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A B S T R A C T   

Thermal infrared (TIR) remote sensing of the land-surface temperature (LST) provides an invaluable diagnostic of 
surface fluxes and vegetation state, from plant and sub-field scales up to regional and global coverage. However, 
without proper consideration of the nuances of the remotely sensed LST signal, TIR imaging can give poor results 
for estimating sensible and latent heating. For example, sensor view angle, atmospheric impacts, and differential 
coupling of soil and canopy sub-pixel elements with the overlying atmosphere can affect the use of satellite-based 
LST retrievals in land-surface modeling systems. A concerted effort to address the value and perceived short
comings of TIR-based modeling culminated in the Workshop on Thermal Remote Sensing of the Energy and 
Water Balance, held in La Londe les Maures, France in September of 1993. One of the outcomes of this workshop 
was the Two-Source Energy Balance (TSEB) model, which has fueled research and applications over a range of 
spatial scales. 

In this paper we provide some historical context for the development of TSEB and TSEB-based multi-scale 
modeling systems (ALEXI/DisALEXI) aimed at providing physically based, diagnostic estimates of latent heating 
(evapotranspiration, or ET, in mass units) and other surface energy fluxes. Applications for TSEB-based ET re
trievals are discussed: in drought monitoring and yield estimation, water and forest management, and data 
assimilation into – and assessment of – prognostic modeling systems. New research focuses on augmenting 
temporal sampling afforded in the thermal bands by integrating cloud-tolerant, microwave-based LST infor
mation, as well as evaluating the capabilities of TSEB for separating ET estimates into evaporation and tran
spiration components. While the TSEB has demonstrated promise in supplying water use and water stress 
information down to sub-field scales, improved operational capabilities may be best realized in conjunction with 
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ensemble modeling systems such as OpenET, which can effectively combine strengths of multiple ET retrieval 
approaches.   

1. Introduction 

Numerous studies have demonstrated that land-surface temperature 
(LST) is a valuable diagnostic indicator of vegetation moisture status and 
energy balance. Indeed, a recent state-of-the-art review paper by Gar
cía-Santos et al. (2022) contains over 240 citations of thermal-based 
model development and validation studies published over the last 30 
years. The value of canopy temperature for evapotranspiration (ET) 
estimation was recognized nearly 50 years ago in a publication by 
Brown (1974) in this journal before it was renamed Agricultural and 
Forest Meteorology in 1985. Although no single modeling approach is 
identified as superior when reviewing all the validation studies, the 
utility of thermal-based methods is strongly promoted by projects such 
as OpenET, which is developing an operational ensemble ET product for 
water management (Melton et al., 2022). 

This has not always been the case. Thermal infrared (TIR) imaging 
sensors were at one point eliminated from the design of Landsat 8 (then, 
the Landsat Data Continuity Mission), as they were deemed too expen
sive and not widely used (Irons et al., 2012). Results from some earlier 
field experiments, including the First ISLSCP (International Satellite 
Land-Surface Climatology Project) Field Experiment (FIFE) of 1987, 
suggested poor agreement of thermal energy balance models with 
observed fluxes, yielding large scatter and bias. These results showed 
that the relationship between the surface-to-air temperature gradient 
and sensible heat flux varied widely based on atmospheric conditions, 
vegetation cover, sensor view angle, and other factors, and hence was 
not deemed a viable approach for surface energy balance estimation 
(Hall et al., 1992; Vining and Blad 1992). 

And yet, at around the same time as FIFE, there was ongoing work 
demonstrating that LST can be meaningfully interpreted within the 
context of complexities within the soil-plant-atmosphere continuum 
(SPAC). Detailed models were used to describe the radiation and tur
bulent energy exchange within the SPAC (Norman 1979; Norman and 
Campbell, 1983; Norman 1988), resulting in the determination of 
effective soil and canopy temperatures that could be used in 
thermal-based modeling approaches. There were also temporal surface 
temperature scaling methods being developed by Wetzel et al. (1984) 
and Diak and Whipple (1993) and contextual ET methods (Bastiaanssen 
et al., 1998; Allen et al., 2007) that aimed at reducing sensitivity to 
errors in satellite-based LST retrieval. 

A concerted effort to address the value and perceived shortcomings 
of TIR-based modeling culminated in the Workshop on Thermal Remote 
Sensing of the Energy and Water Balance over Vegetation in Conjunction 
with Other Sensors, held in La Londe les Maures, France, in September of 
1993 (Carlson et al., 1995).The findings of the workshop helped to 
design a way forward in the application of TIR imaging for energy bal
ance and ET modeling. 

One of the outcomes of the La Londe workshop was the Two-Source 
Energy Balance (TSEB) model (Norman et al., 1995b), which has since 
fueled a wide range of research and applications over many spatial 
scales. In this paper we provide some historical context (see chronology 
in Table 1) for the development of TSEB and TSEB-based modeling 
systems (ALEXI/DisALEXI) and discuss new implementations and ap
plications for these models. 

2. Early history of TIR-Based ET modelling 

2.1. TIR as an indicator of surface moisture status 

Monteith and Szeicz (1962) and Tanner (1963) were among the first 
to use infrared thermometry to determine soil and plant temperatures. 

Monteith and Szeicz (1962) noted the view-angle and solar-angle effects 
on radiative temperature observations, measuring over both short and 
tall crops as well as bare soil and water surfaces. They concluded that 
“When the aerodynamic character of a crop is known, the effective 
resistance of the stomata to water-vapour diffusion can be related 
theoretically to the difference between surface and air temperature.” 
Tanner (1963) noted that “Though these data are incomplete, they do 
support a conviction the author has held since beginning micrometeo
rological work about 7 years ago – that plant temperature may be a 
valuable qualitative index to differences in plant water regimes. Coupled 
with a better understanding of transfer processes at the plant surfaces, 
they may serve to provide quantitative data on plant-water status.” 

A significant advancement in the application of TIR temperature for 
estimating plant water use and stress came from the work of Jackson 
et al. (1977) and Idso et al. (1977), who used canopy-air temperature 
differences as an indicator of crop water requirements. These studies, 
however, neglected other environmental factors that affect atmospheric 
demand; namely, vapor pressure deficit (VPD), wind, and radiation. Idso 
et al. (1981) derived an empirical method based on the temperature 
difference-VPD relationship for quantifying stress by determining 
"non-water-stressed baselines" for crops. These baselines defined the 
lower limit of the canopy temperature that a particular crop canopy 
would attain if the plants were transpiring at their potential rate, 
although the upper temperature limit for a non-transpiring crop was 
ill-defined in this method. Jackson et al. (1981; R.D. 1988) took this a 
step further and incorporated the plant energy balance along with the 
Penman-Monteith (PM) expression for canopy transpiration to derive a 
formulation of the canopy-air temperature difference as a function of 
VPD and defined theoretically the limits associated with potential ET 
and when ET approaches zero. The crop water stress index (CWSI) was 
defined by subtracting the ratio of actual to potential ET from one, a 
plant moisture indicator that has been widely evaluated over different 
crops. 

While these approaches were found to have potential, a critical 
limitation was their requirement of temperature measurements that 
sampled the canopy only (avoiding any influence from the background 
soil temperature) as well as in-situ measurements of the local meteo
rological conditions. This made them difficult to scale from the canopy 
level to the whole field or landscape and regional scales. Around the 
same time as the development of the CWSI, others were investigating the 
potential of aircraft and satellite TIR data to provide large-area estimates 
of ET. Bartholic et al. (1972) flew a scanning spectrophotometer with a 
TIR band for measuring LST variations in soils and crops at various water 
availability levels. Price (1980) used analytical expressions relating the 
mean evaporation rate of a bare soil surface to satellite-derived surface 
temperature based on the thermal inertia concept, using a numerical 
model simulating the diurnal cycle of surface temperature to correct for 
micrometeorological drivers. Carlson et al. (1981) advanced this by 
including a one-dimensional boundary layer model with a single-source 
energy balance model, using LST as a boundary condition over urban
ized landscapes. Taconet et al. (1986) was one of the first to introduce a 
soil-vegetation land surface scheme coupled to satellite-derived LST. 
While the modeled fluxes agreed with measurements taken during a dry 
down, sensitivity to initial boundary layer conditions and uncertainty in 
LST had a significant effect on model output. A few years later, Carlson 
et al. (1990) proposed a similar approach, but added constraints derived 
from a two-dimensional plot between LST and the normalized difference 
vegetation index (NDVI), which is related to fractional vegetation cover. 
From this 2D plot, the temperatures of sunlit bare soil and full cover 
vegetation were derived and variations between these two limits were 
related to the moisture availability as well fractional cover. Gillies et al. 
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(1997) later verified the Carlson et al. (1990) methodology, coined the 
“triangle method”, with flux data from FIFE, conducted in Manhattan, 
KS, and the Monsoon 90 experiment in Walnut Gulch, AZ. They pointed 
out that this approach, as well as others using soil-plant models coupled 
to the atmospheric boundary layer, are solving the so-called inverse 
problem, which is defined as fitting a measured variable to a simulated 
(modeled) value such that a solution is reached when the simulated and 
observed values are equal within some pre-defined uncertainty level for 
soil water content or surface fluxes. Model inversion is a standard 
practice in remote sensing and is also applied, for example, in retrieving 
leaf area index and other biophysical properties from multi-spectral 
reflectance data (Houborg et al., 2007) and atmospheric profiles from 
sounder observations (Menzel et al., 2018). 

2.2. One-source energy balance modeling: kB− 1 and REX 

About the same time in the mid 1990′s, another focus of research in 
TIR-based energy balance was on determining robust formulations for 
resistances relating vertical temperature gradients to sensible heat flux, 
and for relating the observed directional radiometric surface tempera
ture, TR(θ), obtained at viewing angle θ, to the “aerodynamic tempera
ture for heat”, TO (K), which satisfies the bulk resistance formulation for 
sensible heat transport, H: 

H = ρCP
(TO − TA)

RA + REX
= ρCP

(TO − TA)

RAH
(1) 

Here, H is the sensible heat flux (W m− 2), ρ is air density (kg m− 3), Cp 
is the heat capacity of air (J kg− 1 K− 1), TA is the air temperature in the 
surface layer measured at some height above the canopy (K), REX is an 
excess resistance associated with heat transport (s m− 1), RA is the 
aerodynamic resistance (s m− 1), and is typically estimated in the surface 
layer using a stability corrected logarithmic formula (Brutsaert 1982): 

RA =

[

1n
(

zU − do
zoM

)

− ψM

][

1n
(

zT − do
zoM

)

− ψH

]

k2u
(2)  

while RAH 
––– RA+REX is the total resistance to heat transport across the 

temperature gradient TO–TA. In Eq. (2), k is von Kármán’s constant (~ 
0.4), dO is the displacement height (m), zOM is the roughness length for 
momentum transport (m), u is the wind speed (m s− 1) measured at 
height zU (m), zT (m) is the height of the TA measurement, andΨM and ΨH 
are the Monin-Obukhov stability functions for momentum and heat, 
respectively. 

The excess resistance term in Eq. (1) captures the fact that heat must 
diffuse through the laminar boundary layers of the canopy and soil el
ements, while the transfer of momentum is much more efficient as a 
result of viscous shear and form drag of the vegetation and soil elements 

Table 1: Chronology of events relating to TIR remote sensing and TSEB development.   

Year Contribution 

Monteith and Szeicz 1962 Early paper using TIR to determine soil and canopy temperatures 
Tanner 1963 Postulates that TIR could provide plant water status 
Garrat and Hicks 1973 Use of kB-1 parameter in computing sensible heat (H) from LST with a 
single-source approach   
Jackson et al. 1977 TIR is related to crop water requirements 
Price 1980 Use of thermal inertial concept to estimate bare soil evaporation 
Jackson et al. 1981 Introduction of the crop water stress index (CWSI) 
Carlson et al. 1981 Couples LST and 1D atmospheric boundary layer (ABL) model to 
assess moisture status   
Seguin and Itier 1983 Extends one-time-of-day LST to daily using semi-empirical transfer eq. 
Wetzel et al. 1984 Relates LST change from GOES and ABL growth to soil moisture 
Shuttleworth & Wallace 1985 Develops a two-source approach for sparse canopies 
Taconet et al. 1986 Introduces a coupled soil-vegetation-atmosphere transfer (SVAT)-ABL 
model linked to satellite-derived LST   
FIFE 1987 Tested LST-flux relations in a tall-grass prairie 
Diak and Stewart 1989 Uses diurnal LST variations from GOES to derive surface energy fluxes 
Carlson et al 1990 Uses a SVAT-ABL coupled model constrained by 2D plot of LST & NDVI 
Hall et al. 1992 Concludes TIR-based H estimation is infeasible, based on FIFE data 
La Londe Workshop 1993 In part a response to the FIFE findings on the utility of LST 
Moran et al. 1994 Uses 2D plot of LST-NDVI to extend CWSI to partial canopy cover 
Norman, Kustas et al. 1995 First publication on the TSEB 
Anderson et al. 1997 First publication on ALEXI (originally TSTIM) 
Norman et al. 2000 Introduces Dual-Temperature-Difference approach using TSEB 
Norman et al. 2003 First publication on DisALEXI 
Kustas et al 2003 Proposes method of sharpening coarser LST with finer resolution NDVI 
Allen et al. 2005 Use of Landsat ET for water management in the western U.S. 
Gao et al. 2006 Spatial Temporal Adaptive Reflectance Fusion Model (STARFM) 
Anderson et al. 2007 Introduction of the Evaporative Stress Index (ESI)  

2008 USGS announces free-and-open Landsat data policy  
2009 NASA approves build of TIRS for Landsat 8 

Gao et al. 2012 Introduction of the TIR Data Mining Sharpener (DMS) 
Cammalleri et al. 2013 STARFM applied to ET data fusion 
Colaizzi et al. 2014 Incorporates Penman-Monteith (PM) transpiration formula in TSEB 
Hain et al. 2017 Describes MODIS-based global ALEXI, launched at NASA-Marshall 
Holmes et al. 2018 Uses microwave-based LST in ALEXI to improve cloud tolerance 
Fang et al. 2019 Describes GET-D system operating at NOAA-NESDIS 
Nieto et al. 2019 Improves radiation modeling of row crops in TSEB 
Li et al. 2019 New soil resistance formulation proposed in TSEB for sparse canopies 
Guzinski et al 2020 Sen-ET for global applications using Sentinel 2 & 3 satellites 
Anderson et al. 2021 Demonstrates multi-source ET fusion to improve temporal sampling 
Melton et al. 2022 OpenET launched 
Burchard-Levine et al. 2022 Modifies TSEB to 3SEB for understory veg in tree/vine-grass systems 
Xue et al. 2022 GOES, Landsat, Sentinel-2, ECOSTRESS, and VIIRS data fusion 
Knipper et al. 2023 E & T partitioning with DisALEXI and PM over woody perennials  
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involving local pressure gradients. This difference in transport mecha
nisms for heat and momentum is often defined as a difference in effec
tive roughness length; namely, REX = [ln(zOM/zOH)]/[k u*], where zOH is 
the roughness length for heat transport and u* is the friction velocity; u* 
= u k/[ln(zU- dO)/zOM - ΨM ].Typically, zOH is approximated as a fraction 
of zOM (~ 0.1 zOM). There has been considerable effort to evaluate zOH or 
the ratio ln(zOM/zOH) = kB− 1 = k u* REX (Garrat and Hicks 1973; Kustas 
et al., 1989; Stewart et al., 1994) for different surfaces, employing TR(θ) 
observations and measurements of most of the variables in Eqs. (1) and 
(2). Here, B is a shorthand symbol representing the interfacial scalar 
transport coefficient proposed by Owen and Thompson (1963). 

When TR(θ) is used in Eq. (1) instead of TO with measured fluxes to 
estimate the roughness length for heat, the theoretical framework that 
defined zOH is modified and referred to as the “radiometric roughness 
length” zOR (e.g., Brutsaert and Sugita 1996). Studies evaluating zOR find 
significant scatter in resulting values and no single formulation can 
clearly explain the observed variation, which is especially evident for 
unclosed canopies with partial vegetation cover (e.g., Stewart et al., 
1994; Sun and Mahrt 1995; Kustas et al., 1996; Verhoef et al., 1997; 
Troufleau et al., 1997). Apparently too many factors affect zOR for it to 
be a useful working approach. Blyth and Dolman (1995) applied a 
two-source modeling approach that treats the land surface as a com
posite of soil and canopy elements and found the dependence of zOH 
(zOR) on a variety of surface conditions that included fractional vege
tation cover, soil and vegetation resistances, as well as on the available 
energy at the surface (difference between net radiation and soil heat flux 
or RN - G), and humidity deficit. A similar result was obtained by 
Lhomme et al. (1997) using the two-source model originally developed 
by Shuttleworth and Wallace (1985). Even more disconcerting was that 
observational and modeling studies show a dependency of zOR on radi
ometer viewing angle, θ (Vining and Blad 1992; Matsushima and Kondo 
1997), adding complexity to the retrieval of surface energy balance 
using radiometric temperature data acquired off-nadir. 

Some have examined approaches that avoid parameterization of zOR 
(e.g., assuming REX = 0 or a constant in Eq. (1)), and instead use semi- 
empirical formulations to account for the difference between TO and 
TR which, it is argued, can be more accurately applied to observational 
data (e.g., Lhomme et al., 1994; Chehbouni et al., 1996; Mahrt et al., 
1997; Sun et al., 1999). However, these formulations are typically 
calibrated with experimental data, and hence may be difficult to transfer 
a priori to different land cover types (Merlin and Chehbouni 2004). 

2.3. LST time differencing and integration with ABL 

A third line of research at this time addressed the issue mentioned 
earlier by Taconet et al. (1986) concerning the sensitivity of flux esti
mation to the accuracy of LST. One of the first efforts using time changes 
in radiometric surface temperature (DTR) to estimate land surface en
ergy balance characteristics was by Wetzel et al. (1984), who developed 
a statistical method using a surface/atmospheric boundary layer (ABL) 
model and a series of model runs to create a simulated surface temper
ature dataset and soil moisture retrieval algorithm. While the purpose of 
this algorithm was to evaluate soil moisture, using the 
energy-conserving surface/ABL model to generate a DTR dataset meant 
that the surface energy balance was implicit in the resulting soil mois
ture retrieval. It was shown that the method performed best over bare 
surfaces or with minimal vegetation and not as well over more densely 
covered vegetated surfaces. 

The concept of integrating a surface and mixed layer model with 
diurnal LST variations from geostationary satellites to derive daily sur
face energy fluxes was proposed by Diak and Stewart (1989) and Diak 
(1990). They developed a soil/surface/ABL model that was initialized 
with atmospheric profiles measured at radiosonde stations and com
bined with geostationary measurements of DTR to evaluate the surface 
energy balance (Bowen ratio, Bo: the dimensionless ratio of sensible to 
latent heat) at the radiosonde locations. These stations, distributed 

across the U.S., had surface conditions ranging from densely vegetated 
and very wet to arid, with sparse or little to no vegetation. Results were 
consistent with station climatology. This study also demonstrated the 
very high correlation between daytime surface sensible heating and the 
time change of the height of the ABL, both using the theoretical atmo
spheric model in a so-called “forward” mode (incident solar radiation 
amounts and values of Bo were varied and DTR generated) and also with 
comparisons of the ABL vertical structure from the radiosonde profiles to 
the model-driven ABL profiles forced by the actual DTR measurements. 

Similarly, the study of Diak and Whipple (1993) used DTR mea
surements, radiosonde atmospheric profiles, and the soil/surface/ABL 
model to evaluate both the Bowen ratio and an “effective” surface 
roughness length (zO) across the same radiosonde stations. Once again, 
zO and Bo results were consistent with the surface climatology of these 
stations. Diak and Whipple (1994) demonstrated that observed time 
changes in ABL height themselves are predictive of time-integrated 
sensible heat flux. Other studies of the era also established the utility 
of the combined use of DTR and surface/ABL structure to provide surface 
forcing and SEB closure (Gillies et al., 1997), the sensitivity of ABL 
growth to daytime sensible heating already having been well 
established. 

3. TIR challenges: from FIFE to La Londe 

3.1. FIFE 

The First ISLSCP (International Satellite Land-Surface Climatology 
Project) Field Experiment (FIFE) was conducted in 1987 in the Konza 
Prairie outside of Manhattan, Kansas (Sellers et al., 1988). The main goal 
of FIFE was to understand the role of the vegetated land surface in 
controlling the exchange of water, energy and carbon fluxes with the 
lower atmosphere or boundary layer and the utility of satellite obser
vations to quantify climatologically significant land surface parameters 
and fluxes. This was an interdisciplinary effort involving researchers in 
plant physiology, meteorology, micrometeorology, hydrology, and 
remote sensing. Some of the early TIR methods discussed above were 
tested using FIFE measurements, collected over a tall-grass prairie 
landscape. 

Many scientific gains were obtained from FIFE studies of the ABL, 
surface fluxes, TIR correction and calibration, surface radiance and 
biology, soil moisture, and integrative science (Sellers et al., 1988). 
However, some so-called “failures and unresolved issues” of solving the 
surface energy balance using satellite remote sensing were also identi
fied, as documented by Hall et al. (1992). One of these reported failures 
regarded the utility of LST in constraining heat fluxes, based on TR(θ) 
observations collected by a helicopter-mounted modular multispectral 
radiometer. Comparisons of TO derived from eddy covariance tower 
measurements of H (using Eq. (1)) with TR(θ) exhibited significant 
scatter. Moreover, Hall et al. (1992), using the observed TR(θ) directly in 
Eq. (1) without accounting for an excess resistance term, showed sig
nificant scatter with H measured at the eddy covariance towers (R2 =

0.45). They also pointed out that the study by Vining and Blad (1992), 
using ground-based TIR radiometers with varying viewing angles of the 
surface, was not able to identify a consistently optimal viewing angle 
where TR(θ) would approximate TO, as needed to compute H. The 
fundamental difference between TR(θ) and TO as defined by Eq. (1) led 
Hall et al. (1992) to conclude: “Unfortunately, from our research we also 
found that the remote estimation of surface temperature to useful ac
curacies is problematical; consequently, the use of thermal infrared 
measurements to infer sensible heat flux is probably not feasible to 
acceptable accuracies.” 

Questions regarding the utility of TIR stemming from FIFE and 
related studies were one reason why a thermal band sensor was origi
nally omitted from plans for the Landsat Data Continuity Mission being 
developed in the 1990s, a decision that was later reversed as TIR-based 
applications in water management started to flourish (Irons et al., 2012). 
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3.2. La londe workshop 

The conclusions from the Hall et al. (1992) paper regarding the 
utility of TIR remote sensing for surface energy balance estimation was a 
key factor leading to the La Londe Workshop in 1993. The goal of the 
workshop was to foster discussion of various methods using TIR obser
vations for deriving land surface states and fluxes from plant to field and 
regional scales, resulting in special issues in Agricultural and Forest 
Meteorology and in Remote Sensing Reviews. The overview paper by 
Carlson et al. (1995) summarized the key findings of the workshop. 

The workshop was organized around five topics addressing different 
issues (such as thermal emissivity, atmospheric correction, angular ef
fects) affecting the practical use of thermal remote sensing. One of the 
important outcomes of the workshop was an overview paper that out
lined a consistent terminology for thermal infrared remote sensing 
(Norman and Becker 1995). However, the most deeply discussed topic 
was the application of the excess resistance term (i.e. REX), which was 
recognized as essential for reconciling the differences between aero
dynamic and radiometric surface temperature. The workshop concluded 
that “Reasonably accurate calculations of surface energy fluxes can be 
made using infrared temperatures provided that appropriate values for 
the so-called extra resistance (expressed in terms of kB− 1) are used. It is 
understood, however, that the extra resistance is a theoretical artifact 
which is correctly applied only over homogeneous surfaces and not over 
a partial vegetation cover, especially those surfaces with distinctly 
separate vegetation and bare soil patches; the factor should be employed 
separately for vegetation and bare soil regimes.” In other words, it 
became clear that for partial canopy cover conditions having both bare 
soil and canopy temperatures in the radiometer footprint, the use of a 
single-source resistance formulation was tenuous without some type of 
calibration for this excess resistance term. 

This latter comment was implicitly suggesting that the resistance to 
heat transport from the soil and vegetation needed to be treated 

differently, and a conceptual framework for doing this with radiometric 
surface temperature was initially proposed at the workshop by John 
Norman in a schematic diagram (Fig. 1). This type of modeling scheme is 
related to the formulations using the Penman-Monteith equation 
developed by Shuttleworth and Wallace (1985) and later by Shuttle
worth and Gurney (1990), relating the soil and canopy aerodynamic and 
water vapor resistance to soil and canopy temperatures. It should be 
mentioned that Kustas (1990) also attempted to apply a two-source 
(two-layer) approach using radiometric temperatures to a sparse can
opy system. However, that two-source modeling scheme had an ad hoc 
approach for quantifying the soil evaporation component that proved to 
cause measurable uncertainty in the output of ET. The new formulation 
could effectively achieve a solution for both the energy and radiative 
temperature balance of the surface (see below). 

Another major topic of discussion at La Londe was the recognition 
that the uncertainty in LST from satellites, which may be on the order of 
2–3 K, can be problematic for surface energy balance estimates over 
landscapes having relatively small surface-air temperature differences. 
The time-differencing techniques described by Diak at the workshop 
offered a means to minimize the impact of LST uncertainties. This work 
set the stage for the application of Norman’s scheme at regional scales. 

3.3. The 8 challenges 

Following the La Londe Workshop, Kustas, Norman, and Diak 
continued their discussions on how to effectively use TIR data in a 
physically based model of surface fluxes that would be applicable over a 
wide range of landcover conditions. Kustas and Norman (1996) tabu
lated 8 Key Challenges in using satellite retrievals of LST, stemming from 
the La Londe workshop. These are summarized here:  

Fig. 1. Original notes on TSEB model structure, developed during the La Londe Workshop.  
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1. Radiometric surface temperature is not the same as the aero
dynamic temperature, TO, used in Eq. (1) to compute sensible 
heat.  

2. Surface gradient models are sensitive to errors in air temperature 
measurements, which are unlikely to be consistent with the sur
face temperature measurements.  

3. Radiometric surface temperature can have a strong dependence 
on view angle over partial vegetation cover.  

4. Thermal emissivity is only approximately known at the image 
pixel scale.  

5. Atmospheric and satellite corrections contribute significant errors 
to surface temperature.  

6. Remote observations are typically instantaneous – how to scale up 
to daily and longer timescales?  

7. Satellites with good temporal coverage tend to have large 
(potentially heterogeneous) pixels (and conversely, higher reso
lution sensors tend to have lower temporal revisit).  

8. Satellite TIR observations of the Earth’s surface are limited to 
clear-sky conditions. 

The TSEB family of models was developed in response to these 8 
Challenges, building on the new collaborations that emerged from La 
Londe. 

4. . TSEB modeling frameworks 

4.1. TSEB: the Two-Source Energy Balance model 

The alternative approach to modeling the surface energy fluxes using 
LST as the boundary condition suggested by Norman (Fig. 1) considers 
the radiometric surface temperature (TR) to be a composite of the soil 
and vegetation canopy temperatures (Ts and TC , respectively), defined 
by the fractional vegetation cover (fC ) and the thermal radiometer 
viewing angle (θ), namely: 

TR(θ) ≈
[
fC(θ)T4

C + (1 − fC(θ))T4
S

]1
4 (3) 

This addresses Challenge 3, accounting for the fact that a partially 
vegetated scene will appear cooler (more dominated by vegetation) 
when viewed off-nadir. Norman et al. (1995b) gave a simple exponential 
expression for estimating fC(θ) based on the leaf area index and radi
ometer viewing angle, which was further modified for vegetation 
clumping effects (Anderson et al., 2005). The partitioned soil and can
opy temperatures are used in estimating the energy balance of the soil 
and vegetated canopy sources: 

RNS = HS + LES + G (4)  

RNC = HC + LEC (5)  

where RNS is net radiation at the soil surface, and RNC is net radiation 
divergence within the vegetated canopy layer, HC and HS are canopy and 
soil sensible heat flux, respectively, LEC is the canopy latent heat flux, 
LES is soil latent heat flux, and G is the soil heat conduction flux. 
Weighting of the heat flux contributions from the canopy and soil 
components is governed by the partitioning of the net radiation between 
soil and canopy and by the resistance terms described below (see Kustas 
and Norman, 1999a). The net radiation partitioning between the soil 
and vegetation canopy was originally formulated by Norman et al. 
(1995b) using the Beer’s law approximation, but was later modified to 
accommodate differences in shortwave and longwave radiation diver
gence through the canopy layer (Kustas and Norman 2000) and radia
tion divergence in row crops (Colaizzi et al., 2012a). A conceptual 
diagram of the TSEB is shown in the central panel of Fig. 2. 

Norman originally suggested a parallel resistance formulation for the 
heat flux computation from the soil and canopy surfaces (Fig. 1), but also 
developed a series resistance approach, allowing interaction between 
the soil and canopy fluxes, that has been more commonly adopted 
(Fig. 2b). For the sensible heat flux from the canopy (HC) and soil (HS), 
the series gradient-resistance equations are as follows: 

HC = ρCP
TC − TAC

RX
(6)  

HS = ρCP
TS − TAC

RS
(7) 

Combining HC and HS for the total H yields: 

H = ρCP
TAC − TA

RA
(8)  

where the variable TAC is the temperature in the canopy-air space and is 
associated with the aerodynamic temperature, T0. The variable RX is the 
total boundary layer resistance of the complete canopy of leaves, RS is 
the aerodynamic resistance to sensible heat exchange from the soil 
surface, and RA is aerodynamic resistance as given in Eq (1). The original 
resistance formulations are described in Norman et al. (1995b). Since 
then, there have been revisions mainly for the RS term (Kustas and 
Norman 1999b, 2000; Kustas et al., 2016; Li et al., 2018, 2019). These 
formulations for RS and RX essentially account for the excess resistance 
parameterizations defined in Eq. (1), namely REX, and are a more 
physically based representation of the soil and vegetated canopy aero
dynamic properties influencing the rate of turbulent heat exchange at 
given soil and canopy temperatures and their gradient with the 
canopy-air and overlaying air temperature (Challenge 1). 

Fig. 2. Schematic diagram of the TSEB (b), ALEXI (a and b), and DisALEXI (c) models.  
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To achieve a closed-form solution to the set of TSEB equations, a 
method for estimating the plant transpiration under the inferred stress 
conditions was required. Norman et al. (1995b) proposed the use of the 
Priestley-Taylor formula for a first guess at an unstressed value of LEC: 

LEC = αPTCfG
Δ

Δ + γ
RNC, (9)  

where αPTC is the Priestley-Taylor coefficient (Priestley and Taylor 
1972), and was recommended to be used for row crops by Tanner and 
Jury (1976). In Norman et al. (1995b) αPTC was set to an initial value of 
1.3. The variable fG is the fraction of green vegetation, Δ is the slope of 
the saturation vapor pressure versus temperature curve, and γ is the 
psychrometric constant (~0.066 kPa C− 1). Soil evaporation is computed 
as the residual to the overall energy budget: 

LES = RNC − G − H − LEC (10) 

Under stress conditions, the TSEB can iteratively reduce αPTC from its 
initial value by enforcing non-negative LES midday, as described by 
Kustas and Anderson (2009). 

This value of initial αPTC = 1.3 has been found to work reasonably 
well for most crops and natural vegetation (Agam et al., 2010), but there 
have been exceptions; for example, under well-watered partial canopy 
cover conditions in advective environments where a higher value up to 
an αPTC ~2 may be more appropriate due to high vapor pressure deficits 
and temperatures (Castellvi et al., 2001; Kustas and Norman 1999b). 
Nominal adjustment of the initial value of αPTC and estimating canopy 
green fraction from remote sensing for different biomes has been fairly 
successful in oak savannas (Andreu et al., 2018b, a), the arctic tundra, 
and boreal forest (Cristóbal et al., 2017; 2020), and in coniferous and 
deciduous forests and semiarid grasslands (Guzinski et al., 2013). 

There have been efforts to improve the canopy transpiration algo
rithm by accounting for plant physiological responses to atmospheric 
forcing (i.e., vapor pressure deficit). These have included a Pen
man–Monteith (PM) based formulation for Eq. (9) (see (Colaizzi et al., 
2012b, 2014, 2016a), or light-use efficiency (LUE) parameterization 
that enables estimation of coupled transpiration and carbon assimilation 
fluxes (Anderson et al., 2008; Houborg et al., 2011; Schull et al., 2015). 
More recently, Kustas et al. (2022) examined an alternative minimum 
stomatal resistance formulation, dependent on a VPD formulation 
derived from the studies of Monteith (1995) and Leuning (1995), and 
applicable to partial canopy conditions following the 
Shuttleworth-Wallace sparse canopy model. Results from each of these 
studies suggest there is potential improvement in ET estimation, but that 
the most significant impact is a potential improvement in the parti
tioning between LES and LEC (e.g., Colaizzi et al. 2016a; Knipper et al., 
2023). 

The soil heat flux, G, was originally estimated as a fixed fraction (0.3) 
of the net radiation at the soil surface based on work of Kustas and 
Daughtry (1990). However, this use of a constant ratio is only applicable 
for a few hours around solar noon; over the full daytime period, it can 
yield unreliable results, particularly for partial canopy cover conditions 
(Colaizzi et al., 2016b, 2016c). Other studies have used a time-varying 
sinusoidal fraction, accounting for the hysteresis between G and RNS 
(Santanello and Friedl 2003). For vineyards, with strongly clumped 
canopy structure and large row spacing, Nieto et al. (2019) found the 
G/RNS value could be better approximated for the daytime period using 
a double asymmetric sigmoid function. Wetlands and flooded crop fields 
(e.g., rice paddies) can require a higher nominal heat storage-to-net 
radiation ratio (~0.6) to account for the large heat capacity of water 
(Anderson et al., 2018). 

4.2. ALEXI: the Atmosphere-Land Exchange Inverse model 

One challenge in applying the TSEB over large areas (i.e., using TIR 
satellite imagery to obtain gridded LST values) lies in defining 

reasonable air temperature boundary conditions. H (and therefore LE by 
energy budget residual) is very sensitive to the prescribed surface-to-air 
temperature gradient (Norman et al., 1995a), so errors in both TA 
(Challenge 2) and LST (Challenges 4 & 5) can translate to significant 
errors in energy budget partitioning. 

The time-differencing and ABL-coupling approaches proposed by 
Diak and Whipple (1993) aims to reduce model sensitivity to error 
sources in both LST and TA. The Atmosphere-Land Exchange Inverse 
(ALEXI) model (Anderson et al., 1997; 2007b; Mecikalski et al., 1999) 
builds off the Diak and Whipple work, with significant improvements to 
the description of the soil and vegetation components of the land surface 
using the TSEB and satellite retrievals of fc. Additionally, the computa
tionally intensive soil/surface/ABL model used in Diak and Whipple 
(1993) was replaced with a simpler parameterization of ABL growth to 
facilitate modeling at higher horizontal spatial resolution and with 
larger areal coverage. 

The standard version of ALEXI uses LST retrieved from geostationary 
satellites at two times during the morning ABL growth period, typically 
at t1=sunrise+1.5 h and t2=local noon-1hr. TSEB is applied at those two 
times with initial guesses at air temperature obtained from gridded 
reanalysis datasets, and corresponding instantaneous sensible heat 
values are derived. Assuming a linear rise in H between t1 and t2, a time- 
integrated influx of sensible heat to the ABL is computed. Using a simple 
slab model of ABL development (McNaughton and Spriggs 1986), the 
rise in boundary layer height (zi) and potential air temperature in the 

mixed layer (θmi = TAi ∗
[

100
p

]R/cp
) resulting from this sensible heat flux is 

computed as: 

ρcp(z2θm2 − z1θm1) =

∫t2

t1

H(t)dt + ρcp
∫z2

z1

θs(z)dz (11)  

based on a near-dawn potential temperature profile (θs(z)), and new air 
temperature boundary conditions TA1 and TA2 are supplied to the TSEB 
using a nudging approach (Fig. 2a). This surface-ABL model iteration is 
continued until the air temperature boundaries do not significantly 
change. As noted by Anderson et al. (1997), the benefit of this approach 
is that H (and therefore LE) is primarily sensitive to time changes in LST, 
so time-invariant components in retrieval biases (due, e.g., to atmo
spheric and emissivity corrections) are removed. In addition, the air 
temperature boundary condition is not pre-defined via independent 
meteorological datasets but rather dynamically derived at the blending 
height interface between the surface layer and ABL modeling systems, 
assumed to be at 30–50 m above ground level. This boundary condition 
therefore responds to local forcing from spatial variability in both sur
face and atmospheric conditions. 

Initial development with ALEXI used LST time change information 
from the Geostationary Operational Environmental Satellites (GOES) 
over the contiguous U.S. (CONUS) (Mecikalski et al., 1999; Anderson 
et al., 2007b), and Meteosat Second Generation (MSG) over Africa 
(Yilmaz et al., 2014) and Europe. Geostationary satellites are a valuable 
yet underutilized resource in Earth remote sensing (Khan et al., 2021). 
Not only do they provide diurnal information on LST, but also insolation 
maps (built on visible channel data) that are consistent with those LST 
patterns (Anderson et al., 2019) – a major benefit in regional surface 
energy balance, matching radiation load with thermal emission. Other 
primary inputs to ALEXI are obtained from moderate resolution 
polar-orbiting imagers (e.g., LAI, albedo) and reanalysis weather data
sets (e.g., wind speed, temperature profile). A landcover map is used to 
assign surface roughness and canopy optical properties. 

Instantaneous retrievals of LE at t2 (LE2) are upscaled to daily and 
longer totals by conserving a scaled ratio with a flux that can be esti
mated hourly using standard meteorological datasets. Several scaling 
fluxes have been tested through the years, including available energy 
(FEVAP), reference ET (FRET), and solar radiation (FSUN). Of these, FSUN 
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has generally been found to be most conservative (least noisy) from day- 
to-day over a wide range of conditions (Cammalleri et al., 2014b), 
facilitating outlier removing, smoothing, and gap-filling of pixel-based 
timeseries as described by Anderson et al. (2013). FSUN is currently 
used to generate gap-filled daily ET (ETd) maps at 4-km resolution over 
CONUS (see Fig. 3), while FRET has proven more effective in 
drought-monitoring applications (Anderson et al., 2013). 

It is worth noting that a simplified form of a temperature- 
differencing approach based on TSEB, called the Dual-Temperature- 
Difference (DTD) scheme, was developed for routine applications 
using continuous ground-based or geostationary satellite observations of 
LST (Norman et al., 2000; Kustas et al., 2001). The utility of DTD using 
proximal (Kustas et al., 2012; Vanderleest and Bland 2016) and drone 
LST observations (Nieto et al., 2019) or from satellite observations such 
as MODIS (Guzinski et al., 2013) has shown potential but has not been 
extensively tested. 

4.3. DisALEXI: ALEXI disaggregation approach 

As stated in Challenge 7, satellites with good temporal coverage tend 
to have lower spatial resolution. While geostationary satellite technol
ogy has improved significantly in quality and spatiotemporal resolution, 
the thermal band sensors are still too coarse to discern individual farm 
fields and landcover/management units embedded in a heterogeneous 
landscape. To unambiguously connect satellite retrievals with human 
activities and natural phenomena occurring on the ground, achieving 
this threshold of resolution (< 100 m) is a necessity. To reach this spatial 
threshold while still retaining the regional benefits afforded by LST 
time-differencing, an ALEXI downscaling approach (DisALEXI) was 
developed (Figs. 2c, 3), using the TSEB soil-plant-atmosphere coupling 
network to guide redistribution of ALEXI ET fluxes at a sub-pixel level 
(Norman et al., 2003; Anderson et al., 2004). DisALEXI has evolved over 
the years to accommodate new sources of TIR inputs and to be more 
robust over a wider range of conditions. Here, we describe the most 
recent implementation (see e.g., Sun et al., 2017). 

In DisALEXI, the TSEB is run in a gridded mode using LST and LAI 
from higher resolution satellites (e.g., Landsat, MODIS, VIIRS) or 
airborne systems, and an initial guess at blending height air temperature 
from reanalysis. Upscaling to the daily timescale using FSUN, TSEB ETd is 
aggregated over each ALEXI pixel area (〈TSEB ETd〉) and compared to 
ALEXI ETd. The air temperature boundary over a given ALEXI pixel is 
nudged downward if 〈TSEB ETd〉 exceeds ALEXI ETd (thereby increasing 
the surface-to-air temperature gradient and sensible heat flux), and up- 

adjusted if 〈TSEB ETd〉 is too low. This nudging compensates for po
tential biases between the coarse and higher resolution LST data, e.g., 
due to atmospheric or angular effects, or differences in acquisition time 
(Anderson et al., 2021). This process iterates until 〈TSEB ETd〉 matches 
ALEXI ETd at the ALEXI pixel scale (Fig 2c). A final spatial smoothing of 
the resultant air temperature field is performed to eliminate disconti
nuities in the flux map at ALEXI pixel boundaries. The result is a map 
that preserves ALEXI ETd at the coarse scale, but represents subpixel 
variations in energy budget partitioning consistent with the 
high-resolution remote sensing information on LST and vegetation cover 
as interpreted by the TSEB. 

The key inputs to DisALEXI are coarse-resolution maps of ALEXI ETd, 
along with LST and surface reflectance (for LAI and albedo) at moderate 
or high spatial resolution, and the same near-surface meteorological 
data used in ALEXI. With moderate resolution polar-orbiting sensors 
(MODIS, VIIRS), we typically have sufficient temporal coverage (near 
daily overpass) to gap-fill using the techniques described above for 
ALEXI. In this case, however, ALEXI ETd is used as the scaling flux 
(FALEXI) to ensure temporal consistency between the ET timeseries (Sun 
et al., 2017). Higher resolution thermal sensors (e.g., Landsat) generally 
have sampling that is temporally too sparse (8–16 day revisit) to reliably 
interpolate between clear-sky retrievals, especially in areas/times with 
persistent cloud cover. At this scale, a multi-sensor fusion approach is 
beneficial (see below). 

5. Tools for improving spatiotemporal resolution 

Challenges 7 and 8 highlight the reality that it is often difficult to 
obtain adequate temporal sampling for robust ET mapping at high- 
resolution with a single satellite thermal sensor, especially in humid 
regions and in landscapes undergoing rapid changes. Two approaches 
have been used to address these challenges: 1) augmenting Landsat 
sampling with other Landsat-like sensors; and 2) fusing Landsat-like 
sparse ET timeseries with moderate resolution temporally dense 
(daily) timeseries. 

5.1. Thermal sharpening 

While medium-to-high resolution harmonized multi-source surface 
reflectance (SR) datasets are available with good temporal frequency (e. 
g., the Harmonized Landsat-Sentinel (HLS) and Planet datasets), this is 
not the case with TIR datasets used to retrieve LST. Several Landsat-like 
thermal sensors are currently in operation (e.g., ECOsystem Spaceborne 

Fig. 3. Examples of 4-km ALEXI ETd over CONUS (background) and 30-m maps generated with DisALEXI, highlighting application areas described in Section 6.  
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Thermal Radiometer Experiment on Space Station (ECOSTRESS), or the 
Visible Infrared Imaging Radiometer Suite (VIIRS) I5 thermal band) and 
in planning or development (e.g., the Surface Biology-Geology (SBG), 
Trishna, and Land Surface Temperature Monitoring (LSTM) missions). 
While there is coordination between space agencies to improve 
harmonization of future thermal missions, each of these platforms col
lects data at slightly different spatial resolutions, and the TIR images are 
not directly interoperable (Table 2; Fig. 4). Even the thermal data 
collected by the Landsat series itself vary in resolution from 60 to 120 m 
(L7-L5). 

The first step in thermal harmonization is to bring these data sources 
to a common resolution via sharpening (spatial downscaling), typically 
achieved using relationships with SR bands. 

The Data Mining Sharpener (DMS) method (Gao et al., 2012) en
hances spatial details in TIR or LST maps using information from the SR 
bands, which are usually imaged at finer resolution. DMS establishes a 
non-linear relationship between LST and SR bands at a coarse spatial 
resolution through data mining (or machine learning), then predicts LST 
at finer resolutions using the original SR data at their native resolution. 
Residuals between observed and predicted LST values are interpolated 
and redistributed through an energy conservation step, ensuring that the 
sharpened image will reaggregate to the observed image at some spatial 
scale. In the DMS implementation, a global model of LST and SR learned 

from the entire image and local models trained on smaller subsets of the 
image are combined based on their accuracies. Gao et al. (2012) tested 
the DMS using multiple SR bands over various landscapes and found it to 
be superior to the original TSEB thermal sharpening technique using 
NDVI alone (e.g., Kustas et al., 2003; Agam et al., 2007). 

Xue et al. (2020) describe spatial harmonization to 30-m resolution 
of sub-km-resolution TIR data sources including Landsat (60–120 m), 
ECOSTRESS (nominally 70 m), and VIIRS I5 band (375 m) – all sharp
ened using 30-m SR data from HLS (Fig. 4). They describe modifications 
to the original DMS required in cases where TIR and SR data are 
collected on different platforms, including relaxation of scale of energy 
conservation (aggregation scale at which the sharpened image is 
required to match the unsharpened image) to accommodate potential 
errors in relative registration between the two sets of input imagery. 
They also note the importance of using TIR and SR data collected on the 
same (or very proximal) date in DMS. Any time displacement between 
these inputs may add noise to the sharpening process relating to surface 
changes in the interim (e.g., vegetation growth/senescence, harvest, 
rainfall/irrigation, etc.). Their study provides the basis for developing an 
operational thermal sharpening prototype to routinely generate 
high-frequency 30-m TIR data based on multi-source data. 

Table 2 
List of past, current, and planned Landsat-like thermal missions, along with sensor characteristics and source of complementary medium-resolution surface reflectance 
data.  

Platform # TIR bands Resolution Revisit SR source Launch date Mission end   
(m) (days) (med res)   

Landsat 4 1 120 16 On-board 1982 2001 
Landsat 5 1 120 16 On-board 1984 2013 
Landsat 7 1 60 16 On-board 1999 2022 
Landsat 8 2 100 16 On-board 2013  
Landsat 9 2 100 16 On-board 2021  
Landsat Next 5 60 6 On-board 2030  
ECOSTRESS 5 70 ~4 HLS 2018  
VIIRS I5 1 375 ~1 HLS 2011  
Trishna 4 60 3 On-board 2025  
SBG 6 60–90 3 On-board 2027  
LSTM-A & B 5 50 2 to 3 On-board 2029/2031   

Fig. 4. Maps of LAI (first column), LST at native resolution (second column), sharpened LST (third column), and daily ET retrievals (fourth column) from DisALEXI 
applied to ECOSTRESS (top row), VIIRS I5 band (middle row), and Landsat (bottom row) LST sharpened to 30 m using surface reflectances from HLS over a region in 
the CA Central Valley. ET difference maps (ECOSTRESS (VIIRS) minus Landsat) are shown in the top (middle) panel of the fifth column. The acquisition time of the 
LST data is also listed. (Adapted from Xue et al., 2022). 
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5.2. Data fusion 

Given multi-source spatially harmonized LST data layers, Challenge 
6 poses the question of effective temporal interpolation between ETd 
retrieved at clear pixels within these layers. With sufficient sampling, a 
scaling flux like reference ET or insolation may suffice; however, expe
rience has shown that this approach can result in severe artifacts during 
cloudy seasons when the scaling flux ratio changes significantly between 
clear-sky image collects. Alternatively, since ALEXI disaggregation en
ables development of consistent ET timeseries at multiple scales, we can 
use actual ET at coarser resolution to guide the gap-filling via data 
fusion. 

The Spatial Temporal Adaptive Reflectance Fusion Model (STARFM) 
developed by Gao et al. (2006) combines finely detailed yet infrequent 
images with coarser yet more frequently available images, resulting in 

time series images with high spatial and temporal resolution. The 
approach uses the information acquired from one or two pairs of 
images—each comprising fine-resolution and coarse-resolution images 
acquired on the same date. Subsequently, this information is used to 
predict fine-resolution images on a different date using the available 
coarse-resolution image on that day. The embedded weighting strategy 
in STARFM considers temporal, spectral, and spatial similarities existing 
between the fine-resolution and coarse-resolution images. This consid
eration effectively transfers changes from the pair dates to the prediction 
dates at fine resolution. Initially tested with surface reflectance and 
vegetation indices, STARFM subsequently demonstrated success in the 
fusion of ET timeseries from Landsat and MODIS to create daily 30-m ET 
datasets over agricultural and forested settings (Cammalleri et al., 2013; 
C. 2014a; Semmens et al., 2016; Sun et al., 2017; Yang et al., 2017a; 
2017b, 2018). 

Fig. 5. Top: Schematic diagram illustrating the workflow for the multi-source ET data fusion system. Bottom: Time series comparison between measured and 
modeled daily ET obtained from multi-source data fusion at a GRAPEX vineyard flux site in the California Central Valley. (Adapted from J. Xue et al., 2022). 
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Even with data fusion, in some cases Landsat alone is not sufficient to 
anchor the temporal sampling at high resolution, and important features 
in the seasonal water use curve can be missed. Anderson et al. (2021) 
and Xue et al. (2021, 2022) tested augmentation of STARFM data fusion 
using multisource ET data generated with DisALEXI applied to Landsat, 
ECOSTRESS, and VIIRS I5 band TIR imagery, all sharpened to 30 m. In 
general, they found good consistency between the multi-source ET re
trievals, given limits on view angle and time of acquisition (Fig. 5). The 
improved temporal sampling from the combined Landsat-like TIR sen
sors was beneficial during periods of persistent cloudiness and rapid 
surface changes. Still, Landsat outperformed ECOSTRESS and VIIRS I5 
in terms of agreement with tower fluxes. This is likely due to 1) the 
higher native resolution of the Landsat TIR imagery, and 2) simultaneity 
and better co-registration of Landsat SR and TIR inputs to both DMS and 
DisALEXI. These are important considerations for future ET mapping 
missions. 

6. Research and applications using TSEB 

6.1. Drought and drought impacts 

ET is an important measure of vegetation health that links the car
bon, energy, and water cycles in terrestrial ecosystems. In the absence of 
other stressors such as disease, the amount of water transpired by 
vegetation is controlled by the biophysical properties of the plant spe
cies, how much soil moisture is available to the plants, and atmospheric 
factors that determine the atmospheric evaporative demand experi
enced by the vegetation. If root zone soil moisture is non-limiting and 
the plants are able to transport sufficient water to meet the atmospheric 
demand, they will generally maintain transpiration; however, once soil 
moisture falls below a certain threshold, plants will limit water usage by 
closing their stomata. This transition to a moisture-limited regime will 
lead to a decrease in ET and evaporative cooling and the appearance of 
moisture stress in vegetation as evidenced by enhanced canopy tem
peratures (Moran 2003). 

Thermal-based ET models like TSEB/ALEXI/DisALEXI are well- 
suited for capturing these early signals of stress onset. The Evapora
tive Stress Index (ESI) depicts standardized anomalies in the reference 
ET fraction (FRET: the ratio of the actual to reference ET) relative to a 
baseline period, using actual ET estimates from ALEXI (Anderson et al., 
2007a, 2011, 2013). Normalization by reference ET serves to reduce 
sensitivity of ESI to atmospheric drivers of actual ET (which are well 
captured by the Evaporative Demand Drought Index; EDDI; Hobbins 
et al., 2016), focusing ESI on plant and soil moisture drivers of ET. While 
EDDI highlights the potential for drought development, ESI reveals 
drought impacts actualized on the ground. 

Several studies in the U.S. and internationally have established ESI as 
an effective monitor of drought-induced vegetation stress (Anderson 
et al., 2015; Otkin et al. 2016, 2019 ) and soil moisture anomalies (Hain 
et al., 2009, 2011; Otkin et al., 2018c; Walker 2023). ESI closely tracks 
spatiotemporal patterns in crop and topsoil moisture conditions 
collected at the county scale by observers reporting to the National 
Agricultural Statistics Service (NASS), a valuable “ground-truth” geo
spatial dataset recording agricultural drought impacts (Fig. 6). In 
particular, the ESI has proved to be a valuable tool for tracking the onset 
and evolution of flash drought events, which are characterized by rapid 
intensification over multi-week periods (Otkin et al., 2018b, 2022). 
Relative to many other optical vegetation indices, the ESI often provides 
early warning of incipient flash drought conditions because an increase 
in LST due to reduced ET often occurs before visible degradation in the 
vegetation canopy (e.g., Anderson et al., 2013; Fig. 6). Otkin et al. 
(2013, 2016, 2019) showed that rapid decreases in the ESI occurred 
during notable flash drought events across the U.S.. The ESI-based rapid 
change index (RCI) depicts time-accumulated moisture stress change, 
with larger RCI values associated with an increased risk for drought 
development over subsequent weeks (Otkin et al., 2014, 2015a). These 
tools have been presented at focus group meetings with farmers and 
ranchers, with survey feedback indicating good utility for tracking 
on-the-ground conditions (Otkin et al., 2015b, 2018a; Haigh et al., 
2019). 

Fig. 6. Left four columns: Monthly maps of U.S. Drought Monitor (USDM) drought class, Evaporative Stress Index (ESI), and standardized anomalies in National 
Agricultural Statistics Service (NASS) county-level records of topsoil moisture condition and the NDVI-based Vegetation Drought Response Index (VegDRI) for April- 
September 2012. Right columns show change in USDM class and ESI between monthly reports, expressed as normalized anomalies. (Adapted from Anderson 
et al., 2013). 
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As an integrative indicator of crop health, reflecting both crop con
dition and soil moisture status, ESI can be a useful predictor of crop 
yields and a warning of reductions in productivity due to water stress. 
ESI at 4–10 km from ALEXI has been shown to correlate well with crop 
yields in the U.S. (Mladenova et al., 2017), Brazil (Anderson et al., 
2016b), and the Czech Republic (Anderson et al., 2016a; Jurečka et al., 
2021). More recently, Yang et al. (2018, 2021a) examined yield re
lationships with ESI developed at 30-m using fused Landsat-MODIS ET 
timeseries over sites in the U.S. Corn Belt. They demonstrated value in 
resolving vegetation stress at the field scale, effectively unmixing signals 
from multiple landcovers (different crops, forest, riparian vegetation, 
etc.) that can jointly contribute to a blurred moisture response at the 
ALEXI pixel scale. For corn crops, correlations between 30-m ESI and 
yield peaked at around tasseling, a stage of high sensitivity to soil 
moisture deficiencies. 

DisALEXI ESI at 30-m resolution has also been used to study impacts 
of drought stress on forested lands, down to scales approaching that of 

individual tree crowns. In a managed pine plantation in North Carolina, 
Yang et al. (2020) found higher impact of drought on water use and tree 
growth rate in young pine stands than in more mature stands. The 
generally mild impact of drought on stand water use observed in this 
case might relate to the relatively shallow groundwater, which can 
mitigate the drought impacts on older trees with deeper root systems. In 
contrast, over a temperate forest with thin soil layers in Missouri, Yang 
et al. (2021b) found stronger impact of drought on forests expressed in 
the dynamics of fused DisALEXI 30-m FRET timeseries (Fig. 7). In this 
study area, ESI showed good temporal agreement with pre-dawn leaf 
water potential measurements, particularly during drought years. Yang 
et al., demonstrated a close a relationship between forest water use and 
tree die-off after drought years, optimized when the FRET anomaly was 
averaged over the two years prior to the mortality event. This suggests 
that the condition of the forest before the drought influenced tree 
mortality, as well as the stress experienced during the drought itself. 

6.2. Water use monitoring and management 

6.2.1. Vineyards and orchards 
The ability to estimate water use at field scale without a priori 

knowledge of additional (non-rain-sourced) water applied makes TIR- 
derived ET a valuable asset for water management over irrigated land
scapes (Anderson et al., 2012). In the case of the TSEB, this is especially 
relevant for highly structured crops where bare soil exposure contributes 
significantly to the energy budget and composite radiometric tempera
ture signal, necessitating a two-source modeling scheme. 

Evaluating and improving the TSEB for irrigation management in 
structured canopies was a major focus of the Grape Remote sensing 
Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) 
conducted in California vineyards, a partnership involving E & J Gallo, 
the USDA, and multiple federal agencies and academic institutions 
(Kustas et al., 2018). In California, vineyards require specialized irri
gation management due to the use of deficit irrigation for improved 
grape quality, exacerbated water scarcity from ongoing droughts, and 
complex trellis designs that hinder straightforward satellite monitoring. 
Three key questions were posed by E & J Gallo partners: 1) when is the 
optimal spring start date for irrigation?; 2) what is the weekly water 
volume needed to achieve target stress levels?; and 3) can the model 
differentiate total ET between vines and cover crops? The perception is 
that maximum water savings lies in delaying irrigation while the soils 
dry out from springtime rains, and thereafter applying only the water 
needed to achieve the target vine stress levels. 

The GRAPEX project officially started in 2013 with the installation of 
eddy covariance flux towers in two vineyards in San Joaquin County, 
California (SLM in Fig. 8). To better capture the range in California 
viticultural practices, trellis designs, and climate conditions, the 
GRAPEX project strategically expanded in 2017 to include vineyards in 
Sonoma and Madera Counties (Fig. 8; BAR and RIP, respectively). 
Knipper et al. (2020) conducted a multi-year evaluation of DisALEXI 
daily ET across these collective sites and reported an RMSE value of 0.9 
mm d− 1. In 2018, a synthetic stress test was conducted in a Variable Rate 
Drip Irrigation (VRDI) equipped vineyard by withholding irrigation to 
induce short-term and differential stress across the block. Knipper et al. 
(2019) demonstrated that fused Landsat-MODIS DisALEXI timeseries 
were able to detect the induced stress, while “business-as-usual” moni
toring techniques using only NDVI were not. Since 2018, the DisALEXI 
system has provided near-real-time daily ET estimates for various 
vineyards. These estimates are integrated into a weekly irrigation 
dashboard for growers and into the Vineyard Irrigation Data Assimila
tion (VIDA) model to determine rootzone soil moisture at 30-m resolu
tion (Lei et al., 2020; Chen et al., 2022). 

Inspired by the success of GRAPEX, USDA ARS initiated the Tree crop 
Remote sensing of Evapotranspiration eXperiment (T-REX) in 2021 
(Bambach et al., 2024), partnering with the Almond Board of California, 
Olam Food Ingredients, and other institutions. Similar to GRAPEX, 

Fig. 7. USDM and multi-scale ESI at 4-km and 30-m over the MOFLUX 
experiment site in Missouri (location indicated in the top row). The dots 
represent transects along which tree mortality was recorded on the ground 
(Adapted from Yang et al., 2021b). 
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T-REX focuses on optimizing water use and carbon sequestration in 
California’s perennial tree crops. An initial evaluation by Bambach et al. 
(2023) reported mean absolute errors (MAE) of 0.8 to 1.1 mm d− 1 for 
fused, 30-m daily ET in comparison with flux observations in T-REX 
almond orchards in Solano, Yolo, and Madera Counties, CA (VAC, WWF, 
and OLA sites, respectively; Fig. 8). In 2023, T-REX expanded its scope to 
include a regenerative almond orchard and four olive orchards, sup
ported by California Olive Ranch. 

The GRAPEX/T-REX projects provided a unique opportunity to 
extend the TSEB model to data from uncrewed aerial vehicles (UAVs, 
also called drones) towards precision agriculture activities. The 
AggieAir UAV Program at Utah State University (https://uwrl.usu.edu/ 
aggieair/) participated in these experiments since 2014, using both 
vertical take-off and landing (VTOL) and fixed wing aircrafts (Fig. 9). 
These systems provide high-resolution (cm-scale) imagery in multiple 
spectral bands (blue, green, red, near infrared, TIR) as well as a 

description of the canopy geometry (height, area, volume) from the 
UAV-derived digital surface model and point cloud. At these fine scales, 
canopy and soil temperatures can be measured directly, enabling a 
version of the TSEB (TSEB-2T; Nieto et al., 2019) that does not require 
initial assumptions about potential canopy transpiration (e.g., via PT or 
PM approximations; Eq. (9)). The spatial detail and canopy structure 
information from the UAVs also facilitate investigation of the impacts of 
shadowing on surface temperature and surface reflectance retrievals at 
the Landsat pixel scale (30 m or larger), which can be significant in 
vineyard and orchard systems and dependent on time of image acqui
sition and row direction (Aboutalebi et al., 2019) (Fig. 9). 

Implementations of TSEB models in vineyards and orchards have 
also been conducted outside of the U.S. using UAV and satellite imagery 
(Minacapilli et al., 2009; Cammalleri et al., 2010; Andreu et al., 2015; 
Corbari et al., 2015). 

Fig. 8. Maps of 30-m monthly ET (April – September, 2022) over GRAPEX and T-REX intensive study sites (outlined in black).  
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6.2.2. Forest management 
Ecosystem services in provisioning water are an important consid

eration in the management of forested systems, and remotely sensed ET 
can provide historical and spatially explicit information on the impacts 
of different management activities on forest water yield. Over the 
managed pine plantation in North Carolina mentioned in Section 6.1, 
Yang et al. (2020) analyzed stand recovery after thinning and found a 
clearer trend in water use change than in NDVI change. Related work 
was conducted in the New Jersey Pinelands, quantifying rates of ET 
recovery after thinning and seed tree harvest and the variable impacts of 
prescribed burning on ET relating to fire severity (Isaacson et al., 2023). 
Comparisons with flux tower observations from the US-Slt Ameriflux site 
yielded MAE of 0.8 mm d− 1. The ET fusion system provided adequate 
spatial and temporal resolution to capture changes in water use at the 
scale of management, suggesting these data have value in predicting 
watershed water yield response under different forest management 
scenarios. 

6.3. Data assimilation and model diagnostic applications 

In contrast to ALEXI/TSEB, prognostic land surface models (LSMs) 
neglect satellite-based LST retrievals and instead solve the surface water 
and energy balance using meteorological forcing data and a bottom-up 
parameterization of the relationship between land surface states (e.g., 
soil moisture and temperature) and surface water/energy fluxes (e.g., 
ET, infiltration, and recharge). Critically, ALEXI/TSEB and LSMs pro
vide a partially overlapping set of outputs (e.g., ET) while relying on 
fundamentally different approaches for capturing the impact of water- 
stress on surface fluxes. In place of LST, LSMs require accurate mea
surement (or forecasting) of precipitation to track temporal soil mois
ture variations and detect the onset of water stress. 

This mutual independence opens several opportunities. For example, 
due to their fundamentally different approaches for solving the surface 
energy balance, energy flux errors in prognostic LSMs are typically in
dependent of comparable ALEXI/TSEB errors (Crow et al., 2005). Such 
independence provides the theoretical basis for the assimilation of 
ALEXI/TSEB energy flux products, or related soil moisture proxies like 

ESI, into prognostic LSMs. This assimilation can occur either in isolation 
or in tandem with microwave-based soil moisture products. For 
example, studies have examined the joint assimilation of microwave and 
ESI-based soil moisture estimates into the LSM portion of a numerical 
weather prediction system (Hain et al. 2011, 2012; Mishra et al., 2021), 
identifying added value relative to a baseline case of assimilating only 
microwave-based soil moisture retrievals. One key reason is the 
increased vertical support of root-zone ALEXI ESI assessments versus the 
superficial support (i.e., top 5 cm only) of microwave soil moisture re
trievals. A similar joint assimilation strategy is currently being applied 
for the operational monitoring of root-zone soil moisture within irri
gated vineyards and orchards – see discussion of the VIDA system in 
Section 6.2. 

Land data assimilation only targets purely random error present in a 
prognostic LSM. In reality, LSM errors are often systematic in nature (i. 
e., statistically related to land surface states), commonly arising from the 
poor parameterization, or outright neglect, of certain land processes. A 
growing body of literature has demonstrated the value of ALEXI/TSEB 
products for diagnosing such errors. For example, Hain et al. (2015) 
utilized ALEXI ET estimates to explicitly map areas where a LSM ne
glects the impact of tile drainage, irrigation, and surface/groundwater 
coupling on surface energy balance modelling. A related challenge in 
LSMs is the accurate characterization of available soil water storage for 
root uptake and transpiration. Such storage fundamentally establishes 
ecosystem susceptibility to periods of low precipitation or enhanced 
evaporative demand – but is also sensitive to poorly mapped subsurface 
characteristics (e.g., maximum rooting depth and depth to bedrock). 
Nevertheless, studies established the potential for utilizing ALEXI/TSEB 
ET time series as a top-down constraint on such storage capacity 
(Cammalleri and Ciraolo 2012; Stocker et al., 2023). 

ALEXI/TSEB energy flux estimates can also contribute to an 
improved understanding of water storage versus flux relationships. For 
example, Lei et al. (2018) highlighted the ability of ALEXI ET estimates 
to detect systematic bias in LSM parameterizations of ET versus soil 
moisture coupling strength. Left uncorrected, such bias can degrade the 
accuracy of land-model ET estimates (Dong et al., 2020, 2022) and, 
therefore, short-term numerical weather forecasts dependent on such 

Fig. 9. Top row: Examples of the USU AggieAir drone technology used in the GRAPEX and T-REX projects, including (left) a custom hybrid fixed-wing drone with 
1.5+ hour flying capabilities, and (right) vertical take-off and landing (VTOL) drone for surveying smaller areas. Bottom row: Example of the canopy structure in 
vineyards (left) and almonds (right) that UAV imagery can describe. Note the interrow conditions (with or without cover crop), tall, clumped canopy of the main 
crop, and the changes in interrow exposure to sunlight depending on sun angle and row direction. 
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estimates (Crow et al., 2020). More recent work in Koster et al. (2024) 
has extended this ability to the characterization of non-linear regime 
transitions in the relationship between soil moisture and ET. 

7. Regional to global scale implementations 

To support the broad spectrum of research and applications dis
cussed in Section 6, the multi-scale family of TSEB models has been 
implemented in several operational and on-demand systems operating 
from field to global scales. Some of these systems are described below. 

7.1. GET-D (NOAA) 

The NOAA-NESDIS Geostationary Evapotranspiration and Drought 
(GET-D) product system was developed to operationally generate and 
distribute ALEXI ET and ESI datasets over the GOES domain. Starting in 
September 2016, GET-D commenced operational runs at NESDIS Office 
of Satellite and Product Operation (OSPO), posting products to the 
NOAA-STAR Drought Monitoring Web Site: https://www.star.nesdis. 
noaa.gov/smcd/emb/droughtMon/products_droughtMon.php. At that 
time, the operational GET-D product system used GOES-13/15 imager 
data to generate daily ET and ESI at 8-km resolution over a North 
American domain for the years from 2001 to 2017 (Fig. 10, left). These 
products were upgraded to 2-km resolution over CONUS in 2018 
(Fig. 10, right), when the NOAA primary operational geostationary 
satellites switched to GOES-16/17, carrying the Advanced Baseline 
Imager (ABI). In 2023, the GOES-18 satellite replaced GOES-17 as 
GOES-West, with improvements to the ABI thermal sensors. Detailed 
information regarding the science and software architecture of the 
upgraded GET-D product system can be found in Fang et al. (2019, 
2022). Currently the daily ET data products are routinely distributed to 
Environmental Modeling Center of NOAA National Weather Service 
(NWS) for numerical weather product model verification/validation. 
The CONUS ESI data product is distributed to the National Integrated 
Drought Information System (NIDIS) as a reference for U.S. Drought 
Monitor publication. 

7.2. SERVIR (NASA) – global ALEXI 

Global near-realtime (NRT) applications of the classic version of 
ALEXI would require harmonized LST data from the global 

geostationary datasets, which is not yet available in NRT and cannot 
provide LST observations at high latitudes (> 60◦). To facilitate routine 
global execution of ALEXI, a polar-orbiter-based (e.g., AVHRR, MODIS, 
VIIRS) proxy for the morning LST rise has been developed using a data- 
mining approach based on day-night observations of LST and other 
geophysical variables (Hain and Anderson 2017). This approach uses a 
rule-based regression tree algorithm (RuleQuest, Cubist) to compute a 
set of rules linking the predictor variables with the 
geostationary-observed DTR (e.g., GOES) training data. The following 
predictor variables were shown to exhibit the strongest relationships 
with the training data: (1) MODIS day-night LST difference, (2) MODIS 
day LST, (3) MODIS night LST, (4) leaf area index, and (5) topographic 
variability. Currently, estimates of the morning LST rise are used in a 
NRT global ALEXI framework at 0.05-◦ spatial resolution using a 
long-term satellite time series from MODIS and VIIRS, run at NASA’s 
Short-Term Prediction Research and Transition Center (SPoRT; https: 
//weather.ndc.nasa.gov/sport/). The modeling framework also pro
vides a NRT global ESI product hosted and routinely available from 
NASA’s SERVIR project (https://servirglobal.net/Global/Evapor 
ative-Stress-Index). These global data are being ingested into the Geo
glam Crop Monitor (https:/cropmonitor.org), the USDA Foreign Agri
cultural Service’s Global Agricultural & Disaster Assessment System 
(GADAS), and NASA’s DISASTERS Dashboard (https://disasters-nasa. 
hub.arcgis.com/; Fig. 11). An excerpt of the global ESI product over 
CONUS is distributed by the National Integrated Drought Information 
System (NIDIS; https://www.drought.gov/data-maps-tools/evaporati 
ve-stress-index-esi), over North America by Agri-Food Canada 
(https://agriculture.canada.ca/en/agricultural-production/weather/ 
evaporative-stress-index), and over Central Europe by Intersucho 
(https://www.intersucho.cz/en) (Trnka et al., 2020). 

7.3. OpenET 

The OpenET framework (https://etdata.org; Fig. 12) on Google Earth 
Engine (GEE) was released to the public in 2021 with the goal of 
delivering open and objective field-scale (30-m resolution) ET data in 
support of water management and decision making (Melton et al., 
2022). OpenET is a collaborative effort involving scientists from multi
ple federal agencies, academic institutions, and non-profit organiza
tions. Importantly, a broad range of stakeholders has been engaged since 
early in the platform design process to ensure that the system delivers 

Fig. 10. GET-D ESI products (4-week composite) for July 4, 2012 based on GOES13/15 (8-km resolution) over the North America domain (left) and for July 4, 2022 
using GOES16/17 (2-km) over the CONUS domain (right). 
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useful information in a usable and transparent way. These include rep
resentatives from local, state, federal and tribal government water 
management agencies, small family farms, and large agricultural 
organizations. 

OpenET has taken an ensemble modeling approach to data genera
tion, using six well-established ET remote sensing models, including 
DisALEXI, that have been ported to GEE. These models represent a di
versity of modeling approaches, with different key inputs, different as

sumptions and sensitivities – some using TIR inputs, and others more 
sensitive to surface reflectance and vegetation indices. Evaluation in 
comparison with eddy covariance measurements from over 150 flux 
towers in the U.S. demonstrated that on average over all crop types 
(rainfed and irrigated), the ensemble average ET performs better than 
any individual model (Volk et al., 2024). For example, at the monthly 
timestep, mean absolute error (MAE) for croplands from individual 
models ranges from 0.60 to 0.76 mm d− 1 (with DisALEXI at 0.66 mm 

Fig. 11. Global ESI at 5-km resolution (4-wk composite for July 2012) developed by NASA-SPoRT and distributed through the NASA DISASTERS mapping portal.  

Fig. 12. Map of ensemble ET for 2021 over the SLM GRAPEX intensive site from the OpenET web user interface (https://etdata.org).  
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d− 1), while the ensemble MAE was 0.53 mm d− 1. Largest MAE for Dis
ALEXI/ensemble members were observed in evergreen forest 
(MAE=0.97/0.84–1.04 mm d− 1) and wetland/riparian 
(MAE=1.05/0.72—1.06 mm d− 1) land covers, both with positive ET 
bias in all models. Further adjustment of the initial value of αPTC for 
conifers may be warranted; and with accurate land-cover information at 
the 30-m scale, DisALEXI flux estimates for wetlands may be improved 
by increasing the heat storage term ratio (see Section 4.2). 

The GEE implementation of DisALEXI (Yang et al., 2022) is being 
leveraged to extend ET mapping applications in GRAPEX/T-REX over 
the full California Central Valley agricultural region, effectively bringing 

the model to the satellite data and leveraging the cloud computing re
sources available on GEE. In the intercomparison study of Volk et al. 
(2024), DisALEXI outperformed all other models over vineyard sites 
including the ensemble, yielding an MAE of 0.43 mm d− 1. The OpenET 
platform also facilitates intercomparison between different 
Landsat-scale ET retrieval approaches, allowing investigations of the 
unique value of TIR imaging in terms of sensitivity to moisture stress and 
water use over the full cycle of crop development. Notably, with TIR we 
see greater sensitivity to deficit irrigation and to water applied during 
periods with low cover, e.g., at the beginning of the season or between 
double cropping cycles when irrigation is often applied to flush salts 

Fig. 13. Top: Workflow for Sen-ET (numbers correspond to modeling components tabulated in the text). Bottom: Map of 20 m ET obtained using the Sen-ET 
approach in the Bekaa Valley in Lebanon, taken from the ET4FAO portal (https://et4fao.dhigroup.com/). 
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from the soil profile. The latter can be missed by OpenET models based 
primarily on surface reflectances. 

Initial coverage in OpenET is limited to the western United States, 
but with continued interest and support, plans are to expand to full U.S. 
and then global coverage. The data can be accessed through a web-based 
interface, or through an automated programming interface (API) for 
direct ingestion into existing management toolkits. 

7.4. SEN-ET (Copernicus) 

Another recent development for the TSEB family was the imple
mentation of TSEB within the Sen-ET toolkit (https://www.esa-sen4et. 
org/) using data provided by the European Union’s Copernicus Earth 
Observation program. Copernicus consists of a space component, 
including the Sentinel satellites and other contributing missions, and 
downstream services such as Copernicus Climate Change Service (C3S). 
Of most relevance for ET modeling are the Sentinel-2 and − 3 satellites. 
Sentinel-2 provides multispectral shortwave observations with spatial 
resolution of 10 – 60 m and revisit period of 5 days with two satellites 
operating in tandem (Drusch et al., 2012). Sentinel-3 adds observational 
capabilities in the TIR wavebands, acquired at around 1-km resolution 
with daily revisit time (Donlon et al., 2012). To improve the spatial 
resolution to sub-field scale (20 m), the DMS thermal sharpening tool is 
employed (Section5.1). 

The Sen-ET approach consists of five main components (Fig. 13), 
each using open-access data and implemented as open-source code:  

1. Modelling of surface biophysical properties with 20-m resolution 
using Sentinel-2 observations and SNAP toolbox (https://step.esa. 
int/main/) and Python scripts (https://github.com/hectornieto/p 
ypro4sail);  

2. Sentinel-3 and − 2 thermal-shortwave data fusion using a Python 
implementation of DMS (https://github.com/radosuav/pyDMS), 
which produces daily 20-m LST;  

3. Surface meteorological reanalysis from ERA5 model provided by C3S 
and corrected for topographical effects using Copernicus Digital 
Elevation Model (DEM) and Python scripts (https://github.com/hect 
ornieto/meteo_utils);  

4. Setting of surface properties such as vegetation height using a 
landcover map, either produced by Copernicus Land Monitoring 
Service (100-m resolution) or from Sentinel observations (World
Cover – 10-m resolution);  

5. Modeling of land surface fluxes at 20-m resolution using the above 
inputs and open-source implementation of the TSEB model (https:// 
github.com/hectornieto/pyTSEB). 

The feasibility of the Sen-ET approach was evaluated in a study in 
Denmark, which achieved promising results (Guzinski and Nieto 2019) 
and led to the implementation of the Sen-ET approach as an open-source 
plugin for the SNAP toolbox (https://www.esa-sen4et.org) (Guzinski 
et al., 2020). In this study, the approach was evaluated using EC mea
surements in Europe, Africa and North America while running with 
purely global datasets and without any site-specific parameterization 
and resulting in good accuracies. In a follow up study, the Sen-ET 
approach was demonstrated for national-extent field-scale mapping of 
ET in Lebanon and Tunisia for the purpose of assisting the Food and 
Agriculture Organization of the United Nations (FAO) with monitoring 
of the Sustainable Development Goal (SDG) indicator 6.4.1 – water use 
productivity (Fig. 13). In the same study, the daily ET (gap-filled and 
aggregated to decadal timestep) was evaluated against measurements in 
irrigated and rainfed agriculture in Spain and Tunisia resulting in a bias 
of 0.3 mm d− 1 and root-mean-square error (RMSE) of <1 mm d− 1 

(Guzinski et al., 2021). Other studies using the Sen-ET approach were 
conducted in India (Chintala et al., 2022), Indonesia, the Italian Alps (De 
Santis et al. 2022; Perico et al., 2022), and Spain (Aguirre-García et al. 
2021; Burchard-Levine et al., 2021). 

One of the main challenges of using Sentinel-3 imagery is that LST 
sharpening from 1 km to 20 m causes larger bias for extreme tempera
tures (i.e. systematic overestimation over colder pixels while under
estimating the hottest pixels), since such LST downscaling approaches 
are not able to describe the whole dynamic range captured at the finer 
resolution (Sanchez et al., 2024). To minimize this issue, the sharpening 
method has recently been improved by incorporating Landsat LST im
agery, in particular the LST variability within each 1×1 km tile 
(Guzinski et al., 2023). Based on the most recent results of Guzinski et al. 
(2023), overall daily MAE in semi-arid rainfed and irrigated croplands 
was below 0.7 mm day− 1, but largest errors occurred in an almond or
chard with MAE=0.93 mm day− 1. This was most likely due to un
certainties in surface roughness estimation related to the land-cover 
information at the 20-m scale. 

The Sen-ET approach and TSEB model are currently under evalua
tion by the Copernicus Land Monitoring Service for operational pro
duction of a proposed global ET product (300-m spatial resolution, 10- 
d timestep). 

8. Remaining challenges and ongoing research 

8.1. Cloud-tolerant microwave-based temperature inputs 

Especially at the global scale and over the tropics, we encounter 
limitations in LST sampling from TIR imagers like MODIS and VIIRS 
(Challenge 8). Extended periods without a clear-sky retrieval stretch the 
ability of interpolation techniques. Even in CONUS, relying solely on 
TIR-based LST estimates leaves us with a poor ability to pinpoint 
response of ET to rainfall and relief from drought, which typically co
incides with cloudy conditions. To enhance our capacity to retrieve ET 
under all-weather conditions, cloud-tolerant microwave Ka-band ob
servations can be leveraged to estimate LST (Holmes et al., 2009, 2016). 
The combination of microwave LST from multiple polar orbiting satel
lites allows almost daily characterization of the diurnal cycle in LST at a 
spatial resolution of ~25 km (Holmes et al., 2015). The utility of 
microwave-based LST for energy balance estimates of evaporation has 
been demonstrated in the context of the ALEXI framework (Holmes 
et al., 2018), and is currently being tested for integration withing the 
global SERVIR product system (Section 7.2). Not only are microwave 
retrievals more temporally dense, they also exhibit less day-to-day noise 
being more resistant to cloud contamination (Fig. 14). This significantly 
benefits the outlier detection, smoothing, and gap-filling procedures 
used in creating daily ET timeseries. 

A related effort has been implemented within the GET-D system, 
using a regression tree machine learning technique to synergize GOES 
ABI thermal observations with Ka-band microwave data available from 
the Advanced Microwave Scanning Radiometers (AMSRs) on current 
Japanese GCOM-W and future GOSAT satellites. Using LST simulations/ 
forecasts from the Climate Forecast System Reanalysis for harmoniza
tion, the machine learning technique merges GOES TIR observations 
with MW to derive LST under both clear-sky and cloudy conditions. 
Notably, the all-weather ET product significantly increased data 
coverage by approximately 260% over the CONUS domain in 2018 
when compared to the clear-sky ET product (Fang et al. 2022). This 
substantial improvement in data availability is of utmost importance in 
promoting the application of the GET-D products. 

8.2. E/T partitioning 

Accurate E and T partitioning is important for understanding irri
gation efficiencies and for isolating leaf and soil water status (Kustas and 
Anderson 2009; Kustas et al., 2019), and was recently identified as one 
of ten major knowledge gaps in ET research (Fisher et al., 2017). 
However, accurate measurements of E and T needed to test and improve 
partitioning in ET models have been difficult to obtain and extrapolate 
to field scale (Kool et al., 2014). Earlier studies of TSEB partitioning from 
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the Bushland Evapotranspiration and Remote Sensing Experiment of 
2008 (BEAREX08; Evett et al., 2012) used sapflow and microlysimeter 
data to quantify observed transpiration and soil evaporation fluxes 
(Agam et al., 2012; Colaizzi et al. 2014); however, these measurements 
are very labor-intensive and accurate results are difficult to obtain. 
Recent advancements based on correlations between high frequency 
eddy covariance measurements of water vapor and CO2 concentrations 
show promise (Scanlon and Sahu 2008; Scanlon and Kustas 2010, 2012; 
Zahn et al., 2022) but require more extensive testing. 

TSEB estimation of E (LES) and T (LEc) has been examined in annual 
row crops (Anderson et al., 2005; Colaizzi et al. 2014, 2016a; Sun et al., 
2017; Peng et al., 2023), perennial crops (Burchard-Levine et al., 2022a; 
Nieto et al., 2022; Knipper et al., 2023; Gao et al., 2023), and forested 
systems (Yang et al., 2017b; Burchard-Levine et al., 2022b). The accu
racy of E and T partitioning is influenced by the leaf area index value 
(Kang et al., 2022) applied as well as the transpiration algorithm (e.g., 
Colaizzi et al. 2014; Knipper et al., 2023). Particularly in arid environ
ments with sparse vegetation, the standard soil resistance formulation 
used in TSEB may require modification (Li et al. 2019), and optimization 
of plant transpiration parameters is needed in isolated irrigated 
orchards/vineyards (Kool et al., 2021). Improvements in LAI retrievals 
from remote sensing and E and T separation have come from the use of 
very fine resolution UAV imagery 100 – 101 cm pixel resolutions) and 
machine learning tools (Gao et al., 2022; Aboutalebi et al., 2022). The 
partitioning of ET between Tcrop (from the main crop) and E+Tcover 

(from the interrow, bare soil evaporation + cover-crop transpiration) 
from TSEB as applied to UAV data (Fig. 15) allows for additional 
research on net irrigation (e.g., for only grapevine plants and almonds 
trees excluding interrow crop), water stress estimation from an energy 
balance perspective (instead of empirical relationships), and a closer 
examination of linked agricultural water and carbon exchange 
processes. 

8.3. Beyond two sources 

A number of natural and agricultural environments have significant 
understory vegetation, such as in savannas containing tree-grass eco
systems (Andreu et al., 2018b) or, in the case with agriculture, cover 
crops deployed for nutrient management and improving soil carbon 
uptake and soil health (Villat and Nicholas 2024). One of the first at
tempts to adapt TSEB to account for understory was by Burchard-Levine 
et al. (2020), who added seasonal phenological dynamics shifting 
dominant ET coming from actively transpiring grassland to tree cover in 
an oak-grass savanna (Dehesa) region in Spain (TSEB-2S). A further 
modification resulted in a three-source approach (3SEB) accounting for 
soil, grass (understory) and trees (overstory) (Burchard-Levine et al., 
2022b). They found 3SEB outperformed both TSEB and TSEB-2S in 
tree-grass ecosystems in Europe, Australia and Africa (Burchard-Levine 
et al., 2022b), and provided T estimates that correlated well with T 
derived from a machine learning ET partitioning method. 

Fig. 14. Right: Global ALEXI ET map generated at 25-km resolution with microwave (MW) LST. Left: Comparison of ET/solar radiation timeseries extracted from TIR 
and MW versions of ALEXI at a point in the African tropics (yellow diamond). . 

Fig. 15. Example of UAV spectral (red, green, blue), thermal, elevation, daily ET and T/ET ratio data for 0.6 sq miles (422 acres − 171 ha) over almond orchards of 
different age around the OLA T-REX site in Madera Co., CA, using AggieAir UAV drones and TSEB. 
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Burchard-Levine et al. (2022a) demonstrated 3SEB capacity to partition 
soil E and T from cover crop and vines, applied over a vineyard with 
rows managed with and without cover crops. 

Future work may need to consider other sources, such as pavement 
or roof-tops in urban environments. 

9. . Conclusions 

The Two-Source Energy Balance (TSEB) model was developed in 
1995 in response to a set of challenges identified in using remotely 
sensed LST data for robustly estimating surface fluxes, articulated dur
ing the 1993 Workshop in La Londe, France. The primary aim of the 
original TSEB developers was to create a model that was simple enough 
to parameterize for large area application, but not too simple such that it 
ignored fundamental drivers of the relationship between directional 
surface radiometric temperature and energy partitioning. These drivers 
include sensor view angle, vegetation cover fraction, differential 
coupling of the soil and canopy to the atmosphere, and radiation and 
wind transfer through the canopy. 

Through the years, the core TSEB land-surface representation has 
been integrated into multi-scale ET modeling systems and linked oper
ationally to thermal data collected by GOES, MODIS/VIIRS, Landsat, 
and the European Sentinel constellation. TSEB-generated ET informa
tion is being used to estimate consumptive use, manage irrigation, 
predict yields, and monitor agricultural drought and ecosystem health 
within the U.S. and internationally. New sources of thermal imaging and 
surface reflectance data are continuously integrated into these systems 
to augment spatial and temporal sampling. 

The demonstrated utility of TSEB and other TIR-based SEB modeling 
systems has transformed community perception of the value of thermal 
remote sensing as a powerful tool for diagnosing surface water and en
ergy balance over a wide range of spatial scales. Future developments 
and applications rely on the continued availability of routine global TIR 
imaging, particularly at Landsat or finer resolution. As more field-scale 
ET models are implemented in a cloud-based geospatial analysis plat
form such as GEE, the potential for using an ensemble output may yield 
generally the most reliable results for regional and global applications 
(Melton et al., 2022; Jaafar et al., 2022). 
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Monitor System for monitoring and forecasting agricultural drought and drought 
impacts. Int. J. Climatol. 40, 5941–5958. 

Troufleau, D., Lhomme, J.P., Monteny, B., Vidal, A., 1997. Sensible heat flux and 
radiometric surface temperature over sparse Sahelian vegetation. I. An experimental 
analysis of the kB-1 parameter. J. Hydrol. 815–838, 188-189.  

Vanderleest, C.P.L., Bland, W.L., 2016. Evapotranspiration from cranberry compared 
with the equilibrium rate. Can. J. Soil Sci. 97, 5–10. 

Verhoef, A., De Bruin, H.A.R., van den Hurk, B.J.J.M, 1997. Some practical notes on the 
parameter kB− 1 for sparse vegetation. J. Appl. Meteorol. 36, 560–572. 

Villat, J., Nicholas, K.A., 2024. Quantifying soil carbon sequestration from regenerative 
agricultural practices in crops. Front. Sustainable Food Syst. 7, 1234108. 

Vining, R.C., Blad, B.L., 1992. Estimation of sensible heat flux from remotely sensed 
canopy temperatures. J. Geophys. Res. 97 (D17), 954, 18,951-918.  

Volk, J.M., Huntington, J., Melton, F.S., Allen, R., Anderson, M.C., Fisher, J.B., Kilic, A., 
Ruhoff, A., Senay, G., Minor, B., Morton, C., Ott, T., Johnson, L., Andrade, B., 
Carrara, W., Doherty, C., Dunkerly, C., Friedrichs, M., Guzman, A., Hain, C., 
Halverson, G., Kang, Y., Knipper, K., Laipelt, L., Ortega-Salazar, S., Pearson, C., 
Parrish, G., Purdy, A.J., Revelle, P., Wang, T., Yang, Y., 2024. Assessing the accuracy 
of OpenET satellite-baswed data to support water resource and land management 
applications. Nature Water in press.  

Walker, C., 2023. Evaluation of Atmospheric Land Exchange Inverse Model Evaporative 
Stress Index Utilizing Soil Climate Analysis Network Stations in Alabama. The 
University of Alabama in Huntsville, p. 136. 

Wetzel, P.J., Atlas, D., Woodward, R., 1984. Determining soil moisture from 
geosynchronous satellite infrared data: a feasibility study. J. Clim. Appl. Meteorol. 
23, 375–391. 

Xue, J., Anderson, M.C., Gao, F., Hain, C., Knipper, K.R., Yang, Y., Kustas, W.P., Yang, Y., 
Bambach, N., McElrone, A.J., Castro, S.J., Alfieri, J.G., Prueger, J.H., McKee, L.G., 
Hipps, L.E., del Mar Alsina, M., 2022. Improving the spatiotemporal resolution of 
remotely sensed ET information for water management through Landsat, Sentinel-2, 
ECOSTRESS and VIIRS data fusion. Irrig. Sci. 40, 609–634. 

Xue, J., Anderson, M.C., Gao, F., Hain, C., Sun, L., Yang, Y., Knipper, K.R., Kustas, W.P., 
Torres-Rua, A., Schull, M.A., 2020. Sharpening ECOSTRESS and VIIRS land surface 
temperature using harmonized Landsat-Sentinel surface reflectance. Remote Sens. 
Environ. 251, 112055. 

Xue, J., Anderson, M.C., Gao, F., Hain, C., Yang, Y., Knipper, K.R., Kustas, W.P., Yang, Y., 
2021. Mapping daily evapotranspiration at field scale using the Harmonized Landsat 
and Sentinel-2 dataset, with sharpened VIIRS as a Sentinel-2 thermal proxy. Remote 
Sens. 13. https://doi.org/10.3390/rs13173420. 

Yang, Y., Anderson, M., Gao, F., Hain, C., Noormets, A., Sun, G., Wynne, R., Thomas, V., 
Sun, L., 2020. Investigating impacts of drought and disturbance on 
evapotranspiration over a forested landscape in North Carolina, USA using high 
spatiotemporal resolution remotely sensed data. Remote Sens. Environ. 238, 
111018. 

Yang, Y., Anderson, M., Gao, F., Xue, J., Knipper, K., Hain, C., 2022. Improved daily 
evapotranspiration estimation using remotely sensed data in a data fusion system. 
Remote Sens. 14. https://doi.org/10.3390/rs14081772. 

M.C. Anderson et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0154
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0154
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0155
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0155
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0155
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0156
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0156
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0156
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0157
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0157
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0158
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0158
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0158
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0159
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0159
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0159
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0160
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0160
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0160
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0161
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0161
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0161
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0162
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0162
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0162
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0163
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0163
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0163
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0163
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0164
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0164
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0164
https://doi.org/10.1175/JHM-D-13-0110.1
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0166
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0166
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0166
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0167
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0167
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0167
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0168
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0168
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0168
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0169
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0169
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0169
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0170
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0170
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0170
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0170
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0171
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0171
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0171
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0171
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0172
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0172
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0172
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0172
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0173
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0173
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0174
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0174
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0174
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0174
https://doi.org/10.1029/2021WR031355
https://doi.org/10.1029/2021WR031355
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0176
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0176
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0177
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0177
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0178
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0178
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0178
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0179
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0179
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0180
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0180
https://doi.org/10.2136/vzj2012.0025
https://doi.org/10.2136/vzj2012.0025
https://doi.org/10.1029/2008WR006932
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0183
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0183
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0183
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0183
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0185
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0185
https://doi.org/10.1016/j.rse.2015.1010.1025
https://doi.org/10.1016/j.rse.2015.1010.1025
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0187
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0187
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0187
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0188
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0188
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0189
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0189
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0189
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0190
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0190
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0190
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0191
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0191
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0192
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0192
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0193
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0193
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0193
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0194
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0194
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0194
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0195
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0196
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0196
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0197
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0197
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0197
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0197
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0197
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0198
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0198
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0198
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0199
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0199
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0200
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0200
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0201
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0201
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0202
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0202
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0203
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0204
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0204
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0204
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0205
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0205
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0205
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0206
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0206
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0206
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0206
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0206
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0207
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0207
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0207
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0207
https://doi.org/10.3390/rs13173420
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0209
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0209
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0209
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0209
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0209
https://doi.org/10.3390/rs14081772


Agricultural and Forest Meteorology 350 (2024) 109951

25

Yang, Y., Anderson, M.C., Gao, F., Hain, C., Kustas, W.P., Meyers, T., Crow, W., 
Finocchiaro, R.G., Otkin, J.A., Sun, L., Yang, Y., 2017a. Impact of tile drainage on 
evapotranspiration (ET) in South Dakota, USA based on high spatiotemporal 
resolution ET timeseries from a multi-satellite data fusion system. J. Selected Topics 
Appl. Earth Obs. Remote Sens. 10, 2550–2564. 

Yang, Y., Anderson, M.C., Gao, F., Hain, C.R., Semmens, K.A., Kustas, W.P., Normeets, A., 
Wynne, R.H., Thomas, V.A., Sun, G., 2017b. Daily Landsat-scale evapotranspiration 
estimation over a managed pine plantation in North Carolina, USA using multi- 
satellite data fusion. Hydrol. Earth Syst. Sci. 21, 1017–1037. 

Yang, Y., Anderson, M.C., Gao, F., Johnson, D.M., Yang, Y., Sun, L., Dulaney, W., Hain, C. 
R., Otkin, J.A., Prueger, J., Meyers, T.P., Bernacchi, C.J., Moore, C.E., 2021a. 
Phenological corrections to a field-scale, ET-based crop stress indicator: an 
application to yield forecasting across the U.S. Corn Belt. Remote Sens. Environ. 257, 
112337. 

Yang, Y., Anderson, M.C., Gao, F., Wardlow, B., Hain, C.R., Otkin, J.A., Alfieri, J., 
Yang, Y., Sun, L., Dulaney, W., 2018. Field-scale mapping of evaporative stress 

indicators of crop yield: an application over Mead, NE, USA. Remote Sens. Environ. 
210, 387–402. 

Yang, Y., Anderson, M.C., Gao, F., Wood, J.D., Gu, L., Hain, C., 2021b. Studying drought- 
induced forest mortality using high spatiotemporal resolution evapotranspiration 
data from thermal satellite imaging. Remote Sens. Environ. 265. https://doi.org/ 
10.1016/j.rse.2021.112640. 

Yilmaz, M.T., Anderson, M.C., Zaitchik, B.F., Hain, C.R., Crow, W.T., Ozdogan, M., 
Chung, J.A., 2014. Comparison of prognostic and diagnostic surface flux modeling 
approaches over the Nile River Basin. Water Resour. Res. 50, 386–408. 

Zahn, E., Bou-Zeid, E., Good, S.P., Katul, G.G., Thomas, C.K., Ghannam, K., Smith, J.A., 
Chamecki, M., Dias, N.L., Fuentes, J.D., Alfieri, J.G., Kwon, H., Caylor, K.K., Gao, Z., 
Soderberg, K., Bambach, N.E., Hipps, L.E., Prueger, J.H., Kustas, W.P., 2022. Direct 
partitioning of eddy-covariance water and carbon dioxide fluxes into ground and 
plant components. Agric. For. Meteorol. 315. https://doi.org/10.1016/j. 
agrformet.2021.108790. 

M.C. Anderson et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0211
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0211
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0211
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0211
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0211
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0212
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0212
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0212
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0212
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0213
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0213
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0213
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0213
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0213
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0214
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0214
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0214
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0214
https://doi.org/10.1016/j.rse.2021.112640
https://doi.org/10.1016/j.rse.2021.112640
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0216
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0216
http://refhub.elsevier.com/S0168-1923(24)00066-2/sbref0216
https://doi.org/10.1016/j.agrformet.2021.108790
https://doi.org/10.1016/j.agrformet.2021.108790

	A brief history of the thermal IR-based Two-Source Energy Balance (TSEB) model – diagnosing evapotranspiration from plant t ...
	1 Introduction
	2 Early history of TIR-Based ET modelling
	2.1 TIR as an indicator of surface moisture status
	2.2 One-source energy balance modeling: kB−1 and REX
	2.3 LST time differencing and integration with ABL

	3 TIR challenges: from FIFE to La Londe
	3.1 FIFE
	3.2 La londe workshop
	3.3 The 8 challenges

	4 . TSEB modeling frameworks
	4.1 TSEB: the Two-Source Energy Balance model
	4.2 ALEXI: the Atmosphere-Land Exchange Inverse model
	4.3 DisALEXI: ALEXI disaggregation approach

	5 Tools for improving spatiotemporal resolution
	5.1 Thermal sharpening
	5.2 Data fusion

	6 Research and applications using TSEB
	6.1 Drought and drought impacts
	6.2 Water use monitoring and management
	6.2.1 Vineyards and orchards
	6.2.2 Forest management

	6.3 Data assimilation and model diagnostic applications

	7 Regional to global scale implementations
	7.1 GET-D (NOAA)
	7.2 SERVIR (NASA) – global ALEXI
	7.3 OpenET
	7.4 SEN-ET (Copernicus)

	8 Remaining challenges and ongoing research
	8.1 Cloud-tolerant microwave-based temperature inputs
	8.2 E/T partitioning
	8.3 Beyond two sources

	9 . Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


