
1. Introduction
Human activities and climate change continue to exacerbate the occurrence and impact of extreme hydrologic 
events (Liu et  al.,  2021; Samaniego et  al.,  2018; Zhang et  al.,  2017). A detailed understanding of the evolu-
tion and mechanisms of hydrologic extremes, such as droughts, is paramount for managing and mitigating 
their impacts. Conventionally, a drought is considered a slowly developing climate phenomenon influenced by 
long-term changes to variables such as precipitation or evapotranspiration (ET; Svoboda et al., 2002; Wilhite & 
Glantz, 1985). As defined in Otkin et al. (2018), flash droughts involve both the unusually rapid rate of intensi-
fication (“flash”) and the condition of moisture limitation (“drought”). The rapid changes in water availability 
make flash droughts particularly challenging to predict and prepare for Lisonbee et al.  (2021) and Woloszyn 

Abstract Flash droughts evolve and intensify rapidly under the influence of anomalous atmospheric 
conditions. In this study, we investigate the role of assimilating remotely sensed soil moisture (SM) and 
vegetation properties in capturing the evolution and impacts of two flash droughts in the Northern Great Plains. 
We find that during 2016 drought triggered by anomalously high temperatures and excessive evaporative 
demands, multivariate data assimilation (DA) of MODIS-derived leaf area index (LAI) and Soil Moisture 
Active Passive SM within Noah-Multiparameterization model helps capture elevated transpiration at onset. 
Assimilation of LAI particularly helped model the resulting rapid decline in SM during onset with as high as 
10.0% steeper rate of decline compared to the simulation without any assimilation. Modeled-SM anomalies 
exhibit a 7.5% and 11.7% increase in similarity with Evaporative Stress Index (ESI) data and U.S. Drought 
Monitor (USDM) maps, respectively. In contrast, during 2017 flash drought driven by record-low precipitation 
during summers, SM assimilation resulted in largest rates of decline in rootzone SM, as large as 48.4% 
compared to results from no assimilation. Multivariate DA of SM and LAI results in 6.7% and 14.3% higher 
spatial similarity with ESI and USDM, respectively, and is necessary to model rapid intensification caused 
by anomalous precipitation deficits. This study elucidates the need to incorporate multiple observational 
constraints from remote sensing to effectively capture rapid onset rates, intensification, and severity of flash 
drought following different propagation mechanisms. This is fundamental for drought early detection to provide 
a wider window of response and implement efficient mitigation strategies.

Plain Language Summary A class of droughts called flash droughts develop rapidly under unusual 
weather conditions, often characterized by either warm temperatures or low precipitation or both. In this study, 
we employ the soil moisture (SM) and leaf area index (LAI) retrievals from the NASA Soil Moisture Active 
Passive mission and MODIS product, respectively, for characterizing the flash droughts of 2016 and 2017 in the 
Northern Great Plains. The results demonstrate that LAI observations, when assimilated within a land surface 
model, are effective in capturing high transpiration at the onset of 2016 drought driven by intense heat waves. 
The 2017 flash drought, however, was initiated by a precipitation deficit where information on SM is necessary 
to capture the rapid drying of soils. The modeled outputs not only capture the rapid drying of soil at the onset of 
droughts but are also spatially and temporally consistent with Evaporative Stress Index data and U.S. Drought 
Monitor maps. The study highlights the role of multivariate assimilation of remotely sensed vegetation and SM 
information to capture the rapid rates of onset and contrasting pathways of flash drought development.
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et al. (2021). Such rapidly intensifying events can be detrimental to vegetation health, especially if the dryness 
corresponds with a sensitive stage in crop development.

The rapid intensification of flash droughts can be triggered either by a heat wave, causing anomalously high air 
temperatures typically lasting two or more pentads, or as a response to unusually dry conditions caused by anom-
alously low precipitation. In the former, vegetation responds to excessive heat conditions and increased evapo-
rative demands with a larger ET and reduced soil moisture (SM). SM here refers to overall moisture in the soil 
column unless qualified as root zone or surface SM. The SM decline continues even after the heat wave recedes 
accentuated by a lack of precipitation, which could have otherwise helped to reduce surface temperatures and 
replenish the SM. High temperatures can also cause stomatal closure, thereby reducing transpiration. The latter, 
primarily characterized by anomalous rainfall at the onset of the drought along with high ET demands, leads to 
anomalous rates of SM depletion and reduced transpiration, which exert stress on the vegetation. Thus, to distin-
guish between the droughts that not only differ in the triggers but also in the propagation mechanisms, here we 
use the terms “warm flash drought” and “dry flash drought” for droughts primarily involving temperature-driven 
and precipitation-driven intensification, respectively.

In the recent past, the U.S. Northern Great Plains region (Figure 1a) experienced two consecutive flash droughts 
in the years 2016 and 2017 (Gerken et al., 2018; He et al., 2019; Hoell et al., 2019; Kimball et al., 2019; Otkin 
et  al.,  2018). Both the droughts were classified as flash droughts mainly due to their rapid intensification in 
early summer. However, they were initiated and maintained by contrasting physical mechanisms. Due to their 
rapid onset, there was insufficient opportunity of early detection or to provide early warning to the agricultural 

Figure 1. (a) Selected study domain (43°–47°N, 108°–100°W) in the Northern Great Plains and the selected U.S. Climate 
Reference Network (USCRN) sites for evaluating modeled soil moisture (SM). (b) Annual production of major crops planted 
in North Dakota and Montana showing the detrimental impact of the 2017 flash drought on growing season. Data from U.S. 
Department of Agriculture.
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community to mitigate impending crop losses. For example, during the 2017 Northern Plains drought, neither the 
onset nor its severity was captured by NOAA's seasonal forecasts (Hoell et al., 2019). Instead, the prediction was 
for above-average precipitation during May-July 2017. Significant impacts included low crop production along 
with massive wildfires in the region (Jencso et al., 2019). Data from U.S. Department of Agriculture revealed the 
detrimental impact that 2017 flash drought had on annual production of major crops in the region (Figure 1b). In 
2016, the U.S. Drought Monitor (USDM; Svoboda et al., 2002), an index that combines objective drought indica-
tors with regional information, was late by several weeks in capturing the severity of vegetation stress, compared 
to ground-survey reports, during drought's intensification stage in June (Otkin et al., 2018).

Given the challenges in early detection and warning systems for flash droughts, it is imperative to explore whether 
the evolution of flash droughts driven by different physical mechanisms can be better characterized using a 
synergy of modeled, observed, and remotely sensed data. Several studies have focused on conventional drought 
monitoring by assimilating remote sensing observations of SM within hydrological models (Bolten et al., 2009; 
Kumar et al., 2014; Mladenova et al., 2019; Mozny et al., 2012; Xu et al., 2020; Yan et al., 2018). Data assimi-
lation (DA) of vegetation conditions has also shown value in monitoring droughts and crop growth dynamics by 
improving ET and SM representation (Gavahi et al., 2020; Mocko et al., 2021; Nie et al., 2021).

Comparatively, flash droughts have received much less attention to advance their characterization. Existing 
efforts to monitor flash droughts have either used traditional indices over outputs from land surface models 
(LSMs) and climate models (Hobbins et al., 2016; Hoffman et al., 2021; Mishra et al., 2021; Otkin et al., 2013; 
Pendergrass et al., 2020; Yuan et al., 2019), or observations from remote sensing, in situ networks, or reanalysis 
products (Basara et al., 2019; Christian et al., 2019, 2021; Ford & Labosier, 2017; Mo & Lettenmaier, 2016; 
Otkin et al., 2019; Wang et al., 2016). For example, Otkin et al.  (2013) use thermal infrared observations of 
land surface temperature. The recently proposed Flash Drought Stress Index (FDSI) employs SM retrievals from 
Soil Moisture Active Passive (SMAP) to measure the severity and rate of intensification of drought (Sehgal 
et al., 2021). The reliance on a single source of remote sensing information can be less effective in capturing 
rapidly developing flash drought mechanisms, particularly if they involve underlying processes not monitored by 
those measurements. For example, rapid soil drying during the onset of a moisture deficit-driven flash drought 
is more effectively captured if measurements of SM are employed. However, in a warm flash drought, where 
moisture depletes as a consequence of excessive heat and stress on vegetation, information on vegetation stress 
is necessary to capture the rapid evolution. Thus, multivariate observational constraints are needed to capture the 
underlying processes in a timely manner.

Due to orbital gaps and sensing limitations, remote sensing measurements typically have discontinuities in their 
coverage, which can be problematic for monitoring flash droughts due to their rapid nature of evolution. Also, 
the univariate observational constraint focus (either SM or vegetation) of many studies can be insufficient for 
the timely characterization of a flash drought. Therefore, techniques such as DA of multiple variables become 
impor tant to develop spatially and temporally continuous coverage of relevant processes for effective flash 
drought characterization. This study presents a first-of-its-kind effort to use an advanced LSM and multiple 
remote sensing data sets together in a multivariate DA framework for timely and effective characterization of 
contrasting flash droughts.

Our objectives are twofold: (a) to evaluate the role of assimilating remotely sensed observations in capturing the 
onset and propagation of flash droughts at the earliest and (b) to use observational data to provide inferences on 
the appropriate processes relevant to flash droughts. Specifically, we focus on two flash droughts of 2016 and 
2017 in the Northern Great Plains and model their propagation mechanisms by assimilating remotely sensed SM 
and leaf area index (LAI) into the Noah LSM with Multiparameterization options (Noah-MP; Niu et al., 2011). 
Although the 2016 and 2017 droughts were centered over slightly different parts of the Northern Great Plains, 
we select a common domain of study affected by droughts to provide a fair comparison of soil and vegetation 
dynamics across the two events (see Figure  1a). Multiple modeling experiments are designed, and model is 
validated against several reference data sets to demonstrate the utility of multiple observational constraints in 
representing the impacts of flash droughts on water cycle components. Using this modeling framework, we pres-
ent a holistic assessment of the vegetation stresses and the response of vegetation to changes in soil conditions 
before and during the evolution of flash droughts. Given that one of the most distinctive and challenging features 
of flash droughts to model is their rapid rate of onset and intensification contributing to the “flash” aspect (Qing 
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et al., 2022), we also explore the utility of DA in capturing the rapid rate of decline in SM and vegetation condi-
tions (LAI).

The rest of the paper is organized as follows. Section 2 provides a description of the LSM, data sets, and DA 
configuration. Section 3 presents the evolution and description of different aspects of the two flash droughts as 
captured by DA experiments, including an assessment of the modeled results. Finally, Section 4 presents the 
summary and key conclusions from this study.

2. Materials and Methods
2.1. LSM Configuration

The modeling framework uses Noah-MP LSM which augments the Noah LSM with improvements to the model 
structure, parameterization schemes for biophysical and hydrological processes, and snow skin temperature 
representations (Niu et al., 2011; Yang et al., 2011). The Noah-MP LSM (Version 4.0.1) and DA schemes are 
implemented within the open-source NASA Land Information System (LIS) framework (Kumar et  al., 2006; 
https://github.com/NASA-LIS/LISF/). Noah-MP LSM is particularly chosen because of the flexibility to use 
different parameterization schemes. In particular, the use of a dynamic vegetation phenology scheme in Noah-MP 
to represent vegetation growth (Niu et al., 2011; Yang et al., 2011) allows for assimilating observations of vegeta-
tion conditions such as LAI. Noah-MP is configured to simulate four soil layers with individual layer thicknesses 
of 0.1, 0.3, 0.6, and 1.0 m resulting in a total of 2.0 m of soil depth from the surface. Quantitative analysis is 
performed over the drought-affected region of Northern Great Plains (43°–47°N, 108°–100°W) during the two 
flash droughts (Figure 1a). A spatial resolution of 10 km with a 15-min time step is chosen for the simulations. 
All model runs are performed over the period of April 2015 to December 2020 (the overlap period across all the 
data sets).

2.2. Data Sets

Noah-MP LSM is forced with precipitation from the Integrated Multi-satellitE Retrievals for Global Precipitation 
Measurement (IMERG; Huffman et al., 2015) post-time Final Run product, Version 06B. Other meteorological 
forcing fields of 2-m air temperature, 2-m specific humidity, 10-m wind speed, surface pressure, and incoming 
shortwave (SW) and longwave (LW) radiation are obtained from the Modern-Era Retrospective Analysis for 
Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017).

MODIS LAI and SMAP SM observations are used for DA within the Noah-MP LSM. The LAI in the LAI-DA 
integrations is derived from the level 4, 500-m resolution, 8-day composite MCD15A2H Version 6 Moderate 
Resolution Imaging Spectroradiometer (MODIS) product. The product algorithm chooses the best pixel available 
from all the acquisitions of MODIS sensors located on the Terra and Aqua satellites (Myneni et al., 2015). The 
500-m resolution LAI data are aggregated to the 10 km model resolution to be integrated within the LSM. Only 
the “good quality” data values not flagged for cloud contamination, detector signal problems, and algorithm 
saturation issues are used for DA.

SM is obtained from SMAP mission, downscaled using the Thermal Hydraulic disaggregation of Soil Moisture 
(THySM) algorithm (Liu et al., 2021, 2022). SMAP satellite (Entekhabi et al., 2010), uses L-band microwave 
sensor to provide surface SM at the top 5 cm soil layer with 36-km spatial resolution. The THySM algorithm 
incorporates ancillary data sets at high spatial resolution based on thermal inertia theory and water retention 
curves to improve the spatiotemporal resolution of SMAP and outputs SM fields at 1  km. The downscaling 
approach is based on the principle that dry soil drives stronger heat transport, resulting in higher temperature 
variation during a day while, wet soil results in smaller temperature changes (Liu et al., 2021).

2.3. DA Configuration

Similar to previous studies (Kumar et  al.,  2009,  2014,  2019; Liu et  al.,  2013,  2015; Yin et  al.,  2015), a 
one-dimensional ensemble Kalman Filter (EnKF; Reichle et al., 2002) is employed here to assimilate SM and 
LAI retrievals into the Noah-MP LSM. Consistent with Kumar et al. (2019), an ensemble size of 20 is used for 
the DA and perturbations are applied to meteorological and model prognostic fields to maintain ensemble spreads 
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representing the uncertainty in model estimates. EnKF uses ensemble members to quantify the covariances and 
as the observation becomes available, the state vector of each ensemble member is propagated forward in time. 
The general form of the analysis step can be written as

�+
� = �−

� +��
(

�� −���−
�

)

 (1)

where 𝐴𝐴 𝐴𝐴
+

𝑘𝑘
 is the posterior state vector after the update, 𝐴𝐴 𝐴𝐴

−

𝑘𝑘
 is the prior model state vector, 𝐴𝐴 𝐴𝐴𝑘𝑘 is the observation 

vector, and 𝐴𝐴 𝐴𝐴𝑘𝑘 is the observation operator that relates the model states to the observations. The subscript 𝐴𝐴 𝐴𝐴 indi-
cates time and matrix 𝐴𝐴 𝐴𝐴𝑘𝑘 is the gain matrix, which essentially represents the weighting factor to determine the 
degree to which the model forecast is adjusted toward the observation.

The setup for assimilating LAI and SM observations within the LSM involves introducing small perturbations to 
several meteorological forcing inputs (downward SW radiation, downward LW radiation, and precipitation) and 
modeled LAI and SM states at each grid point. A configuration similar to Kumar et al. (2021) is employed where 
multiplicative perturbations are applied with standard deviations of 0.3 and 0.5 to precipitation (P) and downward 
SW radiation, respectively, and additive perturbation with standard deviations of 50 W/m 2 to downward LW 
radiation. Cross-correlations (ρ) to perturbations between each of forcing fields are also included, where ρ(SW, 
P) = −0.8, ρ(SW, LW) = −0.5, and ρ(LW, P) = 0.5. Further, a uniform observation error standard deviation of 
0.05 for MODIS-derived LAI retrievals is used in the LAI-DA configuration following Kumar et al. (2021). For 
SM-DA configuration, however, an observation error standard deviation of 0.04 m 3/m 3 is used which matches the 
satellite retrieval accuracy (Xu et al., 2020) and follows Kumar et al. (2019). The Multi-DA configuration, with 
similar perturbations, jointly assimilated the SM and LAI observations at their respective local overpass times. 
Four experiments are conducted to model flash drought progression. These include a baseline open loop (OL) run 
of Noah-MP without any assimilation, and three DA runs where SM and LAI are assimilated either independently 
(called SM-DA and LAI-DA, respectively) or simultaneously (Multi-DA).

2.4. Evaluation Framework

For a quantitative analysis and assessment of the LSM outputs, we first calculate daily deviations (anomalies) 
from the mean across 2015–2020 for modeled root zone SM (RZSM), LAI, and transpiration. The respective 
daily standard deviations across all the years under consideration are also calculated. The anomalies are then 
normalized with those standard deviations to derive standardized anomalies, which facilitate comparison across 
the regions and data sets due to a common range of variation.

RZSM anomalies are compared against data sets of Evaporative Stress Index (ESI) at 4-km resolution. ESI 
describes temporal anomalies in ET which includes the loss of water via evaporation from soil and plant 
surfaces and via transpiration through plant leaves. ESI is developed with the thermal remote sensing-based 
Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model (Anderson et  al.,  2007,  2011). 
Negative ESI values show below normal ET rates, indicating vegetation that is stressed due to inadequate SM.

We compare 1-month composite ESI at weekly intervals with the weekly averaged RZSM anomalies using Pear-
son's correlation (R) and Mutual Information (MI) score. The MI score is a nonparametric generalization of the 
Pearson's R that can handle nonlinear relationships between non-Gaussian variables (Tuttle & Salvucci, 2014). 
It measures the mutual dependence of two random variables by quantifying the dependence between the joint 
distribution of the variables when they do not follow Gaussian distribution. MI for two variables, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  , is 
defined as

MI(�; � ) =
∑

�∈�

∑

�∈�
�(�, �)log

[

�(�, �)
�(�)�(�)

]

 (2)

where 𝐴𝐴 𝐴𝐴(𝑥𝑥) and 𝐴𝐴 𝐴𝐴(𝑦𝑦) are the marginal probability distribution functions of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  , respectively, and 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) is 
the joint probability distribution function of those variables. In our case, the two variables are RZSM and ESI 
anomalies. The metric is implemented in the scikit-learn package as mutual_info_score.

Another aspect of evaluation is the spatial consistency of the modeled RZSM with drought categories from 
USDM drought maps. Structural Similarity Index (SSIM) is used to measure perceived similarity in the struc-
ture of two images and compare the local patterns of normalized pixel intensities (Wang et al., 2004). SSIM has 
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also been used to evaluate modeled ET by Walker et al. (2019). The index combines the luminance and contrast 
between two images and normalizes the product with the standard deviation to perform the structural comparison. 
SSIM for two image windows, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , is calculated as

SSIM(𝑥𝑥𝑥 𝑥𝑥) =
(2𝜇𝜇𝑥𝑥𝜇𝜇𝑥𝑥 + 𝑐𝑐1) (2𝜎𝜎𝑥𝑥𝑥𝑥 + 𝑐𝑐2)

(

𝜇𝜇
2

𝑥𝑥 + 𝜇𝜇
2

𝑥𝑥 + 𝑐𝑐1

) (

𝜎𝜎
2

𝑥𝑥 + 𝜎𝜎
2

𝑥𝑥 + 𝑐𝑐2

) (3)

where 𝐴𝐴 𝐴𝐴𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑥𝑥 are the averages of 𝐴𝐴 𝐴𝐴 and y, 𝐴𝐴 𝐴𝐴𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦 are variance of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 is the covariance of the 
two windows. Further, 𝐴𝐴 𝐴𝐴1 = (𝑘𝑘1𝐿𝐿)

2 and 𝐴𝐴 𝐴𝐴2 = (𝑘𝑘2𝐿𝐿)
2 are two variables that stability the division operation, 𝐴𝐴 𝐴𝐴 is 

dynamic range of pixel values, and 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are fixed as 0.01 and 0.03, respectively. Monthly averages of RZSM 
anomalies over May-Aug are compared with the drought categories D1–D4 from the USDM maps for the respec-
tive months.

Because modeled RZSM anomalies are continuous in nature unlike the discretized USDM drought category 
maps, we also used F1-score as another measure of spatial consistency between the two data sets. F1-score is 
the harmonic mean of two other metrics, Precision and Recall scores. Precision is a ratio of the number of true 
positives (TP) and the sum of TP and false positives (FP), while recall is the number of TP divided by the sum of 
TP and false negatives (FN).

Precision =
TP

TP + FP
 (4a)

Recall =
TP

TP + FN
 (4b)

F1 =

2 ∗ Precision ∗ Recall

Precision + Recall

 (4c)

In our case, the monthly RZSM anomalies are classified into discrete classes using thresholds of (−0.25, −0.5, 
−0.75, −1) which are then compared with the respective drought categories. A more involved comparison 
with USDM classes will require calculation of SM percentiles which was not feasible due to limited avail-
ability of SMAP data used in assimilation. Finally, modeled surface SM (nonnormalized) is also evaluated 
against observations from U.S. Climate Reference Network (USCRN) sites. Four USCRN sites were selected 
in Northern Great Plains (Figure 1a) and the RMSE and bias for each station is compared with Noah-MP 
modeled surface SM.

3. Results and Discussion
This section describes the results from the modeling and DA integrations. Given the rapid development aspect of 
flash droughts, we conduct all the analysis at a daily time scale. However, spatial maps of drought progression are 
shown at a monthly time scale for the sake of brevity.

3.1. Flash Drought Onset

The onset of flash droughts is triggered by either anomalously low precipitation causing unusually dry conditions 
or anomalously high temperatures resulting in heat waves or a combination of both. Here, we first characterize 
the processes that led to the onset of each drought event over the selected domain in Northern Great Plains 
(see Figure 1a for domain). Figure 2 shows the temporal evolution of domain-averaged precipitation and near 
surface air-temperature anomalies from the model runs during March-September of 2016 and 2017, along with 
the domain-averaged ESI. The daily precipitation and near surface air-temperature anomalies are normalized with 
standard deviation using the multiyear mean over 2015–2020 and accumulated as moving average at weekly time 
scales to smooth out the daily variability. Negative ESI anomalies convey deteriorating vegetation conditions.

Figure 3a shows the spatial progression of standardized anomalies of precipitation and near surface air temper-
ature for 2016 flash drought. Precipitation events brought wetter-than-normal conditions in March particularly 
across Wyoming and later in April across most of the states in the Northern Plains. High temperatures dominated 
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the drought onset and intensification in May and June, leading to subsequent deteriorations in SM and vegetation 
conditions, as evidenced by large negative ESI anomalies (rightmost panel in Figure 2a).

In contrast, a key driver of the 2017 drought was record-low precipitation during May-July, which is usually the 
wettest climatological season in the region (Figure 3b). Dry soil conditions appeared simultaneously with warm 
temperatures in May, leading to the intensification of flash drought in the following summer months (Figure 2b). 
Negative ESI anomalies again capture the impact of anomalously dry soils during drought intensification in 

Figure 2. Standardized anomalies of precipitation, near surface air temperature, and Evaporative Stress Index (ESI) averaged 
over the selected domain during the flash droughts of (a) 2016 and (b) 2017.

Figure 3. Spatial progression of the standardized anomalies of precipitation, near surface air temperature, and Evaporative 
Stress Index (ESI) (in units of standard deviation) during the flash droughts of (a) 2016 and (b) 2017.
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June and July. Given that ESI is a land surface temperature-based product, severity of the heat wave-driven 2016 
drought is more pronounced in the ESI anomalies during the onset, compared to the 2017 drought. The contrast-
ing drivers in 2016 and 2017 caused the flash droughts to progress differently.

3.2. Impact of DA on Characterizing Warm Flash Drought of 2016

Figure 4 shows the spatial progression of 2016 drought in terms of the standardized anomalies in RZSM and 
transpiration along with the median of weekly USDM maps produced each month. Comparisons are at monthly 
time steps between the DA configurations (LAI-DA, SM-DA, and Multi-DA) and OL simulation. The intense 
heatwave at the onset in March 2016 caused vegetation to respond with increased transpiration followed by a 
resulting decline in RZSM. Subsequent precipitation events in April led to wetter conditions, captured by OL and 
all the DA runs with positive RZSM anomalies across most of the domain (Figure 4c, top row).

The impact of DA is most apparent during the peak intensification of flash drought during June and July when 
the return of warmer-than-normal temperatures along with persistent dry conditions significantly stressed the 
vegetation (see Figure  3a). The transpiration in June exhibited large negative anomalies when modeled with 
LAI-DA that were otherwise not captured by OL or SM-DA simulation (Figure 4d). Spatial patterns in transpi-
ration compared better with hotspots from USDM maps on assimilating LAI information, though USDM had 
some issues in capturing the drought severity for this case, as noted earlier. Once vegetation stress takes effect, 
observations of SMAP SM are useful to model the resulting deterioration in RZSM during June and July captured 
by the relatively larger negative anomalies in Multi-DA and SM-DA simulations. Multi-DA thus combines the 
information from both LAI and SM to effectively model the drought intensification when USDM recorded a 
two-category increase in drought severity (Figure 4a). Precipitation in August and September helped improve the 
conditions in the region with largest improvements in the Dakotas as evidenced by subsequently less negative 
RZSM and transpiration anomalies across the LSM runs. The RZSM anomalies are also compared with FDSI 
over the drought period as shown in Figure 4b. The comparisons reveal that, although FDSI captures the drought 
hotspots in July that are spatiotemporally consistent with USDM categories, once the vegetation stress takes 
effect, resulting deterioration of RZSM in the eastern parts of the domain is generally underestimated in FDSI. 
Assimilating MODIS LAI and SMAP SM helps model those stresses captured by the relatively large negative 
anomalies in the Multi-DA simulation in the eastern parts.

The daily variation of standardized anomalies of LAI, RZSM, and transpiration, averaged over the selected 
domain, is shown in Figure 5 explaining the temporal influence of DA experiments in capturing drought progres-
sion. The month of April 2016 received abundant precipitation which eliminated the abnormally dry soil condi-
tions and reduced stress on the vegetation (as shown by large positive ESI anomalies in April in Figure 3a). 
While MODIS LAI observations are available only every 8-day, assimilating SM observations (Multi-DA and 

Figure 4. Spatial progression (upper panel) of the flash drought of 2016 from (a) U.S. Drought Monitor (USDM; monthly 
median); (b) monthly averaged Flash Drought Stress Index (FDSI); and using the monthly standardized anomalies (in 
standard deviations) of (c) root zone soil moisture (RZSM) and (d) transpiration modeled from different land surface model 
(LSM) configurations. Areas shown are larger than the selected domain of Figure 1a to show the surrounding context of 
droughts.
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SM-DA simulations) results in increased LAI anomalies in April (compared to LAI-DA), reflecting the apparent 
reduced stress on vegetation. This also caused Multi-DA to have larger positive LAI anomalies, closer to those 
modeled from SM-DA simulations during April. Subsequent drier conditions in May caused a sharp decline in 
LAI modeled with Multi-DA relative to the SM-DA and OL simulations, capturing the increasing vegetation 
stress (Figure 5, leftmost panel). Another factor that aggravated the vegetation condition was the occurrence of 
several days of freezing temperatures in mid-May (see Figure 2a). Though lower temperatures during May are not 
unusual in this region, the severity and persistence of the cold temperatures were unusual, termed as “hard freeze” 
by Otkin et al.  (2018), resulting in a less-resilient vegetation. With the return of above normal temperatures, 
stressed vegetation continued to result in large negative RZSM anomalies over the drought intensification period.

Changes in LAI have a direct impact on the water cycle components. Decreased LAI leads to reduced canopy 
shading, increased net radiation, and a resulting decrease in SM. Conditions improved gradually post-June with 
near-normal temperatures and rainfall, but LAI anomalies remained negative. This could be attributed to the 
impacted development cycle of most crops and rangelands during summers and the longer-term impacts of 
heightened vegetation stress. The assimilation of MODIS-derived LAI is essential to capture the response of 
vegetation to the 2016 drought initialized by heat waves and intensified by dry conditions.

3.3. Impact of DA on Characterizing Dry Flash Drought of 2017

The 2017 flash drought followed a contrasting pathway primarily due to anomalously low precipitation during the 
climatologically wet season of May-July, leading to a peak drought intensity in July. Figures 6c and 6d show the 
spatial progression in RZSM and transpiration anomalies as the drought developed. Prior to the onset in March, 
RZSM was adequate across most of the Northern Great Plains due to early precipitation. Wet soil conditions in 

Figure 5. Temporal progression of leaf area index (LAI), root zone soil moisture (RZSM), and transpiration anomalies, 
averaged over the selected domain for 2016 flash drought.

Figure 6. Same as Figure 4, but for the flash drought of 2017. Areas shown are larger than the selected domain of Figure 1a 
to show the surrounding context of droughts.
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May (Figure 6c, top row) began to experience rapid decline during an anomalously dry period in May-July. The 
RZSM anomalies from SM-DA and Multi-DA simulations are spatially more consistent with USDM drought 
patterns (see Section 3.5 for a quantitative evaluation) and detect early signals of rapid drought intensification 
in June (Figures 6a and 6c). Assimilating information on SM helps resolve the rapid rate of change in moisture 
availability. The vegetation stress during onset, a consequence of the moisture stress for this drought event, is 
overestimated in the integrations that only incorporate LAI. On the other hand, during the late summer months 
(August-September), LAI-DA modeled outputs underestimate drought severity, whereas SM-DA results in rela-
tively more stressed vegetation conditions. The rapid drawdown in moisture is also captured by FDSI lead-
ing to larger drought severity around the USDM hotspots during the peak drought months of July and August 
(Figure 6b). However, the severity is clearly underestimated in the eastern part of the domain. Again, our DA 
experiments, by incorporating both the vegetation and SM conditions, help capture the additional stress brought 
by vegetation response to result in rapid moisture drawdown for this drought event.

Although assimilation of SM observations in SM-DA and Multi-DA simulations helps capture the large nega-
tive anomalies across the region during the peak intensification period, particularly for the dry flash drought of 
2017, resulting anomalies exhibit noisier patterns compared to LAI-DA or OL. DA setup applies a number of 
LSM-based quality control procedures to specify when and where observations should be assimilated, in addi-
tion to the screening applied to the observations based on quality flags within SM retrievals. SM observations 
are excluded for assimilation for being at the edge of the swath, near water bodies, and when impacted by dense 
vegetation, precipitation, frozen ground, snow cover, or radio frequency interference based on the information 
provided in the SM retrievals (Kumar et al., 2014). Comparatively, the observation screening procedure within 
LAI-DA is simpler, primarily based on the observation quality flags only (Kumar et al., 2019). These procedures 
in the SM assimilation, while essential, may lead to differing assimilation instances across neighboring pixels and 
ensemble members contributing to the noisy features, particularly at high resolutions.

Temporal variations of the drought indicators of LAI, RZSM, and transpiration are shown in Figure 7. SM-DA 
and Multi-DA capture the positive RZSM anomalies at the onset (April-May) while OL and LAI-DA are unable 
to model this response (Figure 7, middle panel), as the primary drought signal is influenced by SM. The negative 
LAI anomalies during the summer months (Figure 7, left most panel) are the result of overstressed vegetation in 
response to increased evaporative demand and depleted SM. Assimilating SMAP SM thus helped in modeling 
the rapid decline in moisture that caused the vegetation to respond with reduced transpiration. Because vegetation 
stress is not the primary driver of drought onset or intensification in 2017, assimilating SM observations do not 
have any significant impact on the modeled vegetation response and Multi-DA mostly follows LAI-DA simula-
tion in the LAI and transpiration anomalies.

The following sections describe the improvement from LSM and DA to the representation of flash drought onset 
and intensification and the subsequent drought severity.

3.4. Multivariate DA Captures Drought “Flashiness” at the Onset

One of the distinctive features of flash drought that separates it from conventional long-term droughts is its rapid 
rate of intensification contributing to the “flash” aspect (Otkin et al., 2018; Qing et al., 2022). Here, we explore 

Figure 7. Same as Figure 5, but for the flash drought of 2017.
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the utility of assimilation in capturing the rapid rate of onset and intensification of flash droughts. Rate of SM 
decline has been used as a criterion to characterize and filter flash droughts from other nonflash droughts. A 
common intensification rate-based definition involves decline of RZSM from 40th percentile to below the 20th 
percentile, with an average decline rate of no less than the fifth percentile for each pentad (Qing et al., 2022; 
Yuan et al., 2019). Due to the limited availability of SMAP SM observations to calculate percentiles, we analyze 
the variations in slope of the standardized anomalies of RZSM and LAI at a pentad (5 day) time scale across 
the different DA and OL (without DA) configurations. The slopes are calculated only over the selected domain 
(see Figure 1a) which is representative of the affected region common to both the droughts during their onsets. 
Regions without any drought impact are assumed to be absent during the period of analysis which begins from 
the last pentad with a positive slope of RZSM (pentad zero) before the decline to pentad with lowest (largest 
negative) slope. The period extends over the next 1 month (six pentads) after dropping to a negative RZSM slope. 
Pentad slopes represent the rate of change in landscape and vegetation conditions, often leading to changes in 
water cycle enough to trigger the flash drought. In fact, the rapid intensification rate is a major contributor to 
the harm caused to the agricultural industry, where it limits the time for mitigating measures such as additional 
irrigation arrangements, or delaying the seeding of crops (Hoffman et al., 2021).

Figure 8 shows pentad scale slopes of RZSM and LAI during seven pentads starting from the pentads of 1 May 
2016 and 26 April 2017 for the flash droughts of 2016 and 2017 respectively. RZSM slope drops to minimum 
during the fourth and third pentad for the 2016 and 2017 droughts, respectively. For the 2016 flash drought, 

Figure 8. Average slopes for (a) root zone soil moisture (RZSM) and (b) leaf area index (LAI) over seven pentads, where pentad zero corresponds to the last pentad 
with positive slope of RZSM preceding the decline to lowest pentad slope, over the 2016 flash drought. Plots (c) and (d) show the same for 2017 flash drought. 
Annotation on the plots summarize average slope over the seven pentads for each model configuration, bold font shows the one with minimum slope.
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LAI-DA captures the rapid rate of decline in RZSM with largest negative 
slopes at the onset, as high as 10.0% steeper compared to results from OL 
(Figure 8a). Given the decline in RZSM is driven by high temperatures and 
increased vegetation transpiration, assimilating vegetation conditions from 
MODIS LAI improves the ability to model rapid changes in soil dryness. 
Further, Multi-DA is also able to capture the rapid decline in LAI as a result 
of increased vegetation stress (Figure  8b). The large difference in slopes 
between LAI-DA and Multi-DA simulations in the initial couple of pentads 
is also a result of preceding differences in LAI anomalies during April (see 
Section 3.2) caused by large spells of precipitation where Multi-DA better 
captures the reduced stress on vegetation by including both LAI and SM 
observations. It should also be noted that the decline in LAI, caused by 
excessive heat and evaporative demands, precedes RZSM drawdown, which 
again corroborates the warm (heat wave-driven) mechanism of the 2016 flash 
drought.

During the 2017 drought, in contrast, SM-DA and Multi-DA result in larger 
negative RZSM slopes over the seven pentads analyzed here (Figure 8c). This 
rapid rate of initial RZSM decline due to anomalous precipitation was the key 
factor that led to flash drought in the region. SM-DA resulted in the largest 
rates of decline in RZSM, as large as 48.4% during the pentad of maximum 
decline, compared to results from OL. The drier soils thus cause a subsequent 

stress on vegetation captured by large negative LAI slopes from Multi-DA over the later pentads (Figure 8d). 
This follows with a decline in LAI in contrast to the 2016 drought, where drying of soils is an after-effect rather 
than the cause. The similar slopes of LAI anomalies between Multi-DA and LAI-DA again result from the dry 
(precipitation deficit-driven) mechanism, where vegetation stress is not the primary driver of drought onset or 
intensification, in contrast to the 2016 warm flash drought. Thus, assimilating SM observations in the Multi-DA 
configuration do not have any significant impact on the modeled LAI.

3.5. Multivariate DA Captures Spatial Signatures of Flash Drought Progression

We analyze spatial signatures of RZSM anomalies and vegetation stress indicators to provide a basis for assessing 
the impact of DA in capturing drought progression and severity. Because of the lack of independent drought refer-
ence data, we perform quantitative evaluation of the driving mechanism of the droughts by comparing against 
common indicators of drought stress and existing drought indices. We first evaluate modeled RZSM anomalies 
with ESI, which is an indicator of vegetation stress that also responds to changes in SM (Zhong et al., 2020). 
Table 1 shows MI score), and Pearson's correlation (R) between weekly ESI and RZSM anomalies obtained from 
OL and DA experiments averaged over May-August. MI score is a measure of similarity between two time series, 
where a score of zero denotes no similarity (Equation 2). Two-tailed p-value is obtained for testing the signifi-
cance of correlation between SM and ESI anomalies.

The assessment highlights the different roles of assimilating observations of SM and LAI during various stages of 
flash drought development. For the 2016 case driven by heat wave, the vegetation pathway drives drought propa-
gation, subsequently modulating SM stress. As a result, only the DA runs that incorporate vegetation information 
(LAI-DA and Multi-DA) are able to model vegetation stress as evidenced by higher similarity and correlation 
of modeled RZSM anomalies with ESI in 2016. An increase of 7.5% in the MI score and 14.5% in correlation is 
obtained using LAI-DA compared to the OL-modeled RZSM anomalies. All the correlation values were statisti-
cally significant with p-values well under the significance limit.

In contrast, during the dry flash drought of 2017, assimilation of SM is necessary to capture the impact of flash 
drought on the rapid drying of soils in summer. As RZSM decreases, less energy is needed to evaporate and 
transpire water, causing canopy temperatures to elevate in comparison with unstressed vegetation under the same 
atmospheric conditions (Otkin et al., 2013). SM-DA and Multi-DA outputs capture this control of SM on the ESI 
during drought intensification, each with a 6.7% increase in MI scores over OL outputs (Table 1).

Year Reference Metric Multi-DA LAI-DA SM-DA OL

2016 ESI MI score 1.04 0.86 0.81 0.80

ESI Pearson's R 0.72 0.71 0.53 0.62

USDM F1-score 0.21 0.24 0.20 0.19

USDM SSIM 0.49 0.57 0.47 0.51

2017 ESI MI score 1.11 1.03 1.11 1.04

ESI Pearson's R 0.70 0.64 0.69 0.66

USDM F1-score 0.27 0.20 0.29 0.20

USDM SSIM 0.36 0.29 0.32 0.28

Note. Comparison with USDM is performed using spatial similarity measures 
of F1-score and Structural Similarity Index (SSIM). Bold indicates the model 
with the best performance compared to reference data set (ESI/USDM).

Table 1 
Comparison of Weekly Averaged RZSM Anomalies With Reference Data 
Sets of ESI (Four-Week Composite Product) and Monthly Median USDM 
Drought Categories, Averaged Over the Months of May-August During the 
Two Flash Droughts of 2016 and 2017
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Next, to evaluate the DA outputs in terms of their ability to capture the spatial patterns of drought progression, 
we compared the spatial similarity of RZSM anomalies with the monthly median of weekly USDM drought cate-
gories. We used the SSIM (see Equation 3) as a measure of perceived similarity in the spatial distributions of two 
data sets, varying between zero and one (Wang et al., 2004). Table 1 summarizes average SSIM over the selected 
domain during May-Aug. Because of the discrete nature of USDM maps, we also calculate another measure of 
similarity, F1-score, which discretizes the RZSM anomalies to compare against USDM drought categories. Note 
also that USDM, being a subjective index that relies on a rotating team of authors (Svoboda et al., 2002), may not 
reliably provide true measures of physical processes. Nevertheless, we use it here as a reference in the absence 
of other drought information. Highest SSIM of 0.57 (0.36) is obtained with LAI-DA (Multi-DA), an increase of 
11.7% (28.6%) over results from OL, for the 2016 (2017) flash droughts. During 2016, RZSM anomalies from 
Multi-DA entail spatial patterns from both the assimilated variables resulting in lower SSIM values compared to 
LAI-DA. F1-scores also show similar trends, with an increase of 26.3% (45.0%) from LAI-DA (SM-DA) over 
results from OL for the 2016 (2017) flash droughts. This again corroborates the role of assimilating LAI (SM) 
observations in capturing the progression of warm (dry) flash droughts.

The modeled-SM evaluation against USCRN sites is shown in Table 2. Comparison metrics indicate that assimila-
tion of SM and vegetation is generally beneficial as RMSE from Multi-DA has a statistically significant improve-
ment in RMSE at two of the four stations, along with marginal degradations in the other two sites. Since the 
limited set of in situ stations could be in heterogeneous locations that are difficult to model, they are not enough 
to provide a fair evaluation of the spatially distributed features of drought evolution. It should also be noted that 
a large part of the RMSE is due to bias at most of these stations. Nevertheless, the advantage of SM-DA and 
LAI-DA on the land surface process variables is well established in prior studies (Albergel et al., 2010; Kolassa 
et al., 2017; Kumar et al., 2014, 2019; Lievens et al., 2017; Liu et al., 2011; Xu et al., 2021).

4. Summary and Conclusions
Soil and vegetation conditions evolve rapidly during the development and intensification of flash droughts. Due 
to the interactions between the biosphere and hydrosphere, as well as anthropogenic changes, SM and vegetation 
are critical aspects of the water budget and variability of water cycle components. Assimilation of such observa-
tions within LSMs provides a way to model the agricultural and ecological impacts of flash droughts as reflected 
by changes in the different indicators of droughts. This study provides confirmation of the utility of assimilating 
SM from downscaled-SMAP product and MODIS-derived LAI retrievals to capture flash drought progression 
and intensification by improving the LSM estimates. We have also demonstrated which observations are most 
critical at different stages of flash droughts based on the driving physical mechanism.

The multivariate assimilation is found to benefit 2016 and 2017 flash droughts in distinct ways. During the warm 
flash drought of 2016 intensified by heat waves at the onset, assimilation of LAI helps the model resolve high 
transpiration in late spring followed by highly stressed vegetation, which is otherwise not captured by OL and 

Metric USCRN station name Multi-DA SM-DA LAI-DA OL

RMSE ND_Medora_7_E 0.060 0.060 0.056 0.053

* SD_Buffalo_13_ESE 0.085 0.085 0.096 0.095

* WY_Sundance_8_NNW 0.093 0.094 0.114 0.110

SD_Pierre_24_S 0.108 0.109 0.106 0.106

Bias ND_Medora_7_E 0.013 0.013 0.026 0.012

SD_Buffalo_13_ESE −0.059 −0.059 −0.054 −0.060

* WY_Sundance_8_NNW −0.026 −0.026 −0.025 −0.030

SD_Pierre_24_S −0.089 −0.090 −0.089 −0.086

Note. Refer to Figure 1a for USCRN station names and locations. Stations where RMSE or bias of Multi-DA is lower than 
OL with statistical significance are denoted with asterisk and bold font.

Table 2 
Comparison of Average RMSE and Bias Between LIS-Modeled Surface SM Using Different DA Configurations and 
USCRN Stations Over the Period of Analysis (Combined Over 2016 and 2017 Drought Periods)
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SM-DA simulations. OL outputs marginally captured some of the drought stages, in part due to the high-quality 
precipitation inputs from GPM IMERG used to force the Noah-MP model. However, states such as anomalously 
dry soil conditions or stressed vegetation during droughts are often missing in OL outputs.

The dry flash drought of 2017, however, followed a different mechanism where lack of precipitation drove the 
reductions in SM, caused higher vegetation stress and negative LAI anomalies. SM-DA is essential to improve 
the representation of SM conditions and capture the fast rate of decline. The dry conditions, combined with 
warmer-than-normal temperatures led to a cascade of disturbances that impacted vegetation and sparked various 
wildfires across the Northern Great Plains.

We also demonstrated the ability to successfully capture the rapid rate of RZSM decline and vegetation deterio-
ration by assimilating the variables that contribute to the onset. This analysis has multiple implications for flash 
drought monitoring, risk assessment, and in designing effective mitigation strategies. An early indication of rapid 
change in water availability in the landscape provides early warning and ample window of response to prepare 
for and minimize consequences of the impending drought risk to the agricultural industry. While near real-time 
(NRT) drought monitoring is not the focus of this study, the multivariate DA framework of remote sensing obser-
vations is also conducive to augment existing NRT monitoring and early warning capabilities, given that most 
monitoring efforts rely on indices based on observational or reanalysis data sets. MODIS LAI is an 8-day product 
which is smoothed to daily time scale for DA while SMAP SM is available in near real-time (though in this study 
we used the SMAP product with a latency of 2 days). The framework can not only improve the predictions of 
common flash drought indicators, but also provide a holistic understanding of the flashiness, intensification, and 
evolution of soil and vegetation stresses in flash droughts following different mechanisms (warm or dry).

Comparison of RZSM anomalies with ESI and USDM drought categories further explain the role of multivariate 
DA. The control of SM on ESI was well-captured by assimilating LAI (SM) observations for warm (dry) flash 
droughts. In both droughts, negative RZSM anomalies capture early drying of soils and the respective hotspots 
in the USDM maps, demonstrating another advantage of DA in capturing rapid changes during flash droughts. 
A comparison is performed to assess the spatial consistency of modeled drought drivers with respect to USDM 
patterns. However, a more thorough investigation is needed by deriving drought categories from modeled surface 
and RZSM using the corresponding percentiles used by USDM; the short period of SMAP available for this 
study limits our analysis. Uncertainties caused by different land covers and irrigation practices in remote sensing 
estimates of SM or LAI should also be considered in future efforts.

This study emphasizes the need to incorporate multiple observational constraints from remote sensing for captur-
ing the rapid onset rates of the 2016 and 2017 flash droughts and representing their propagation mechanisms 
and severity. It is noteworthy to mention that while the drivers of 2016 and 2017 droughts have been defined in 
the literature, in a general case, a-priori knowledge of the drought drivers is absent. Our framework to assimilate 
different ground observations to model soil and vegetation dynamics is, therefore, a viable approach to capture 
flash droughts at the required time scale. Further, our characterization of warm versus dry flash droughts, giving 
more weight to the mechanism that drives the rapid onset rates, help better identify the impact of droughts without 
being constrained by the duration of anomalous conditions. As such, the 2016 warm flash drought persisted much 
after the heat waves receded.

Another novel contribution of this study is the improvement in representation of the onset and intensification 
stages of the two contrasting flash droughts because of simultaneously assimilating SM and LAI conditions. 
These contributions can be attributed to the distinct impacts of moisture deficits and heat waves on the water 
cycle. The former evolves because of the anomalous precipitation deficits and rapidly depleted SM moving the 
landscape into moisture-limited state, which is captured by assimilating information on RZSM. Amplification of 
warm air temperatures by feedback from the increased sensible heat flux further intensifies drought and stresses 
vegetation. The latter, however, impacts transpiration at the onset due to high air temperatures and elevated evap-
orative demands where LAI-DA adds modeling improvements to the vegetation state. Multivariate assimilation 
thus leverages the advantages of both in improving the representation of key land surface processes that drive and 
intensify flash droughts.

A relevant issue in flash drought monitoring that needs consideration is the ability of LSMs to represent the 
rapid time scales involved in these extreme events. Because of the rapid change in water availability associated 
with a flash drought, the model needs to capture those changes as well as the rate of change in SM conditions, 
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evaporative demands, and vegetation response at a smaller time scale. The results of this study suggest that 
assimilation of remotely sensed information within LSMs from products with finer temporal resolution provides 
a practical approach for improving the characterization, even when the model physics is not fully adequate to 
represent the complex underlying processes and their interactions.

Flash droughts significantly impact crops and ecology due to their rapid development allowing a very small 
window to respond and plan mitigation strategies. The study has broader implications for flash drought character-
ization by demonstrating the utility of combined use of models and multiple remote sensing sources in promoting 
proactive risk management strategies resilient to hydrologic extremes.

Data Availability Statement
Various data sets used in this study are available from the following websites: SMAP Soil Moisture—https://
nsidc.org/data/smap/smap-data.html; MCD15A2H—https://lpdaac.usgs.gov/products/mcd15a2hv006/; ESI—
https://gis1.servirglobal.net/data/esi/; and USDM—https://droughtmonitor.unl.edu/DmData/DataDownload.
aspx.

References
Albergel, C., Calvet, J. C., Mahfouf, J. F., Rüdiger, C., Barbu, A. L., Lafont, S., et al. (2010). Monitoring of water and carbon fluxes using a 

land data assimilation system: A case study for southwestern France. Hydrology and Earth System Sciences, 14(6), 1109–1124. https://doi.
org/10.5194/hess-14-1109-2010

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. (2011). Evaluation of drought indices based on 
thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate, 24(8), 2025–2044. https://doi.
org/10.1175/2010jcli3812.1

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., & Kustas, W. P. (2007). A climatological study of evapotranspiration and mois-
ture stress across the continental United States based on thermal remote sensing: II. Surface moisture climatology. Journal of Geophysical 
Research, 112, D10117. https://doi.org/10.1029/2006JD007507

Basara, J. B., Christian, J. I., Wakefield, R. A., Otkin, J. A., Hunt, E. H., & Brown, D. P. (2019). The evolution, propagation, and spread of flash 
drought in the Central United States during 2012. Environmental Research Letters, 14(8), 084025. https://doi.org/10.1088/1748-9326/ab2cc0

Bolten, J. D., Crow, W. T., Zhan, X., Jackson, T. J., & Reynolds, C. A. (2009). Evaluating the utility of remotely sensed soil moisture retrievals for 
operational agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 57–66.

Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., et al. (2021). Global distribution, trends, and drivers of flash 
drought occurrence. Nature Communications, 12(1), 6330. https://doi.org/10.1038/s41467-021-26692-z

Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R. A., Flanagan, P. X., & Xiao, X. (2019). A methodology for flash drought 
identification: Application of flash drought frequency across the United States. Journal of Hydrometeorology, 20(5), 833–846. https://doi.
org/10.1175/jhm-d-18-0198.1

Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., et al. (2010). The soil moisture active passive (SMAP) 
mission. Proceedings of the IEEE, 98(5), 704–716.

Ford, T. W., & Labosier, C. F. (2017). Meteorological conditions associated with the onset of flash drought in the eastern United States. Agricul-
tural and Forest Meteorology, 247, 414–423. https://doi.org/10.1016/j.agrformet.2017.08.031

Gavahi, K., Abbaszadeh, P., Moradkhani, H., Zhan, X., & Hain, C. (2020). Multivariate assimilation of remotely sensed soil moisture and evapo-
transpiration for drought monitoring. Journal of Hydrometeorology, 21(10), 2293–2308. https://doi.org/10.1175/jhm-d-20-0057.1

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern-Era Retrospective Analysis for Research 
and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1

Gerken, T., Bromley, G. T., Ruddell, B. L., Williams, S., & Stoy, P. C. (2018). Convective suppression before and during the United States North-
ern Great Plains flash drought of 2017. Hydrology and Earth System Sciences, 22(8), 4155–4163. https://doi.org/10.5194/hess-22-4155-2018

He, M., Kimball, J. S., Yi, Y., Running, S., Guan, K., Jensco, K., et al. (2019). Impacts of the 2017 flash drought in the US Northern plains 
informed by satellite-based evapotranspiration and solar-induced fluorescence. Environmental Research Letters, 14(7), 074019. https://doi.
org/10.1088/1748-9326/ab22c3

Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., & Hain, C. (2016). The evaporative demand drought 
index. Part I: Linking drought evolution to variations in evaporative demand. Journal of Hydrometeorology, 17(6), 1745–1761. https://doi.
org/10.1175/jhm-d-15-0121.1

Hoell, A., Perlwitz, J., & Eischeid, J. K. (2019). The causes, predictability, and historical context of the 2017 US Northern Great Plains drought 
(p. 25). Retrieved from https://repository.library.noaa.gov/view/noaa/23003

Hoffmann, D., Gallant, A. J., & Hobbins, M. (2021). Flash drought in CMIP5 models. Journal of Hydrometeorology, 22(6), 1439–1454. https://
doi.org/10.1175/jhm-d-20-0262.1

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S. H. (2015). NASA global precipitation measurement (GPM) 
integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version, 4 (p. 26).

Jencso, K., Parker, B., Downey, M., Hadwen, T., Howell, A., Leaf, J. R., et al. (2019). Flash drought: Lessons learned from the 2017 drought 
across the US Northern Plains and Canadian Prairies. NOAA National Integrated Drought Information System.

Kimball, J. S., Jones, L., Jensco, K., He, M., Maneta, M., & Reichle, R. (2019). SMAP L4 assessment of the US Northern Plains 2017 flash 
drought. In IEEE International Geoscience and Remote Sensing Symposium (pp. 5366–5369).

Kolassa, J., Reichle, R. H., & Draper, C. S. (2017). Merging active and passive microwave observations in soil moisture data assimilation. Remote 
Sensing of Environment, 191, 117–130. https://doi.org/10.1016/j.rse.2017.01.015

Kumar, S. V., Holmes, T., Andela, N., Dharssi, I., Hain, C., Peters-Lidard, C., et al. (2021). The 2019–2020 Australian drought and bushfires 
altered the partitioning of hydrological fluxes. Geophysical Research Letters, 48, e2020GL091411. https://doi.org/10.1029/2020GL091411

Acknowledgments
This research was supported by funding 
from NASA Headquarters for the 
Earth Information System (EIS) pilot 
study. Computing was supported by the 
sources at the NASA Center for Climate 
Simulation.

 19447973, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032894 by U

niversity of W
isconsin,M

adison C
am

 D
epartm

ent of Pathology and, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://nsidc.org/data/smap/smap%10data.html
https://nsidc.org/data/smap/smap%10data.html
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://gis1.servirglobal.net/data/esi/
https://droughtmonitor.unl.edu/DmData/DataDownload.aspx
https://droughtmonitor.unl.edu/DmData/DataDownload.aspx
https://doi.org/10.5194/hess-14-1109-2010
https://doi.org/10.5194/hess-14-1109-2010
https://doi.org/10.1175/2010jcli3812.1
https://doi.org/10.1175/2010jcli3812.1
https://doi.org/10.1029/2006JD007507
https://doi.org/10.1088/1748-9326/ab2cc0
https://doi.org/10.1038/s41467-021-26692-z
https://doi.org/10.1175/jhm-d-18-0198.1
https://doi.org/10.1175/jhm-d-18-0198.1
https://doi.org/10.1016/j.agrformet.2017.08.031
https://doi.org/10.1175/jhm-d-20-0057.1
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.5194/hess-22-4155-2018
https://doi.org/10.1088/1748-9326/ab22c3
https://doi.org/10.1088/1748-9326/ab22c3
https://doi.org/10.1175/jhm-d-15-0121.1
https://doi.org/10.1175/jhm-d-15-0121.1
https://repository.library.noaa.gov/view/noaa/23003
https://doi.org/10.1175/jhm-d-20-0262.1
https://doi.org/10.1175/jhm-d-20-0262.1
https://doi.org/10.1016/j.rse.2017.01.015
https://doi.org/10.1029/2020GL091411


Water Resources Research

AHMAD ET AL.

10.1029/2022WR032894

16 of 17

Kumar, S. V., Jasinski, M., Mocko, D. M., Rodell, M., Borak, J., Li, B., et al. (2019). NCA-LDAS land analysis: Development and performance 
of a multisensor, multivariate land data assimilation system for the National Climate Assessment. Journal of Hydrometeorology, 20(8), 1571–
1593. https://doi.org/10.1175/jhm-d-17-0125.1

Kumar, S. V., Mocko, D. M., Wang, S., Peters-Lidard, C. D., & Borak, J. (2019). Assimilation of remotely sensed leaf area index into the 
Noah-MP land surface model: Impacts on water and carbon fluxes and states over the continental United States. Journal of Hydrometeorology, 
20(7), 1359–1377. https://doi.org/10.1175/jhm-d-18-0237.1

Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K. R., et al. (2014). Assimilation of remotely sensed soil moisture 
and snow depth retrievals for drought estimation. Journal of Hydrometeorology, 15(6), 2446–2469. https://doi.org/10.1175/jhm-d-13-0132.1

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P.  R., Geiger, J., Olden, S., et  al. (2006). Land information system: An interoperable 
framework for high resolution land surface modeling. Environmental Modelling & Software, 21(10), 1402–1415. https://doi.org/10.1016/j.
envsoft.2005.07.004

Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T., & Peters-Lidard, C. D. (2009). Role of subsurface physics in the assimilation of surface 
soil moisture observations. Journal of Hydrometeorology, 10(6), 1534–1547.

Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J., Dunbar, R. S., Kim, S. B., et al. (2017). Joint Sentinel-1 and SMAP data assimilation to 
improve soil moisture estimates. Geophysical Research Letters, 44, 6145–6153. https://doi.org/10.1002/2017GL073904

Lisonbee, J., Woloszyn, M., & Skumanich, M. (2021). Making sense of flash drought: Definitions, indicators, and where we go from here. Jour-
nal of Applied and Service Climatology, 2021, 1–19.

Liu, P. W., Bindlish, R., Fang, B., Lakshmi, V., O’Neill, P. E., Yang, Z., et al. (2021). Assessing disaggregated SMAP soil moisture products in 
the United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2577–2592.

Liu, P. W., Bindlish, R., O’Neill, P. E., Fang, B., Lakshmi, V., Yang, Z., et al. (2022). Thermal hydraulic disaggregation of SMAP soil moisture 
over the continental United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4072–4093. 
https://doi.org/10.1109/JSTARS.2022.3165644

Liu, Q., Reichle, R. H., Bindlish, R., Cosh, M. H., Crow, W. T., de Jeu, R., et al. (2011). The contributions of precipitation and soil moisture 
observations to the skill of soil moisture estimates in a land data assimilation system. Journal of Hydrometeorology, 12(5), 750–765.

Liu, X., Li, Z., & Attarod, P. (2021). Understanding hydrological extremes and their impact in a changing climate: Observations, modeling and 
attribution. Frontiers of Earth Science, 8, 657.

Liu, Y., Peters-Lidard, C. D., Kumar, S., Foster, J. L., Shaw, M., Tian, Y., & Fall, G. M. (2013). Assimilating satellite-based snow depth and snow 
cover products for improving snow predictions in Alaska. Advances in Water Resources, 54, 208–227.

Liu, Y., Peters-Lidard, C. D., Kumar, S. V., Arsenault, K. R., & Mocko, D. M. (2015). Blending satellite-based snow depth products with in 
situ observations for streamflow predictions in the Upper Colorado River Basin. Water Resources Research, 51, 1182–1202. https://doi.
org/10.1002/2014WR016606

Mishra, V., Aadhar, S., & Mahto, S. S. (2021). Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future 
flash droughts in India. npj Climate and Atmospheric Science, 4(1), 1–10.

Mladenova, I. E., Bolten, J. D., Crow, W. T., Sazib, N., Cosh, M. H., Tucker, C. J., & Reynolds, C. (2019). Evaluating the operational application 
of SMAP for global agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
12(9), 3387–3397.

Mo, K. C., & Lettenmaier, D. P. (2016). Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4), 
1169–1184.

Mocko, D. M., Kumar, S. V., Peters-Lidard, C. D., & Wang, S. (2021). Assimilation of vegetation conditions improves the representation of 
drought over agricultural areas. Journal of Hydrometeorology, 22(5), 1085–1098.

Mozny, M., Trnka, M., Zalud, Z., Hlavinka, P., Nekovar, J., Potop, V., & Virag, M. (2012). Use of a soil moisture network for drought monitoring 
in the Czech Republic. Theoretical and Applied Climatology, 107(1), 99–111.

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid 
V006. [Dataset]. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/mcd15a2hv006/

Nie, W., Kumar, S. V., Arsenault, K. R., Peters-Lidard, C. D., Mladenova, I. E., Bergaoui, K., et al. (2021). Towards effective drought monitoring 
in the Middle East and North Africa (MENA) region: Implications from assimilating leaf area index and soil moisture into the Noah-MP land 
surface model for Morocco. Hydrology and Earth System Sciences Discussions, 26, 2365–2386.

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multipa-
rameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 
116, D12109. https://doi.org/10.1029/2010JD015139

Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., & Svoboda, M. (2013). Examining rapid onset drought development using 
the thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14(4), 1057–1074.

Otkin, J. A., Haigh, T., Mucia, A., Anderson, M. C., & Hain, C. (2018b). Comparison of agricultural stakeholder survey results and drought 
monitoring datasets during the 2016 US Northern Plains flash drought. Weather, Climate, and Society, 10(4), 867–883.

Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., & Basara, J. B. (2018). Flash droughts: A review and assessment 
of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5), 911–919.

Otkin, J. A., Zhong, Y., Hunt, E. D., Basara, J., Svoboda, M., Anderson, M. C., & Hain, C. (2019). Assessing the evolution of soil moisture and 
vegetation conditions during a flash drought-flash recovery sequence over the South-Central United States. Journal of Hydrometeorology, 
20(3), 549–562.

Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., et al. (2020). Flash droughts present a new challenge 
for subseasonal-to-seasonal prediction. Nature Climate Change, 10(3), 191–199.

Qing, Y., Wang, S., Ancell, B. C., & Yang, Z. L. (2022). Accelerating flash droughts induced by the joint influence of soil moisture depletion and 
atmospheric aridity. Nature Communications, 13(1), 1139.

Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather 
Review, 130(1), 103–114.

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., et al. (2018). Anthropogenic warming exacerbates European soil 
moisture droughts. Nature Climate Change, 8(5), 421–426.

Sehgal, V., Gaur, N., & Mohanty, B. P. (2021). Global flash drought monitoring using surface soil moisture. Water Resources Research, 57, 
e2021WR029901. https://doi.org/10.1029/2021WR029901

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. (2002). The drought monitor. Bulletin of the American Meteoro-
logical Society, 83(8), 1181–1190. https://doi.org/10.1175/1520-0477-83.8.1181

 19447973, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032894 by U

niversity of W
isconsin,M

adison C
am

 D
epartm

ent of Pathology and, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1175/jhm-d-17-0125.1
https://doi.org/10.1175/jhm-d-18-0237.1
https://doi.org/10.1175/jhm-d-13-0132.1
https://doi.org/10.1016/j.envsoft.2005.07.004
https://doi.org/10.1016/j.envsoft.2005.07.004
https://doi.org/10.1002/2017GL073904
https://doi.org/10.1109/JSTARS.2022.3165644
https://doi.org/10.1002/2014WR016606
https://doi.org/10.1002/2014WR016606
https://lpdaac.usgs.gov/products/mcd15a2hv006/
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1029/2021WR029901
https://doi.org/10.1175/1520-0477-83.8.1181


Water Resources Research

AHMAD ET AL.

10.1029/2022WR032894

17 of 17

Tuttle, S. E., & Salvucci, G. D. (2014). A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Compar-
ing AMSR-E products. Remote Sensing of Environment, 142, 207–222.

Walker, E., García, G. A., & Venturini, V. (2019). Evapotranspiration estimation using SMAP soil moisture products and bouchet complementary 
evapotranspiration over Southern Great Plains.  Journal of Arid Environments, 163, 34–40. https://doi.org/10.1016/j.jaridenv.2019.01.002

Wang, L., Yuan, X., Xie, Z., Wu, P., & Li, Y. (2016). Increasing flash droughts over China during the recent global warming hiatus. Scientific 
Reports, 6(1), 30571.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE 
Transactions on Image Processing, 13(4), 600–612.

Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10(3), 111–120.
Woloszyn, M., Skumanich, M., Lisonbee, J., Deheza, V., Hobbins, M., Hoell, A., et al. (2021). Flash drought: Current understanding and future 

priorities; report of the 2020 NIDIS flash drought virtual workshop. NOAA National Integrated Drought Information System.
Xu, L., Abbaszadeh, P., Moradkhani, H., Chen, N., & Zhang, X. (2020). Continental drought monitoring using satellite soil moisture, data assim-

ilation and an integrated drought index. Remote Sensing of Environment, 250, 112028.
Xu, T., Chen, F., He, X., Barlage, M., Zhang, Z., Liu, S., & He, X. (2021). Improve the performance of the Noah-MP-crop model by jointly 

assimilating soil moisture and vegetation phenology data. Journal of Advances in Modeling Earth Systems, 13, e2020MS002394. https://doi.
org/10.1029/2020MS002394

Yan, H., Zarekarizi, M., & Moradkhani, H. (2018). Toward improving drought monitoring using the remotely sensed soil moisture assimilation: 
A parallel particle filtering framework. Remote Sensing of Environment, 216, 456–471.

Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multipa-
rameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research, 116, D12110. https://doi.
org/10.1029/2010JD015140

Yin, J., Zhan, X., Zheng, Y., Liu, J., Fang, L., & Hain, C. R. (2015). Enhancing model skill by assimilating SMOPS blended soil moisture product 
into Noah land surface model. Journal of Hydrometeorology, 16(2), 917–931.

Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., & Zhang, M. (2019). Anthropogenic shift towards higher risk of flash drought over China. Nature 
Communications, 10(1), 4661.

Zhang, Y., You, Q., Chen, C., & Li, X. (2017). Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, 
China. Journal of Hydrology, 551, 162–176.

Zhong, Y., Otkin, J. A., Anderson, M. C., & Hain, C. (2020). Investigating the relationship between the Evaporative Stress Index and land surface 
conditions in the contiguous United States. Journal of Hydrometeorology, 21(7), 1469–1484.

 19447973, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032894 by U

niversity of W
isconsin,M

adison C
am

 D
epartm

ent of Pathology and, W
iley O

nline L
ibrary on [13/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jaridenv.2019.01.002
https://doi.org/10.1029/2020MS002394
https://doi.org/10.1029/2020MS002394
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1029/2010JD015140

	Flash Drought Onset and Development Mechanisms Captured With Soil Moisture and Vegetation Data Assimilation
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. LSM Configuration
	2.2. Data Sets
	2.3. DA Configuration
	2.4. Evaluation Framework

	3. Results and Discussion
	3.1. Flash Drought Onset
	3.2. Impact of DA on Characterizing Warm Flash Drought of 2016
	3.3. Impact of DA on Characterizing Dry Flash Drought of 2017
	3.4. Multivariate DA Captures Drought “Flashiness” at the Onset
	3.5. Multivariate DA Captures Spatial Signatures of Flash Drought Progression

	4. Summary and Conclusions
	Data Availability Statement
	References


