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Abstract 

 In this thesis we develop a system that makes scientific computations visible and 

enables physical scientists to perform visual experiments with their computations.  Our 

approach is unique in the way it integrates visualization with a scientific programming 

language.  Data objects of any user-defined data type can be displayed, and can be 

displayed in any way that satisfies broad analytic conditions, without requiring graphics 

expertise from the user.  Furthermore, the system is highly interactive. 

 In order to achieve generality in our architecture, we first analyze the nature of 

scientific data and displays, and the visualization mappings between them.  Scientific 

data and displays are usually approximations to mathematical objects (i.e., variables, 

vectors and functions) and this provides a natural way to define a mathematical lattice 

structure on data models and display models.  Lattice-structured models provide a basis 

for integrating certain forms of scientific metadata into the computational and display 

semantics of data, and also provide a rigorous interpretation of certain expressiveness 

conditions on the visualization mapping from data to displays.  Visualization mappings 

satisfying these expressiveness conditions are lattice isomorphisms.  Applied to the data 

types of a scientific programming language, this implies that visualization mappings from 

 



 

data aggregates to display aggregates can always be decomposed into mappings of data 

primitives to display primitives. 

 These results provide very flexible data and display models, and provide the basis 

for flexible and easy-to-use visualization of data objects occurring in scientific 

computations. 
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 In this thesis we develop a system that makes scientific computations visible and 

enables physical scientists to perform visual experiments with their computations.  Our 

approach is unique in the way it integrates visualization with a scientific programming 

language.  Data objects of any user-defined data type can be displayed, and can be 

displayed in any way that satisfies broad analytic conditions, without requiring graphics 

expertise from the user.  Furthermore, the system is highly interactive. 

 In order to achieve generality in our architecture, we first analyze the nature of 

scientific data and displays, and the visualization mappings between them.  Scientific 

data and displays are usually approximations to mathematical objects (i.e., variables, 

vectors and functions) and this provides a natural way to define a mathematical lattice 

structure on data models and display models.  Lattice-structured models provide a basis 

for integrating certain forms of scientific metadata into the computational and display 

semantics of data, and also provide a rigorous interpretation of certain expressiveness 

conditions on the visualization mapping from data to displays.  Visualization mappings 

satisfying these expressiveness conditions are lattice isomorphisms.  Applied to the data 

types of a scientific programming language, this implies that visualization mappings 

from data aggregates to display aggregates can always be decomposed into mappings of 

data primitives to display primitives. 

 These results provide very flexible data and display models, and provide the basis 

for flexible and easy-to-use visualization of data objects occurring in scientific 

computations. 
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Chapter 1 

 

Introduction 

 

 Physical scientists observe nature, formulate laws to fit the observations, and 

predict future observations in order to test their laws.  Mathematics is the language of 

observations, laws and predictions, but the complexity of modern science demands that 

mathematical calculations be automated using computers.  The number of observations of 

nature dictates that they are analyzed by computer algorithms, and the number of 

computations required to predict nature dictates that predictions are made by numerical 

simulation models running on computers.  Thus computers have become essential tools 

for scientists for both observing and simulating nature. 

 In spite of their essential role, computers are also barriers to scientific 

understanding.  Unlike hand calculations, automated computations are invisible, and, 

because of the enormous numbers of individual operations in automated computations, 

the relation between an algorithm's input and output is often not intuitive.  This problem 

was discussed in a report to the National Science Foundation (McCormack, DeFanti and 

Brown, 1987) and is illustrated by the behavior of meteorologists responsible for 

forecasting weather.  Even in this age of computers, many meteorologists manually plot 

weather observations on maps and then draw iso-level curves of temperature, pressure 

and other fields by hand (special pads of maps are printed for just this purpose).  

Similarly, radiologists use computers to collect medical data, but are notoriously 

reluctant to apply image processing algorithms to those data.  To these scientists with life 

and death responsibilities, computer algorithms are black boxes that increase rather than 

reduce risk. 

 



2 

 The barrier between scientists and their computations is being bridged by 

scientific visualization techniques that make computations visible.  Scientific 

visualization is itself a computational process that transforms the data objects of scientific 

computations into visible images on a computer display screen.  Scientific visualization 

is difficult because of the variety and complexity of scientific data, because the variety of 

scientific problems implies that scientists need to see the same data in many different 

ways, and because scientists need tools that are easy to use so that they can concentrate 

on understanding their computations rather than understanding their visualization tools. 

 The size of scientific data sets is often used to justify the development of 

scientific visualization, and it is true that scientists need to be able to see large data sets.  

However, the more important motive for visualization is the invisibility of automated 

computations.  To see this, consider the volumes of satellite images of the Earth.  A pair 

of GOES (Geostationary Operation Environmental Satellite) located at East and West 

stations over the U.S. generate one 1024 by 1024 image every four seconds.  NASA's 

Earth Observing System, as planned, will generate about five 1024 by 1024 images per 

second.  These data volumes are so large that they will overwhelm any scientist trying to 

look at them all.  Furthermore, these images are quantitative measurements rather than 

just pictures.  The real value of these images must be extracted by automated 

computations that can process the images faster than a person can coherently look at 

them.  Thus the work of Earth scientists is to develop algorithms for this automated 

processing, and the proper role of visualization is helping scientists to understand how 

their algorithms work and how to improve them. 

 

 



3 

1.1 Goals for Scientific Visualization 

 Scientific data exist in a wide variety of structures.  A few examples include two-

dimensional images: 

 

type image = array [row] of array [column] of radiance; 

 

three-dimensional grids: 

 

type grid = array [row] of array [column] of array [level] of temperature; 

 

time sequences of images and grids: 

 

type image_sequence = array [time] of image; 

type grid_sequence = array [time] of grid; 

 

images and grids with multiple values per pixel: 

 

type multi_image = array [row] of array [column] of 

  structure {ir_radiance; vis_radiance}; 

type multi_grid = array [row] of array [column] of array [level] of 

  structure {pressure; temperature; humidity}; 

 

irregularly located data such as observations made by ships or aircraft: 

 

type observations = array [index] of structure {latitude; longitude; altitude; pressure};  
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one-dimensional and multi-dimensional histograms derived from other data: 

 

type histogram_1d = array [temperature] of count; 

type histogram_2d = array [temperature] of array [pressure] of count; 

 

and partitions of images and grids into spatial regions: 

 

type image_partition = array [region] of image; 

type grid_partition = array [region] of grid; 

 

Furthermore, physical systems are observed by collections of instruments so the observed 

state of a physical system is a complex combination of data sensed by different types of 

instruments.  Similarly, simulations generate complex combinations of data describing 

interacting physical systems (e.g., atmospheric physics and chemistry, ocean physics and 

chemistry, and land and ocean surface processes).  Scientific data are made more 

complex because of scientists' need to precisely document where, when and how they 

were obtained (this documentation is a form of metadata, and must be considered as part 

of scientific data).  The first goal of this thesis is to develop visualization techniques that 

 

1. Can be applied to the data of a wide variety of scientific applications. 

 

 Scientists need to see the same data displayed in different ways, depending on 

what kinds of information they are looking at.  For example, Figure 1.1 shows a time 

sequence of multi-variate image data displayed in four different ways.  The upper-left 

 



5 

window shows radiance values as colors, which is appropriate for seeing spatial patterns 

and textures.  The upper-right window shows infrared radiances as a terrain (colored by 

visible radiances), appropriate for seeing slopes.  The time sequence can be animated in 

the upper-right and upper-left windows, which is appropriate for seeing motion.  

Alternatively, the time sequence is stacked up along the vertical axis in the lower-right 

window, which is appropriate for looking closely at rates of motion and changes in shape 

and intensity.  Information about the spatial locations of pixels is not shown in the lower-

left window, producing a colored three-dimensional scatter diagram which is appropriate 

for seeing correlations among infrared radiance, visible radiance, variance and texture 

(variance and texture are derived from infrared radiance).  Each of the four views 

presented in Figure 1.1 is appropriate for seeing a different aspect of the same data.  

More generally, the primary reason scientists use scientific visualization is to find 

unexpected patterns in data, since expected patterns can just be measured and 

characterized by statistical calculations applied to data.  And flexibility in the ways that 

data are displayed is critical in the search for unexpected patterns.  Thus the second goal 

of this thesis is to develop visualization techniques that 

 

2. Can produce a wide variety of different visualizations of data appropriate for 

different needs. 
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Figure 1.1. A time sequence of multi-variate image data displayed in four 

different ways.  (color original) 
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 Because of the large volumes of scientific data it is often impossible to display a 

data object in a single image or even a single animation sequence.  Instead, scientists 

need to interactively explore large data objects.  For example, Figure 1.2 shows a 

snapshot of an interactive animated display of the output of a numerical weather model.  

The white object is a balloon seven kilometers high in the shape of a squat chimney that 

floats in the air above a patch of tropical ocean.  The purpose of the numerical simulation 

is to verify that, once air starts rising in the chimney, the motion will be self-sustaining 

and create a perpetual rainstorm.  The vertical color slice shows the distribution of heat 

(and when animated shows the flow of heat), the yellow streamers show the 

corresponding flow of air up through the chimney, and the blue iso-surface shows the 

precipitated cloud ice (a cloud water iso-surface would obscure the view down the 

chimney, so it is not shown in this snapshot).  Viewers of this visualization can 

interactively move the color slice in the three-dimensional box of atmosphere, can 

interactively release new streamers in the air flow, can interactively change the value of 

the cloud ice iso-surface, and can rotate and zoom the box in three dimensions.  They can 

choose different combinations of fields to display, and can choose the ways that each 

field is depicted (e.g., color slice, iso-surface, contour slice).  Such interactivity is critical 

for allowing scientists to search through large 

amounts of data for unexpected patterns.  Hence, the third goal of this thesis is to develop 

visualization techniques that 

 

3. Enable users to interactively alter the ways data are viewed. 
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Figure 1.2. A snapshot of an interactive animated display of the output of a 

numerical weather model.  (color original) 
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 Because visualization is used for communicating results of observations and 

computations to scientists, they need to be able to control it themselves (that is, they 

cannot delegate expertise with visualization to support staff).  In order not to distract 

scientists from the difficult task of understanding data, visualization must be easy to 

control.  Thus the fourth goal of this thesis is to develop visualization techniques that 

 

4. Require minimal effort by scientists. 

 

 As stated at the start of this section, the rationale for visualization is scientists' 

need to see the results of computations.  Thus visualization is intimately connected with 

computation.  Just as the complexity of data requires that the visualization process should 

be interactive, the complexity of computation requires that the overall computational 

process, which includes visualization, should be interactive.  Figure 1.3 illustrates the 

interactive cycle of the computation process.  If these three activities are done in separate 

software systems, then scientists must repeatedly switch between systems and manage 

the movement of information between these systems.  This user overhead can be reduced 

by integrating all three activities in one system.  Furthermore, visualization can be 

especially useful during program execution, allowing users to dynamically monitor 

intermediate results of computations and respond by immediately adjusting parameters of 

those computations.  This is sometimes called computational steering.  The fifth goal of 

this thesis is to develop visualization techniques that 

 

5. Can be integrated with a scientific programming environment. 
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Run Computation

Visualize Results

Change Algorithm or
Computational Parameters

 

 

Figure 1.3. The place of visualization in the computational process. 

 

1.2 State of the Art in Scientific Visualization 

 Here we consider the state of the art in scientific visualization and how well 

current techniques achieve our goals. 

 

1.2.1 The Data Flow and Object-Oriented Approaches 

 Visualization research has focused primarily on developing specialized 

visualization techniques suited to specific types of data.  However, some research has 

sought common patterns in the ways that displays are computed.  For example, the 

rendering pipeline is a widely applicable abstraction for the ways that data are 

transformed into displays.  Figure 1.4 illustrates a simple rendering pipeline: 
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Generate 3-D Primitives from Data

Transform Coordinates to 3-D View Space

Clip 3-D Primitives to View Boundaries

Rasterize 3-D Primitives to 2-D Pixels

Remove Hidden Surfaces via Z-Buffer

Calculate Colors of Pixels on Screen
 

 

Figure 1.4. A simple rendering pipeline for three-dimensional graphics. 

 

 The FRAMES system abstracted the rendering pipeline to let users specify 

display processes as sequences of UNIX filters (Potmesil and Hoffert, 1987).  The 

GRAPE system introduced branching into these data transformations and let users define 

display processes as acyclic graphs of modules (Nadas and Fournier, 1987).  The 

ConMan system provided a graphical user interface for specifying display processes as 

networks of modules (Haeberli, 1988).  This idea has been adopted as the basis of several 

widely-used data flow visualization systems, such as AVS (Upson et al., 1989) and 

Khoros (Rasure et al., 1990).  These data flow systems provide large libraries of modules 

that implement basic computational and display operations, and also provide graphical 

user interfaces for synthesizing complex visualization algorithms from these module 

libraries. 
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 The recognition that different kinds of displays are generated by similar sets of 

operations also led to the object-oriented approach to synthesizing visualization 

mappings.  The object-oriented approach uses inheritance and polymorphism to exploit 

the common properties and natural hierarchy of data displays.  The Powervision system, 

for example, used an object-oriented language to support interactive development of 

image processing algorithms (McConnell and Lawton, 1988).  The system defined a set 

of primitive generic functions for accessing data objects (for example, for iterating over 

parts of objects, for checking boundary conditions, etc.).  Algorithms for synthesizing 

displays were expressed in terms of these generic functions.  As users defined new object 

classes they could apply existing display algorithms to those classes as long as the new 

classes included definitions for the generic functions for accessing data objects. 

 The SuperGlue system was developed as a programming environment for 

developing scientific visualization applications based on Scheme, C and the GNU Emacs 

editor (Hultquist and Raible, 1992).  It defined a class hierarchy for various types of 

scientific data objects and displays.  User extensions to this class hierarchy could take 

advantage of inheritance and polymorphism to simplify their definition. 

 The VISAGE system implemented a hierarchy of over 500 classes for both 

process objects and data objects (Schroeder, Lorenson, Mantanaro and Volpe, 1992).  

The process objects implemented the visualization process as data flow networks of 

simpler processes.  The data objects implemented a variety of scientific data 

organizations and a variety of display organizations. 

 While these systems have been useful to scientists, their approach to generality is 

through the enumeration of data types and the enumeration of display techniques.  Thus 

these systems have become very large and complex.  Furthermore, scientists must spend 

considerable effort to produce visualizations using these systems.  While scientists could 
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explore different ways of displaying data by interactively changing the data flow 

networks that transform data into displays, in practice they do not.  Rather, support staff 

design data flow networks and scientists use them to generate fixed types of displays 

from data.  Similarly for the object-oriented systems.  The developers of the VISAGE 

system described one visualization application of their system that required 12,000 lines 

of code specific to the application.  Scientists need visualization techniques that let them 

change the way that they look at data without understanding complex programs or data 

flow networks. 

 

1.2.2 Data Models 

 Rather than approaching generality by enumerating data types and display 

techniques, we can achieve generality through the abstraction of data and displays.  That 

is, by developing broadly applicable abstract models of scientific data and displays, we 

can systematically study the ways that visualization processes transform data into 

displays.  A data model defines a set of data objects, the way data objects are organized 

in the set, and operations on the data objects (often by reference to their internal 

structures).  Data models have been the subject of several recent workshops and 

publications (Treinish, 1991; Haber, 1991; Robertson et al., 1994, Lee and Grinstein, 

1994).  Display models are similar to data models and are discussed in the next section. 

 The requirements for a scientific data model can be understood in terms of the 

role of data in science.  Scientists design mathematical models of nature.  These models 

identify numerical variables (e.g., time, altitude, temperature) and functional relations 

between these variables (e.g., temperature as a function of time).  These models define 

the states of nature as vectors of variables and functions.  For example, the state of a 

point in the atmosphere is a vector of variables such as temperature, pressure, humidity 
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and wind velocity, and the state of the entire atmosphere is a vector of functions.  We use 

the term mathematical objects to denote the numbers, functions and vectors of 

mathematical models.  When scientists want to use their mathematical models to analyze 

a set of observations, or to simulate a physical system, they implement their models as 

computer programs.  Mathematical objects are represented by scientific data objects in 

these implementations, and therefore a scientific data model should reflect the ways that 

scientific data objects represent mathematical objects.  There are many ways to define 

scientific data models.  However, any scientific data model will incorporate the following 

components: 

 

1. The types of primitive values occurring in data objects.  These represent primitive 

variables defined in mathematical models of nature.  Thus a data model may define 

a floating-point type to represent real variables such as time and temperature, may 

define an integer type to represent integer variables such as an event_count, and 

may define a string type to represent names such as city or state names.  A rigorous 

data model specifies the relations and operations defined on values of primitive 

types.  The definition of a type of primitive value may include arithmetical 

operations, string operations, an order relation, a metric or a topology. 

 

2. The ways that primitive values are aggregated into data objects.  These aggregates 

represent complex mathematical objects, such as vectors, functions, vectors of 

functions, and so on.  There are a variety of approaches to defining data aggregates.  

In the C programming language, vectors can be represented by structures, 

functions can be represented by arrays, and pointers can be used to define complex 

networks of values.  Most programming languages provide a few simple data 
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structuring rules that can be combined to define a wide variety of data aggregates.  

On the other hand, most scientific analysis and visualization systems support 

specific types of aggregates based on particular application needs.  These may 

include two-dimensional images (as generated by satellites and other observing 

systems), three-dimensional grids (as generated by numerical simulations and some 

observing systems), and vector and polygon lists (generated by applying 

visualization operators to images and grids, and by map makers). 

 

3. Metadata about the relation between data and the physical things they represent.  

For example, given a meteorological temperature value, metadata includes the fact 

that it is a temperature, its scale (Fahrenheit, Kelvin, etc.), its spatial and temporal 

location in the Earth's atmosphere, and whether it is a point sample or an average 

over space and time.  Temperature values have limited accuracy, whether sensed by 

an instrument or computed by a weather model, and an estimate of accuracy is 

another form of metadata.  Because instruments and observing systems are fallible, 

an expected data value may not be defined at all, so missing data indicators are a 

form of metadata.  If a temperature is observed by an instrument, there may be 

metadata about the instrument (for example, aperture, pointing direction, filters, 

etc.).  If a temperature is computed from other values, there may be metadata about 

the algorithm used to compute it and the source of the algorithm's inputs. 

 

 The term metadata has several different meanings.  It is sometimes denotes 

information about the organization of data, in which case it may be called syntactic 

metadata.  Here it denotes information about the meaning of data, and may be called 

semantic metadata.  We can think of metadata as secondary data that are critical to the 
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usefulness of primary data.  For example, while a satellite image may primarily consist of 

an array of pixel radiance values, those data are scientifically useless without other arrays 

that specify the Earth locations of pixels, how pixel values correspond to physical 

radiances, and so on. 

 

1.2.3 Display Models 

 Just as we can define systematic models of scientific data, we can define 

systematic models of scientific displays.  In particular, it is useful to note that computer 

programs generate displays in the form of data objects.  Bertin's detailed display model, 

first published in 1967, illustrates how a display model addresses the issues of primitives 

and aggregates (Bertin, 1983).  Bertin defined a display as an aggregate of graphical 

marks, and identified eight primitive variables of a graphical mark: two spatial 

coordinates of the mark in a graphical plane (he restricted his attention to static two-

dimensional graphics), plus the mark's size, value, texture, color, orientation, and shape.  

Bertin defined diagrams, networks and maps as spatial aggregates of graphical marks.  

Figure 1.5 illustrates Bertin's display model. 
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graphical marks are characterized
by their two spatial coordinates and
by six other primitive variables:

(size, value, texture, color, orientation, shape)

.

A two-dimensional region filled with graphical marks
 

 

Figure 1.5. Bertin's display model.  He modeled displays as sets of graphical 

marks in a two-dimensional spatial region. 

 

 Bertin's display model was limited to static two-dimensional displays.  This 

corresponds to what can be physically displayed on a two-dimensional screen at one 

time.  However, computer-generated displays generate the illusion of three dimensions 

and show motion by changing screen contents at short intervals.  We can even regard 

various forms of user interaction as an integral part of the display.  Thus we distinguish 

between physical and logical display models.  We let V' denote the set of physical 

displays, which are two-dimensional and static, and we let V denote the set of logical 

displays, which are three-dimensional, animated and interactive.  The mapping RENDER 

: V → V' includes traditional graphics operations such as iso-surface generation, volume 

rendering, projection from three to two dimensions (rotate, zoom and translate), clipping, 

hidden-surface removal, shading, compositing, and animation (these operations could be 

implemented in a rendering pipeline, as illustrated in Figure 1.4).  A changing set of 

mappings, RENDER : V → V', expresses the three-dimensional, animated, interactive 

nature of logical displays in V. 
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 Visualization is a process that maps data objects to displays.  We let U' denote a 

set of mathematical objects, and we let U denote a set of data objects used to represent 

them.  Then the overall visualization process may be viewed as a sequence of mappings 

U' → U → V → V'.  The mapping from U' to U expresses the way that scientists 

implement their mathematics on computers, and the mapping from V to V' is the 

generally well understood physical display generation process (Foley and Van Dam, 

1982; Lorensen and Cline, 1987).  Thus we will concentrate our interest on the mapping 

D : U → V.  In order to optimize the generality of visualization techniques to different 

scientific applications, we seek scientific data models U whose primitive values are 

defined in terms of abstract mathematical properties, whose aggregates are constructed 

using a few simple rules that can be combined in complex ways, and that integrate a 

variety of metadata.  We also seek display models V that are abstract and that include 

interactive displays. 

 While the proper abstractions for U and V are necessary for display techniques 

that are flexible and easy to use, the proper abstraction for the mapping D is also 

necessary.  In the next section we describe efforts to automate the choice of this mapping. 

 

1.2.4 Automating the Design of Data Displays 

 As described in Section 1.2.1, the object-oriented and data flow approaches define 

natural methodologies for designing programs (or data flow diagrams) for transforming 

data into displays, but they still require considerable programming effort from their users.  

In response to scientists' need for visualization techniques that are easy to use, there have 

been a variety of efforts to automate the design of algorithms for producing data displays.  

This goal is often called automating the design of data displays, since the research 
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focuses on automating the choice among the many different ways of displaying the same 

data. 

 Mackinlay sought to automate the design of displays for data from relational 

database systems (Mackinlay, 1986).  His technique combined a relational data model 

with Bertin's display model.  A relation is a set of tuples of values.  Sets of primitive 

values called domains are defined for each position in a relation's tuples.  Mackinlay 

classified domains as nominal (without an order relation), ordinal (with an order relation 

but without a metric or arithmetical operations) or quantitative (with a metric and 

arithmetical operations).  These primitive values are aggregated into sets of tuples to 

form relations.  Mackinlay's data model also allowed functional dependencies to be 

defined between the domains of a relation (these are restrictions on the sets of tuples that 

may form relations). 

 Mackinlay modeled displays as sentences in a graphical language.  Sentences 

were sets of 2-tuples, where each tuple pairs a graphical mark with a two-dimensional 

screen location.  He also attached attributes to graphical marks for specifying their size, 

color, orientation, etc.  The values of these attributes are similar to the primitive values 

Bertin used for graphical marks.  Thus, in Mackinlay's model a display could be 

interpreted as a set of tuples, where each tuple contains two screen coordinates and the 

values of the various attributes of a graphical mark. 

 Mackinlay defined expressiveness and effectiveness criteria for the mapping from 

data relations to display sentences.  The expressiveness criteria require that a display 

sentence: 

 

1. Encodes all the facts in a set (that is, the set of facts about a data relation), and 
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2. Encodes only the facts in a set. 

 

The effectiveness criteria provide a way to choose between different display sentences 

that satisfy the expressiveness criteria.  For example, an effectiveness criterion may 

specify that quantitative information is easier to perceive when encoded as spatial 

position rather than as color.  Mackinlay also solicited visualization goals from the user.  

Effectiveness criteria and visualization goals were expressed formally in terms of 

predicates and functions applied to relational data and display sentences.  These were 

used as the basis for a backtracking search for an optimal display. 

 Mackinlay's display model was static and two-dimensional and therefore too 

limiting for scientific visualization.  Furthermore, while the relational model can, in 

theory, be used for scientific data, it does not naturally fit the ways that scientific data are 

aggregated.  Robertson (Robertson, 1991), Senay and Ignatius (Senay and Ignatius, 1991; 

Senay and Ignatius, 1994), and Beshers and Feiner (Beshers and Feiner, 1992) all sought 

automated techniques for designing displays for scientific data. 

 Robertson's data model classified primitive values as either nominal or ordinal.  

Nominal values were further classified as single or multiple valued (that is, sets of 

values) and ordinal values were classified as discrete or continuous (this is a 

classification of the topology of primitive value sets).  Primitive values were aggregated 

as distributions over an n-dimensional space.  Robertson modeled displays as two-

dimensional and three-dimensional surfaces and their attributes (for example, color and 

texture).  His methodology solicited a set of visualization goals from the user, in terms of 

the scales of the user's interest (that is, point, local or global) in different variables, and in 

terms of the user's interest in correlations between various pairs of variables.  Data 
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displays were generated by matching data attributes and relations to display attributes 

and relations, according to the user's visualization goals. 

 Senay and Ignatius' data model classified primitive values as qualitative or 

quantitative, and aggregated primitive values as functional dependencies between 

variables.  Their data model included metadata for coordinate systems and data sampling.  

Senay and Ignatius modeled displays using Bertin's graphical marks, and using specific 

aggregates of marks (for example, icons and iso-surfaces).  These were further classified 

as to whether they encoded a single variable or multiple variables.  Displays were 

generated by applying production rules for matching data characteristics with display 

characteristics. 

 Beshers and Feiner's data model consisted of functions from one set of real 

variables to another.  Their display model sought to overcome the limitation to three 

spatial axes by embedding small spatial coordinate systems (that is, small sets of 

graphical axes) within larger spatial coordinate systems.  Their display model formalized 

interactive exploration of data by allowing the user to move small coordinate systems 

around within larger coordinate systems.  Their technique searched through a large set of 

possible designs, evaluating them based on a set of user-defined visualization tasks. 

 While all of these efforts sought to automate the design of displays, their display 

models were limited to specific types of displays and they enumerated specific display 

techniques as the search spaces for their automated techniques.  That is, their focus was 

to automate the user's task of choosing among enumerated sets of visualization 

techniques.  In the next section we describe an alternative approach that defines certain 

general analytic conditions on the mapping from data to displays, and then derives 

visualization mappings that satisfy those conditions. 
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 In each of the previous automated approaches described above, displays were 

designed based on information about visualization goals provided by the user.  

Obviously, some form of user input is necessary for users to be able to control display 

design.  However, user interface issues are notoriously complex and it is not obvious that 

an encoding or parameterization of visualization goals is the most effective way for users 

to control visualization systems.  It may be most effective to allow users to make their 

own translation from their goals to some other form of controls over visualization.  In 

particular, an interactive system that lets users experiment with various ways of 

displaying their data may be more effective than an automated system.  An interactive 

system enables users to experiment with small changes to their display controls and to 

see the effect of those changes on the way that their data are displayed.  Such 

experimentation is also often the fastest way for scientists to learn how a visualization 

system works. 

 

1.3 Major Contributions 

 The main contributions of this thesis can be summarized as follows: 

 

1. Development of a system for scientific visualization that enables a wide variety of 

visual experiments with scientific computations.  This system integrates 

visualization with a scientific programming language that can be used to express 

scientific computations.  This programming language supports a wide variety of 

scientific data types and integrates common forms of scientific metadata into the 

computational and display semantics of data.  Any data object defined in a program 

in this language can be visualized in a wide variety of ways during and after 

program execution.  The controls for data display are simple and independent of 
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data type.  Displays are controlled by a set of simple mappings rather than program 

logic.  These mappings are independent of data type and separate from a user's 

scientific programs, which is a clear distinction from previous visualization 

systems that require scientists to embed calls to visualization functions in their 

programs.  Furthermore, computation and visualization are highly interactive.  In 

particular, the selection of data objects for display and the controls for how they are 

displayed are treated like any other interactive display control (e.g., interactive 

rotation).  Previous visualization systems require a user to alter his program in 

order to make such changes.  The generality, integration, interactivity and ease-of-

use of this system all enhance the user's ability to perform visual experiments with 

their algorithms. 

 

2. Introduction of a systematic approach to analyzing visualization based on lattices.  

We define a set U of data objects and a set V of displays and show how a lattice 

structure on U and V expresses a fundamental property of scientific data and 

displays (namely that they are approximations to the physical world).  The 

visualization repertoire of a system can be defined as a set of mappings of the form  

D : U → V.  It is common to define a system's visualization repertoire by 

enumerating such a set of functions.  However, an enumerated repertoire is justified 

only by the tastes and experience of the people who decide what functions to 

include in the set.  In contrast, we interpret certain well-known expressiveness 

conditions on the visualization mapping D : U → V in terms of a lattice structure, 

and define a visualization repertoire as the set of functions that satisfy those 

conditions.  Such a repertoire is justified by the generality of the expressiveness 

conditions.  We show that visualization mappings satisfy these conditions if and 
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only if they are lattice isomorphisms.  Lattice structures can be defined for a wide 

variety of data and display models, so this result can be applied to analyze 

visualization repertoires in a wide variety of situations. 

 

3. Demonstration of a specific lattice structure that unifies data objects of many 

different scientific types in a data model U, and demonstration that the same lattice 

structure can express interactive, animated, three-dimensional displays in a display 

model V.  These models integrate certain kinds of scientific metadata into the 

computational and display semantics of data.  In the context of these scientific data 

and display models, we show that the expressiveness conditions imply that 

mappings of data aggregates to display aggregates can always be factored into 

mappings of data primitives to display primitives.  We show that our display 

mappings are complete, in the sense that we characterize all mappings satisfying 

the expressiveness conditions. 

 

1.4 Thesis Outline 

 The rest of this thesis is organized as follows.  In Chapter 2 we describe the 

architecture of a system for scientific visualization based on the goals described in 

Section 1.1.  As described in Section 1.2, current visualization systems approach the 

goals for flexibility by enumerating different data types and different types of displays.  

In Chapter 3 we develop an alternate approach to flexibility based on defining very 

general conditions on the mapping from data to displays, and we analyze the repertoire of 

functions that satisfy those conditions.  We summarize the results of this analysis in terms 

of a set of principles for visualization.  In Chapter 4 we continue the presentation of our 

visualization system architecture based on those principles.  In Chapter 5 we discuss how 
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the analysis of Chapter 3 might be extended to data and display models appropriate for 

general programming languages.  Chapter 6 summarizes the conclusions of this thesis. 

 

 


