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Chapter 5 

 

Applying the Lattice Model to Recursive Data Type Definitions 

 

 In Section 3.1 we showed that a function D : U→V satisfying the expressiveness 

conditions must be a lattice isomorphism.  In Section 3.4 we applied this result to specific 

lattice structures defined for scientific data and display models.  However, this result can 

be applied to any complete lattices and it is natural to apply this result to other lattice 

structures for data and display models.  The motive for new lattice structures must be 

new data models, since display models are themselves motivated by the need to visualize 

data.  The data model defined in Section 3.2 includes tuples and arrays as ways of 

aggregating data, but does not include linked list structures defined in terms of pointers.  

In this chapter we describe several issues in extending our lattice theory to data types 

appropriate for handling objects with pointers. 

 

5.1 Recursive Data Types Definitions 

 The denotational semantics of programming languages provides techniques for 

defining ordered sets whose members are the values of programming language 

expressions (Gunter and Scott, 1990; Schmidt, 1986; Scott, 1971; Scott, 1982).  An 

important topic of denotational semantics is the study of recursive domain equations, 

which define cpos recursively (cpo is defined in Appendix A). 

 Consider the following example of a recursive domain equation from (Schmidt, 

1986).  A data type for a binary tree may be defined by 

 

(5.1) Bintree = (Data + (Data × Bintree × Bintree))⊥ 
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Here "+", "×" and "(.)⊥" are type construction operators similar to the tuple and array 

operators defined in Section 3.2.3.  The "+" operator denotes a type that is a choice 

between two other types (this is similar to "union" in the C language), "×" denotes a type 

that is a cross product of other types (this is essentially the same as our tuple operator, so 

that (Data × Bintree × Bintree) is a 3-tuple), and the "⊥" subscript indicates a type that 

adds a new least element, ⊥, to the set of values of another type.  Eq. (5.1) defines a data 

type called Bintree, and says that a Bintree object is either ⊥, a data object of type Data, 

or a 3-tuple consisting of a data object of type Data and two data objects of type Bintree.  

Intuitively, a data object of type Bintree is either missing, a leaf node with a data value, 

or a non-leaf node with a data value and two child nodes. 

 The obvious way to implement binary trees is to define a record or structure for a 

node of the tree, and to include two pointers to other nodes in that record or structure.  In 

general, self references in recursive type definitions are implemented using pointers. 

 

5.2 The Inverse Limit Construction 

 The equality in a recursive domain equation is really an isomorphism.  As 

explained by Schmidt, these equation may be solved by the inverse limit construction.  

For the Bintree example this construction starts with Bintree0 = {⊥}, and then applies Eq. 

(5.1) repeatedly to get: 

 

(5.2) Bintree1 = (Data + (Data × Bintree0 × Bintree0))⊥ 

 Bintree2 = (Data + (Data × Bintree1 × Bintree1))⊥ 

 etc. 
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The construction also specifies a retraction pair (gi, fi):Bintreei ↔ Bintreei+1 for all i, 

such that gi embeds Bintreei into Bintreei+1 and fi projects Bintreei+1 onto Bintreei 

(retraction pair is defined in Appendix A).  Then Bintree is the set of all infinite tuples of 

the form (t0, t1, t2, ...) such that ti = fi(ti+1) for all i.  It can be shown that Bintree is 

isomorphic with (Data + (Data × Bintree × Bintree))⊥, and thus "solves" the recursive 

domain equation.  The order relation on the infinite tuples in Bintree is defined element-

wise, just like the order relation on finite tuples defined in Section 3.2, and Bintree is a 

cpo.  We note that the inverse limit construction can also be applied to solve sets of 

simultaneous domain equations. 

 The cpos defined by the inverse limit construction are generally not lattices.  In 

order to apply Prop. C.3 to these cpos they must be embedded in complete lattices.  

However, the Dedekind-MacNeille completion shows that for any partially ordered set A, 

there is always a complete lattice U such that there is an order embedding of A into U 

(Davey and Priestley, 1990). 

 The set of Bintree objects defined by the inverse limit construction includes 

infinite trees.  Denotational semantics must include values for non-terminating 

computations, and non-terminating computations may produce infinite trees as their 

values.  Since our result that display functions are lattice isomorphisms depends on the 

assumption that data and display lattices are complete, it is likely that any data lattice we 

define that includes solutions of recursive domain equations must include infinite data 

objects. 

 The inverse limit construction defines the set of data objects of a particular data 

type that solves a particular recursive domain equation.  However, our approach in 

Section 3.2 was to define a large lattice that contained data objects of many different data 

types.  It would be useful to continue this approach, by defining a lattice that includes all 
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data types that can be constructed from scalar types as tuples, arrays, and solutions of 

recursive domain equations.  This is the subject of Section 5.3. 

 

5.3 Universal Domains 

 A fundamental result of the theory of ordered sets is the fixed point theorem, 

which says that, for any cpo D and any continuous function f:D → D, there is fix(f) ∈ D 

such that f(fix(f)) = fix(f) (that is, fix(f) is a fixed point of f) and such that fix(f) is less than 

any other fixed point of f. 

 Scott developed an elegant way to solve recursive domain equations by applying 

the fixed point theorem (Scott, 1976; Gunter and Scott, 1990).  The idea is that the 

solution of a recursive domain equation is just a fixed point of a function that operates on 

cpos.  Scott first defined a universal domain U and a set W of retracts of U.  W may be 

the set of all retracts on U, the set of projections, the set of finitary projections, the set of 

closures, or the set of finitary closures (these terms are defined in Appendix A).  Then he 

showed that a set OP of type construction operators (these operators build cpo's from 

other cpo's) can be represented by continuous functions over W, in the sense that for op ∈ 

OP there is a continuous function f on W that makes the diagram in Figure 5.1 commute. 

 

cpo's cpo's
op

W W
f

im im

 

Figure 5.1. The type construction operator op is represented by function f. 
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Note that im(w) = {w(u) | u ∈ U}.  For unary op ∈ OP this is im(f(w)) = op(im(w)).  

Similar commuting expressions hold for multiary operators in OP.  Then, for any 

recursive domain equation D = O(D) where O is composed from operators in OP, there is 

a continuous function F:W → W that represents O.  By the fixed point theorem, F will 

have a least fixed point fix(F), and O(im(fix(F))) = im(F(fix(F))) = im(fix(F)), so 

im(fix(F)) is a cpo satisfying the recursive domain equation D = O(D).  The solution of 

any domain equation (or any set of simultaneous domain equations) involving the type 

construction operators in OP will be a cpo that is a subset of the universal domain U.  

Thus this approach is similar to the way that we embedded data types in a complete 

lattice (coincidentally denoted by U) in Section 3.2.3.  Universal domains and 

representations have been defined for sets OP that include most of the type constructors 

used in denotational semantics, including  "+", "×", "→", and "(.)⊥". 

 A common example of a universal domain is the complete lattice POWER(N), 

which is just the set of all subsets of the natural numbers N.  In general, the embeddings 

of data types into universal domains, as defined by papers in denotational semantics, are 

not suitable for our display theory.  For example, a single integer (that is, an object of 

type N), and a function from the integers to the integers (that is, an object of type N → 

N), may be embedded to the same member of POWER(N).  A display function applied to 

the lattice POWER(N), with these embeddings, would produce the same display for the 

integer and the function from the integers to integers.  Such displays cannot effectively 

communicate information about data objects, so other embeddings of types into universal 

domains must be developed. 
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5.4 Display of Recursively Defined Data Types 

 Since the goal of visualization is to communicate information about data to 

people, an extension of our theory must focus on the data lattice U.  However, since a 

display function D is a lattice isomorphism of U onto a sublattice V, we should be able to 

say something about the structure of V.  If a subset A ⊆ U is the solution of a recursive 

domain equation (that is, A is the set of data objects of some recursively defined data 

type), then D(A) ⊆ V is isomorphic to A and must itself be the solution of the recursive 

domain equation. 

 For example, if the set A is the solution of Eq. (5.1) for Bintree, then the set D(A) 

must also solve this equation.  The isomorphism D provides a definition of the operators 

"+", "×" and "(.)⊥" in D(A) and thus also defines a relation between "tree" objects and 

their "subtree" objects in D(A).  The isomorphism does not tell us how to interpret these 

operators and relations in a graphical display, but it does tell us that such a logical 

structure exists.  Given the complexity of this structure, it is seems likely that display 

objects in D(A) will be interpreted using some graphical equivalent of the pointers that 

are used to implement data objects in A. 

 Two graphical analogs of pointers are commonly used in displays: 

 

1. Diagrams.  Here icons represent nodes in data objects, and lines between icons 

represent pointers. 

 

2. Hypertext links.  Here the visible contents of a display screen represents one or 

more nodes in a data object, and an icon embedded in that display screen represents 

an interactive link to another node or set of nodes.  That is, if the user selects the 
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icon (say by a mouse point and click), new display screen contents appear depicting 

the display object (and possibly other objects) referenced by the icon. 

 

In order to extend our display theory to data types defined with recursive domain 

equations, we need to extend our display lattice V to include these graphical 

interpretations of pointers.  A difficult open problem is to find a way to do this that 

produces a display lattice complex enough to be isomorphic to a universal domain as 

described in Section 5.3. 
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Chapter 6 

 

Conclusions 

 

 This thesis was motivated by physical scientists' need for visualization techniques 

that can be applied to the data of a wide variety of scientific applications, that can 

produce a wide variety of different visualizations of data appropriate for different needs, 

that are as interactive as possible, that require minimal effort by scientists to use, and that 

can be integrated with a scientific programming environment.  Our approach has been to 

achieve generality and simplicity by developing appropriate abstractions for scientific 

data, for scientific displays, and for the visualization mapping from data to displays. 

 

6.1 Main Contributions and Limitations 

 The main contributions of this thesis can be summarized as follows: 

 

1. Development of a system for scientific visualization that enables a wide variety of 

visual experiments with scientific computations.  This system integrates 

visualization with a scientific programming language that can be used to express 

scientific computations.  This programming language supports a wide variety of 

scientific data types and integrates common forms of scientific metadata into the 

computational and display semantics of data.  Any data object defined in a program 

in this language can be visualized in a wide variety of ways during and after 

program execution.  Displays are controlled by a set of simple mappings rather than 

program logic.  These mappings are independent of data type and separate from a 

user's scientific programs, which is a clear distinction from previous visualization 
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systems that require scientists to embed calls to visualization functions in their 

programs.  Furthermore, computation and visualization are highly interactive.  In 

particular, the selection of data objects for display and the controls for how they are 

displayed are treated like any other interactive display control (e.g., interactive 

rotation).  Previous visualization systems require a user to alter his program in 

order to make such changes.  The generality, integration, interactivity and ease-of-

use of this system all enhance the user's ability to perform visual experiments with 

their algorithms. 

 

2. Introduction of a systematic approach to analyzing visualization based on lattices.  

We defined a set U of data objects and a set V of displays and showed how a lattice 

structure on U and V expresses a fundamental property of scientific data and 

displays (namely that they are approximations to the physical world).  The 

visualization repertoire of a system can be defined as a set of mappings of the form  

D : U → V.  It is common to define a system's visualization repertoire by 

enumerating such a set of functions.  However, an enumerated repertoire is justified 

only by the tastes and experience of the people who decide what functions to 

include in the set.  In contrast, we interpreted certain well-known expressiveness 

conditions on the visualization mapping D : U → V in terms of a lattice structure, 

and defined a visualization repertoire as the set of functions that satisfy those 

conditions.  Such a repertoire is justified by the generality of the expressiveness 

conditions.  We showed that visualization mappings satisfy these conditions if and 

only if they are lattice isomorphisms.  Lattice structures can be defined for a wide 

variety of data and display models, so this result can be applied to analyze 

visualization repertoires in a wide variety of situations. 
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3. Demonstration of a specific lattice structure that unifies data objects of many 

different scientific types in a data model U, and demonstration that the same lattice 

structure can express interactive, animated, three-dimensional displays in a display 

model V.  These models integrate certain kinds of scientific metadata into the 

computational and display semantics of data.  In the context of these scientific data 

and display models, we showed that the expressiveness conditions imply that 

mappings of data aggregates to display aggregates can always be factored into 

mappings of data primitives to display primitives.  We showed that our display 

mappings are complete, in the sense that we characterized all mappings satisfying 

the expressiveness conditions. 

 

 These results have several limitations.  Foremost, they do not include data objects 

with pointers.  Thus our visualization techniques are not applicable to the data objects of 

general programming languages.  This thesis developed a single lattice-structured 

scientific data model in which real numbers are approximated by intervals and functions 

are approximated by finite sets of samples of their values.  However, there are other ways 

to approximate numbers and functions based on Eq. (3.2) and these may serve as the 

basis for other lattice-structured models for scientific data.  The display model developed 

in this thesis models the ways that computers generate displays, but does not model the 

ways that people perceive displays.  Finally, this thesis only considered conditions on 

visualization mappings based on lattice structures, and did not consider conditions based 

on other kinds of mathematical structures. 
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6.2 Future Directions 

 The work presented in this thesis can be extended to other lattice-structured 

models for data and displays, and to analytic conditions on visualization functions based 

on types of mathematical structures other than lattices.  Specific future directions include: 

 

1. Extend the VisAD system's display model to include more display scalars, such as 

transparency, reflectivity and flow vectors.  These would be interpreted by 

including volume and flow rendering techniques in the mapping RENDER : V → 

V'. 

 

2. Extending the VisAD system to supply default mappings for controlling the 

displays of data objects.  This could be accomplished by integrating VisAD with 

others' work on automating the design of displays (Robertson, 1991; Senay and 

Ignatius, 1991; Senay and Ignatius, 1994; Beshers and Feiner, 1992). 

 

3. Extending the lattice results to data objects with pointers (i.e., data objects of 

recursively-defined data types).  In Chapter 3 we showed how to embed scientific 

data objects of many different data types in a lattice.  In Chapter 5 we showed how 

this might be extended by describing Scott's technique for embedding data objects 

of many different recursively-defined data types in a lattice.  We also described 

graphical analogs of data objects with pointers.  However, we described why 

Scott's embeddings are not suitable for visualization.  Thus, finding ways to extend 

Scott's embeddings to a form suitable for visualization is an important next step.  

This would enable us to extend the VisAD system to a general programming 

language rather than a scientific programming language. 
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4. Defining lattice structures based on forms of approximations to numbers and 

functions other than intervals and finite samplings.  Whenever data objects can be 

identified with sets of mathematical objects we can apply Eq. (3.2) (i.e., u ≤ u' ⇔ 

math(u') ⊆ math(u)) to define a lattice structure on a data model.  For example, 

functions may be approximated by finite sets of Fourier coefficients rather than 

finite sets of function values. 

 

5. The analytic approach has great potential for making the study of visualization 

more rigorous and systematic.  It is difficult to explicitly identify all of the 

assumptions of a synthetic approach to visualization, whereas assumptions must be 

explicit in an analytic approach.  Analytic conditions on visualization mappings 

must be based on some mathematical structures defined on data and display 

models.  In this thesis we have explored the consequences of a single set of 

conditions defined in terms of lattice structures.  However, the full potential of the 

analytic approach can only be realized by exploring a much wider set of conditions 

based on a variety of mathematical structures.  Data and display models may also 

have topological structures, metric structures, symmetry structures, structures based 

on arithmetic operations, and type hierarchy structures.  Each of these kinds of 

structures can be used to define conditions on visualization mappings.  Such 

conditions may be able to express a wide range of visualization goals, and 

mathematical analysis of visualization mappings satisfying various conditions may 

provide a rigorous foundation for visualization. 
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6. Defining structures on display models that express principles of human perception.  

For example, a metric can be defined for the perceived distance between displays 

(as measured by psychology experiments or predicted by psychological models).  

Alternatively, perception of displays may be invariant to certain operations (e.g., 

time translation or spatial translation), which may be expressed by defining 

symmetry groups on sets of displays. 

 

 


