(time, X, y, z, red, green, blue)

ranges of values
of mark's color
components

red green blue

Figure 9. The roles of display scalars in an animated
3-D display model.

We candefinea specificlattice V to modelanimated
3-D displays in terms od setof sevencontinuoudisplay
scalars:(X, vy, z red, green blue timeg. A tuple of
values of thesedisplay scalarsrepresentsa graphical
mark. The interval valuesof x, y and z representthe



locationsandsizesof graphicalmarksin the volume,the
interval values of red, green and blue representthe
rangesof colorsof marks,andthe interval valuesof time
representhe placeand durationof persistencef marks
in an animation sequence. Timssllustratedin Figure9.
A displayin V is a setof tuples, representinga set of
graphical marks.

Display scalarscan be definedfor a wide variety of
attributesof graphicalmarks,and neednot be limited to
simple values. For example,a discretedisplay scalar

may be an index into a set of complex shapes (i.e., icons).

6 Scalar mapping functions

Proposition 1 said that a function of the form
D: U - V satisfiesthe expressivenessonditions(i.e., is
a display function) if and only if D is a lattice
isomorphismfrom U onto | D(X), a sublatticeof V. We
can now apply this to the scientific data and display
lattices described in Section 4 and 5.

The scalarand display scalartypes play a special
role in characterizingdisplayfunctionsin the contextof
our scientific models. Givena scalartypes O S, define
Ug O U as the set of embeddings of objeafttypesin U.
Thatis, Ug consists of setsof tuples of the form
{(4,...b,...0)} (this notation indicates that all
componentf the tuple are O exceptthe s component,
which is b). Similarly, given a display scalar type
d 0 DS define Vy O V as the set of embeddingsof
objectsof type d in V. In [7] we prove the following
result:

Proposition 2. If D: U - V is a display function,
thenwe candefinea mappingMAPL: S —~ POWERDYS)
(this is the power set @S) such that for all scalassd S
andall for a Ug, thereis d O MAPp(s) suchthat
D(a) O Vg. Thevaluesof D onall of U are determined
by its values on the scalar embeddibgs Furthermore,
(a) If sis discreteand d O MAPR(s) then d is
discrete,

(b) If s is continuousthen MAPR(s) contains a
single continuous display scalar.

(c) If s# s thenMAPR(S) n MAPR(S) = .

This tells us that display functions map scalars,
which represent primitive variables like time and
temperature to display scalars, which represent
graphical primitives like screen axes and color
components.Most displaysare alreadydesignedn this
way, as, for example,a time seriesof temperaturesnay
be displayed by mapping time to one axis and
temperatureto another. The remarkablething is that
Proposition2 tells us thatwe don'thaveto takethis way

of designingdisplaysas an assumptionput that it is a
consequencef a morefundamentaketof expressiveness
conditions. Figure 10 provides examplesof mappings
from scalargo displayscalarqlat_lonis areal2d scalar,
as described in Section 7).

type image_sequence =

array [time] of array [lat_lon] of structure {ir; vis;}

woT O~ W0

| L
Dﬂﬂ

‘® .

AN

S5O0 T "3 TS

red green blue

Figure 10. Mappings from scalars to display scalars.

In [7] we presenta precisedefinition (the detailsare
complex) of scalarmappingfunctions and show that
D: U - Vis a displayfunctionif andonly if it is a scalar
mapping function. Here we will just describe the
behaviorof displayfunctionson continuousscalars. If s
is acontinuousscalarandMAPL(s) = d, thenD mapsUg
to Vg This canbe interpretedby a pair of functions
gsR xR - RandhgR xR - R (whereR denoteghe
realnumbers)uchthatfor all {(0,...,[x, y],...,0)} in Ug,
DA(O,....[x yl,....001 = {(O,....[a¢% y), hg(x, V)1,....0)},
which is a memberof V. Define functionsg'sR - R
andh'gR - R by g'(2 = g4z 2) andh'(2) = hyz, 2).
Thenthe functionsgg and hg can be definedin termsof
g's andh's as follows:

2) g4x, y) =min{g'((2) | x<z<y} and
3) hg(x, y) =maxh'(2) |x<z<y}

Thesefunctionsmustsatisfythe conditionsillustratedin
Figure 11.

Although the complete lattices U and V include
memberscontaininginfinite numbersof tuples(theseare
mathematicabbjectsandideal displays)in [7] we prove
the following:

Proposition 3. Givena displayfunctionD: U - V,
adatatypet [0 T andanembeddingf a dataobjectfrom
H; to a O U, thena containsa finite numberof tuples
andD(a) O V contains a finite number of tuples.



no upper bound
hs

hs and gg
determine
mapping to
interval in a
continuous

>
- T 7T

/ interval in a

continuous scalar

hs above gg

hs and gg both continuous
and increasing (could
both be decreasing)

no lower bound

Figure 11. The behavior of a display function D on a
continuous scalar interpreted in terms of the
behavior of functions h'g and ¢'s.

7 Implementation

The dataanddisplaymodelsdescribedn Sections4
and 5, and the scalar mapping functions describedin
Section6, areimplementedn our VIS-AD system[6, 8].
This systemis intendedto help scientistsexperiment
with their algorithmsand steertheir computations. It
includesa programminglanguagethat allows usersto
define scalar and complex data types and to express
scientific algorithms. The scalarsin this languageare
classified as real (i.e., continuous),integer (discrete),
string (discrete),real2d and real3d The real2d and
real3d scalars have no analog in the data model
presented in Section 4, but are vasgfulasthedomains
of arraysthat have non-Cartesiarsamplingin two and
threedimensions. Userscontrol how dataare displayed
by defining a set of mappindgsom scalartypes(thatthey
declarein their programs)to display scalartypes. By
defining a set of mappingsa user defines a display
functionD: U - V that may be appliedto display data
objects of any type.

The VIS-AD display model includes the seven
display scalarsdescribedfor animated3-D displaysin
Section 5, and also includes display scalars named
contour and selector Multiple copiesof eachof these
may existin a display lattice (the numbersof copiesare
determinedby the user'smappings). Scalarsmappedto
contour are depicted by drawing isolevel curves and
surfaceghroughthe field definedby the contour values
in graphicalmarks. For eachselectordisplayscalar,the
user selectsa set of values and only those graphical
marks whose selector values that overlap this set are
displayed. Contouris a real display scalarand selector
display scalarstake the type of the scalar mappedto
them. We plan to add real display scalars for
transparency and reflectivity to the system (to be
interpretedby complex volume renderingof graphical

marks),aswell asa real3d display scalarfor vector (to
be interpreted by flow rendering techniques).

VIS-AD is available by anonymous ftp from
iris.ssec.wisc.edu (144.92.108.63) in the pub/visad
directory. Get the README file for complete
installation instructions.

8 Recursively defined data types

The data model in Section 4 is adequates@ientific
data, but is inadequate for complex information
processingvhich involvesrecursivelydefineddata types
[14]. For example,binary treesmay be defined by the
type bintree = struc{ bintree bintree value} (a leaf
node isindicatedwhenboth bintreeelementsf the tuple
areundefined). Severaltechniqueshavebeendeveloped
to modelsuchdatausinglattices. In the currentcontext,
the mostpromisingis called universaldomains[3, 17].
Justaswe embeddediataobjectsof manydifferenttypes
in the domain U in Section 4, data objects of many

different recursively defined data types are embeddad in

universal domain (which we also denote by U).

However, these embeddings have been defined in twrder

study programming language semantics,and have a
serious problem in the visualization context. Data
objectsof many different typesare mappedto the same
memberof U. For example,an integerand a function
from the integersto the integersmay be mappedto the
samememberof U, andthusany displayfunction of the
form D: U - V will generatehe samedisplayfor these
two dataobjects. Thus,in orderto extendour lattice
theory of visualizationto recursivelydefined datatypes,
other embeddingsinto universal domains must be
developed.

A suitabledisplay lattice V must also be developed
such that there exist lattice isomorphisms from a
universaldomainU into V. Displaysinvolving diagrams
and hypertextlinks are analogougo the pointersusually
usedto implementrecursivelydefineddatatypes. Thus
the interpretationof V as a set of actual displays may
involve thesegraphicaltechniques. However, since a
large class of recursively defined data types can be
embeddedn U, and sinceV is isomorphicto U, these
graphicaltechniquesmust be appliedin a very abstract
manner to define a suitable latti¢e

9 Conclusions

It is easyto think of metadataas secondarwhenwe
arefocusedon the task of makingvisualizationsof data.
However, it is centralto the meaningof scientific data
that they are approximationsto mathematicalobjects,
and lattices provide a way to integrate metadataabout
precision of approximationinto a data model. By



bringing the approximate nature of dataddisplaysinto
central focus, lattices provide a foundation for
understandinghe visualizationprocessand an analytic
approachto defining the mappingfrom datato displays.
While Proposition2 just confirms standardpracticein
designingdisplaysiit is remarkablehatthis practicecan
be deduced from the expressiveness conditions.
Although we have not derived any new rendering
techniquedy usinglattices,the high level of abstraction
of scalarmappingfunctionsdo provide a very flexible
user interface for controlling how data are displayed.
There will be considerabletechnicaldifficulties in
extendingthis work to recursivelydefineddatatypes,but
we are confident that the results will be interesting.
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