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[11 Robust satellite-derived moisture stress indices will be beneficial to operational
drought monitoring, both in the United States and globally. Using thermal infrared
imagery from the Geostationary Operational Environmental Satellites (GOES) and
vegetation information from the Moderate Resolution Imaging Spectrometer (MODIS), a
fully automated inverse model of Atmosphere-Land Exchange (ALEXI) has been used to
model daily evapotranspiration and surface moisture stress over a 10-km resolution grid
covering the continental United States. Examining monthly clear-sky composites for
April—-October 2002—-2004, the ALEXI evaporative stress index (ESI) shows good
spatial and temporal correlation with the Palmer drought index but at considerably higher
spatial resolution. The ESI also compares well to anomalies in monthly precipitation
fields, demonstrating that surface moisture has an identifiable thermal signature that can
be detected from space, even under dense vegetation cover. Simple empirical thermal
drought indices like the vegetation health index do not account for important forcings on
surface temperature, such as available energy and atmospheric conditions, and can
therefore generate spurious drought detections under certain circumstances. Surface
energy balance inherently incorporates these forcings, constraining ESI response in both
energy- and water-limited situations. The surface flux modeling techniques described
here have demonstrated skill in identifying areas subject to soil moisture stress on the basis
of the thermal land surface signature, without requiring information regarding antecedent

rainfall. ALEXI therefore may have potential for operational drought monitoring in
countries lacking well-established precipitation measurement networks.
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1. Introduction

[2] Reliable methods for mapping evapotranspiration
(ET) and land surface moisture status from space will
greatly enhance our ability to manage our Earth’s water
resources and to respond quickly and effectively to local-
ized reductions in food production due to drought. In the
western United States, for example, remotely sensed ET
maps are routinely used to estimate lower limits on agri-
cultural and urban consumptive water use, and evaporative
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losses from irrigated fields, reservoirs and riparian zones
[Bastiaanssen et al., 2005; Tasumi et al., 2005], and in the
negotiation and monitoring of water rights [Allen et al.,
2005]. Satellite-based drought indices are being used oper-
ationally to supplement data from ground-based weather
and precipitation networks to assess drought conditions in
the United States [Svoboda et al., 2002]. For maximized
utility, moisture index products feeding operational moni-
toring programs should be based on stable data sources with
long-term availability rather than on instruments on research
platforms, which may have limited lifetime.

[3] Because land-surface temperature (LST) is strongly
modulated by evaporation, remote sensing data in the
thermal infrared (TIR) bands carry valuable information
regarding surface moisture availability. A companion paper
[Anderson et al., 2007] (hereinafter referred to as Al)
describes a regional surface energy balance modeling sys-
tem—the Atmosphere-Land Exchange Inverse (ALEXI)
model—that has potential for routine, long-term mapping
of ET and soil moisture stress. ALEXI is driven primarily by
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TIR imagery from the Geostationary Operational Environ-
mental Satellites (GOES), an excellent (albeit underutil-
ized) data source for routine land surface monitoring.
GOES has high temporal frequency (15 min) and conti-
nental-scale coverage, and its operational status, integral to
national weather forecasting applications, means a long
history of archived data and a good likelihood of contin-
uation. Al discuss techniques for extrapolating instanta-
neous ALEXI flux predictions made under cloud-free
conditions to full hourly and daily coverage in every cell
of the model domain. These techniques use the ratio (fpz7)
of actual to potential ET (PET) to infer subsurface soil
moisture content on clear days, and invert the ET-soil
moisture relationships to predict moisture fluxes under
cloudy conditions when satellite-based surface temperature
data are unavailable. ET predictions and extrapolations
were compared by Al to watershed-scale distributed flux
observations collected during a field experiment in central
Iowa in 2002.

[4] Using thermal band imagery from GOES and vege-
tation cover information from the Moderate Resolution
Imaging Spectrometer (MODIS), the ALEXI algorithm
has been executed over a 10-km resolution grid covering
the continental United States for April—October of 2002—
2004, focusing on periods when most of the domain is free
of snow. In this paper we look more qualitatively at
interannual and intra-annual temporal patterns in maps of
ET and fpgr generated with the ALEXI algorithm over this
3-year interval. Here, fprr is interpreted as a signature of
soil moisture availability and is expressed as an evaporative
stress index (ESI).

[5] Regional-scale land surface flux and drought models
are difficult to validate rigorously, given current scarcity
in scale-appropriate validation data. Therefore patterns in
the ESI are assessed in comparison with contemporaneous
gridded precipitation data and with other standard mete-
orologically based indices of drought and surface mois-
ture stress to determine whether thermal remote sensing,
as interpreted by ALEXI, provides useful information
regarding drought conditions at continental scales.

2. TIR-Based Drought Indices

[6] Quantitative measures of drought are typically asso-
ciated with a specific temporal scale, dependent on the
hydrologic impact of interest and its nominal timescale for
recovery [Dracup et al., 1980; Wilhite and Glantz, 1985].
Meteorological drought describes a deficit in precipitation
relative to the long-term local average and can be relieved
rapidly with a good rainfall event. Agricultural drought,
which impacts crop yield, is related to moisture deficien-
cies in the root zone and tracks time constants associated
with plant water uptake and soil profile rewetting. Hydro-
logic drought affects streamflow, groundwater tables and
reservoir levels, and occurs and recovers over much longer
timescales of months to years. A set of specific criteria for
quantitatively evaluating the utility of drought indices was
proposed by Keyantash and Dracup [2002], including
measures of robustness and transparency in terms of
physical meaning.
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[7] Current algorithms for computing meteorological,
agricultural and hydrologic drought indices involve various
levels of empiricism and complexity and utilize many
different sources of input data, some based on ground
observations and others derived through remote sensing.
The standard metrics, such as the Palmer drought severity
index (PDSI), generally require spatially distributed esti-
mates of precipitation and soil water holding capacity.
These data are not currently available with good accuracy
at the continental scale and limit the spatial resolution of the
output product. The advantage of a drought metric based on
remote sensing is that ground-based data needs are limited,
thereby improving spatial detail and portability to areas
without extensive weather and precipitation networks.
Remote sensing approaches to drought mapping provide a
snapshot of current land surface conditions, and are there-
fore better measures of meteorological and agricultural
drought than long-term hydrologic drought, although the
indices can be accumulated in time to track persistent
moisture deficits.

[8] Moran [2003] reviews applications of TIR remote
sensing data in assessing water stress in plant ecosystems.
Idso et al. [1981] and Jackson et al. [1981] developed the
crop water stress index (CWSI) on the basis of the ratio of
actual to potential ET, as evaluated by applying the Penman-
Monteith equation [Monteith, 1965] for full canopy cover.
Moran et al. [1994] extended application to partial canopies
by including information about vegetation cover amount
derived from surface reflectance data, forming the water
deficit index (WDI). Both the CWSI and WDI rely on
measurements of the surface-to-air temperature difference,
which reflects the degree of stress-induced stomatal closure
and resulting decrease in transpiration from the vegetative
canopy. While this gradient can be measured locally, it is
difficult to assess with accuracy over regional scales due to
the sparsity of shelter-level air temperature measurements
and lack of cross calibration between the air and satellite-
based TIR temperature sensors.

[9] Of current drought metrics derived solely from space-
borne data, the vegetation health index (VHI) [Kogan,
1997] has been widely accepted as an operational tool for
global drought monitoring. The VHI is a weighted average
of normalized satellite-derived surface temperature and
normalized difference vegetation index (NDVI), scaled
between representative maximum and minimum values
found at each pixel over some period of record. The
formulation of the VHI presupposes that temperature and
NDVI are anticorrelated, with high-cover areas being cooler
and deviations from this relationship interpreted as a signa-
ture of stress. Karnieli et al. [2006], however, demonstrate
that when vegetation growth is energy limited, as in cooler
climates or at higher elevations, surface temperature and
NDVI can be directly correlated, causing spurious stress
signals in the VHI. Bayarjargal et al. [2006] compared
several satellite-derived drought indices on the basis of
simple normalized combinations of temperature and/or
vegetation index (VI). They found no consistent spatial
coincidence between the indices over the desert and desert
steppe regions of Mongolia, and limited correlation with
meteorological indices such as the PDSI or ground obser-
vations of drought-affected areas.
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[10] We suggest that a better approach to merging TIR/VI
remote sensing data into a unified drought metric is within
the context of a surface energy balance model, where these
signatures can be evaluated in relationship to soil moisture
status in a physically meaningful way. Energy balance
determines the thermal state of an evaporating land surface
under varying vegetation cover fraction, radiation load, and
ambient climatic conditions. If important driving factors are
neglected in the interpretation of TIR/VI data, the resulting
index may not be a reliable tool for assessing drought
conditions at continental or global scales.

3. Methods
3.1. ALEXI Model

[11] The ALEXI surface energy balance model was
specifically designed to minimize the need for ancillary
meteorological data while maintaining a physically realistic
representation of land-atmosphere exchange over a wide
range in vegetation cover conditions. ALEXI deduces the
land surface energy balance from the morning rise in
radiometric surface temperature, as measured from a geo-
stationary platform between times #; and £, (1.5 and
~5.5 hours past local sunrise). Keying to a time differential
temperature measure reduces model sensitivity to errors in
sensor calibration and atmospheric correction. The two-
source land surface component of ALEXI partitions net
radiation (RN, W m~?) into sensible heating (H, W m?),
latent heating (\E; W m ™2, where E is evapotranspiration in
mm s~ or kg s°' m? and ) is the latent heat of
evaporation, J kgfl), and soil heat conduction (G, W m—2)
fluxes associated with the soil and canopy components of
the scene (subscript s and ¢, respectively):

RN=H+)ME+G
RNs = Hs + \Es + G (1)
RNg = He + MEc

on the basis of the local vegetation cover fraction (f.),
estimated from satellite-derived vegetation index or leaf
area index (LAI) products. A simple slab model of
atmospheric boundary layer development provides energy
closure over the time interval between ¢, and ¢,. The full
algorithm is described in detail by Anderson et al. [1997]
and Mecikalski et al. [1999], with recent improvements and
input data sources discussed by Al.

3.2. Evaporative Stress Index

[12] Spatial and temporal variations in instantaneous ET
at the continental scale are primarily due to variability in
moisture availability (antecedent precipitation), radiative
forcing (cloud cover, sun angle), vegetation amount, and
local atmospheric conditions such as air temperature, wind
speed and vapor pressure deficit. Potential ET describes the
evaporation rate expected when soil moisture is nonlimiting,
ideally capturing response to all other forcing variables. To
isolate effects due to spatially varying soil moisture avail-
ability, a simple evaporative stress index (ESI) can be
developed from model flux estimates, given by 1 minus
the ratio of actual to potential ET following the formulation
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of the CWSI and WDI. Using ALEXI, we can derive
evaporative stress indices associated with the canopy (£S1,.),
the soil surface (ESI), and the combined plant-soil system

(ESD):

Ec
ESIc =1 — fpere = 1 —
C fPET PETC
Eg
ESIs =1 — fpppy = 1 —
N fPEr PETs (2)
E Ec + Es
EST=1—fpr =1——x=] oo 5
Jeer PET PETc + PETs

where E¢, Eg and E are the modeled actual ET fluxes (mm)
from the canopy, soil and system, respectively, and PET,
PETs, PET are potential rates associated with these
components (mm; see Appendix B of Al for forms used
in this study to estimate PET). These indices have a value of
0 when there is ample moisture/no stress, and a value of 1
when evapotranspiration has been cut off because of stress-
induced stomatal closure and/or complete drying of the soil
surface.

[13] Al demonstrate that fpz7 and fprz. are sensitive to
moisture stress over different timescales. The soil surface
responds quickly to moisture deficiencies, and therefore
ESIg should be a better measure of meteorological drought,
while the canopy indices change at a slower rate and are
more appropriate for tracking agricultural drought condi-
tions. In general, this stress may incorporate more than just
limiting soil moisture conditions. Low fppr in vegetated
areas may result from stomatal closure because of very
high air temperature and/or vapor pressure deficit (VPD).
Although the word “stress” is usually applied to vegetation
growing on soil depleted in moisture, for consistency we
can identify reductions in evaporation from potential evap-
oration for bare soil regions as “stress” because it indicates
drying conditions. In this study, we do not distinguish
between causes of stress and refer to ESI approaching 1
as “evaporative stress” for both vegetated and bare surfaces.

[14] Among the existing regional TIR-based drought
indices, the ALEXI evaporative stress index is unique in
that it has a clearly defined physical meaning in terms of the
impact on evaporative fluxes from the soil and canopy. It
therefore has additional utility in terms of direct assimilation
into other types of simulation systems, such as numerical
weather prediction and surface hydrology models. It also
has the advantage of being quantitatively verifiable in
comparison with ground measurements (see Al). Of the
several characteristics identified by Keyantash and Dracup
[2002] as useful in evaluating the overall utility of opera-
tional drought indices, the ESI fulfills the criteria of
transparency, nondimensionality and comparability between
regions with different climatic and biotic conditions. How-
ever, because of its reliance on remote sensing data, the
historical period over which the index can be computed to
establish climatologically normal conditions is limited in
comparison with indices based on point temperature or
precipitation records which extend back to the early
1900s. Even so, GOES imagery and ancillary data have
been archived over many decades and “‘normals” could be
defined if desired or necessary.
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3.3. Composites and Anomalies

[15] Given its dependence on the availability of remotely
sensed surface temperature data, the ALEXI model can only
be executed under clear-sky conditions. This means that a
significant portion of the full continental domain may not be
modeled on any given day. Al describe a procedure for
extrapolating the instantaneous clear-sky flux predictions
from ALEXI to full hourly and daily coverage, including
both clear and cloudy conditions, which can then be
integrated to longer timescales (monthly, annual, etc).
Alternatively, clear-sky fluxes can be composited over
multiday intervals to fill in a larger fraction of the model
domain.

[16] In this assessment of model utility for drought
detection, we focus on 28-day composites of clear-sky ET
and moisture stress fields from ALEXI, computed as

] nc

T/(m,y,i,j) :% Zv(}’l,y, ivj) (3)

n=1

where v (m, y, i, j) is an ALEXI output variable for month m,
year y, and i, j grid location, and v (n, y, i, j) is the value on
day n. For clear-sky composites, the number of values
included in the average (nc) (i.e., the number of days during
the compositing interval that pixel i, j was clear) will vary
across the domain because of variations in persistence of
cloud cover during month m. By filling the continental grids
through compositing rather than extrapolation, we simplify
interannual flux comparisons by reducing variability due to
cloud effects on net radiation, and we isolate signatures
from the clear-sky ALEXI algorithm from errors inherent in
the extrapolation technique. Furthermore, clouds tend to
relieve vegetation stress. The strongest signal of depleted
soil moisture conditions in terms of elevated canopy
temperature will be observed under clear-sky conditions.

[17] To highlight differences in moisture conditions
between years, and to improve comparability with climato-
logical indices like the Palmer drought index, stress index
maps will be presented as anomalies in monthly composited
values with respect to multiyear average fields determined
over the period of record consisting of ny years:

_ N R R .
Av(m7y.‘ lv]) - V(m7y7 17/) - E Zv(maya lv])' (4)
y=1

[18] Analyses and comparability will improve as more
years of model runs are accumulated; at present some
spatial artifacts can be associated with the relatively short
period of analysis (which is not truly representative of a
long-term climatological mean).

3.4. Comparison Drought Metrics

[19] The Palmer Drought Indices [Palmer, 1965, 1968]
have historically been the most commonly referenced
measures of drought in the United States, although their
functional deficiencies are well known. Given time series
measurements of daily precipitation and air temperature, a
simple two-layer soil model is used to estimate ET, soil
moisture storage, recharge, and surface runoff. The Palmer
family consists of three primary indices, each with a
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characteristic timescale. The Palmer moisture anomaly
index (Z index) represents the departure of modeled soil
moisture from the climatic mean for each month, indepen-
dent of antecedent conditions. Longer-term drought indices
are then developed from the Z index: the Palmer drought
severity index (PDSI; a measure of meteorological drought)
and the Palmer hydrologic drought severity index (PHDSI)
result from an analysis of a monthly Z index time series
with increasing stringent thresholds for determining
when drought conditions have been alleviated. Of these,
the Z index is most comparable with the ALEXI stress
index, which samples instantaneous surface conditions,
although moisture deficiencies from the previous month
may be integrated in terms of their effects on current
evaporative fluxes.

[20] Heim [2002] reviews the limitations of the Palmer
Indices. The algorithms used to compute the index values
are complex and opaque, and drought severity thresholds
are somewhat arbitrary. The core model neglects the effect
of seasonal changes in vegetation cover, snowmelt, and
frozen soil on water budget partitioning [Alley, 1984]. Index
values are not strictly comparable between seasons and
climatic regions across the United States, complicating
interpretation of the PDSI at the continental scale [Alley,
1984; Guttman, 1997; Guttman et al., 1992]. The indices
are also highly sensitive to choice of calibration coefficients
and soil available water capacity [Karl, 1983, 1986].

[21] ALEXI stress index patterns will also be compared
directly with anomalies in precipitation, determined over an
identical period of record. Here we use daily gridded
precipitation data derived from objective analyses of
ground-based rainfall measurements (~5000 stations per
day), performed by the Climate Prediction Center at a
resolution of 0.25° x 0.25° http://www.cpc.ncep.noaa.gov/
products/precip/realtime/GIS/USMEX/USMEX-precip.shtml).
These precipitation data are used for comparison purposes
only—the ALEXI model does not use precipitation as an
input.

[22] The Drought Monitor [Svoboda et al., 2002] (see
also http://drought.unl.edu/dm) represents an effort to syn-
thesize features present in multiple drought indices (includ-
ing the PDSI and VHI), along with anecdotal evidence of
moisture conditions relayed by experts in the field. It is a
joint effort involving several federal agencies and academic
institutions, and assessments are posted weekly in the form
of low-resolution maps accompanied by a narrative descrip-
tion of regional conditions. Drought Monitor reports will be
used to assess reliability of features in the ESI and other
moisture status indices.

4. Climatological Results
4.1. Period of Record

[23] The ALEXI model was run daily during the months
of April—September 2002—-2004. This seasonal interval was
selected in order to encompass most of crop growing cycle,
while excluding periods of pervasive snow cover. Currently,
the GOES-based insolation product used to constrain net
radiation does not discriminate between snow cover and
clouds [Otkin et al., 2005]. Model input fields to ALEXI
were developed as described by Al, using surface radio-
metric data from GOES and vegetation cover fraction
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derived from the MODIS MOD15A LAI product [Myneni et
al., 2002].

[24] The 3 years encompassed in this climatological
survey exhibit significant interannual variability in terms
of nationwide drought conditions. Figure 1 represents
monthly variations in percentage area of the United States
experiencing extreme severe dry and wet conditions from
1996 to 2005, as quantified by the PDSI (National Climatic
Data Center (NCDC)). In summary:

[25] 1. A combination of hot and dry conditions in 2002
created the worst extreme severe drought conditions that the
United States has experienced during the last 40 years,
peaking near 40% coverage in July and focused particularly
in the Southwest, and spreading into the Central Plains.
Extreme dryness also afflicted large portions of the eastern
seaboard, particularly around the Carolinas.

[26] 2. Conditions were somewhat improved in 2003, but
with extreme to severe drought conditions still covering
between 10% to 25% of the United States. By July, drought
had spread into the central and southern Great Plains with
forest fires burning in Glacier National Park in Montana and
in Arizona and Mexico.

[27] 3. The dry spell continued into 2004, but was
alleviated in the west to some extent during the latter half
of the year because of increased rainfall, although hydro-
logic drought persisted. For the first time since 1999, the
area experiencing extreme to severe drought conditions
dropped below 5% by the end of the year. NCDC ranked
2004 as the sixth wettest year on record for the contiguous
United States.

4.2. Actual and Potential Evapotranspiration

[28] Figure 2 shows “monthly” (28-day) composites of
clear-sky instantaneous latent heat flux from ALEXI at
time #, (5.5 hours past local sunrise) for April—September
of 2002-2004. Monthly composites of daytime total
fluxes (including both clear and cloudy intervals) exhibit
similar spatial characteristics. In general, the 3 years show
consistent trends in the spatiotemporal evolution of ET
over the United States. Early in the year, enhanced
evapotranspiration (green tones) initiates in the southeast
and then radiates up the eastern seaboard as forested
regions begin to leaf out. By midyear, a strong gradient
in ET is established east-west across the U.S, with a sharp

discontinuity occurring midcontinent at the transition from
dry to humid temperate climatic regimes. In the Midwest
Corn Belt, green up is delayed until June—July when the
dominant crops start to emerge, and the effects of crop
senescence and harvest in that region become apparent by
September.

[20] Despite these general similarities, significant inter-
annual variability in spatial ET distributions does exist,
driven primarily by differences in precipitation/climate and
vegetation growth patterns. Physical interpretation of these
ET maps (e.g., in terms underlying soil moisture condi-
tions) must by necessity be constrained by local consid-
erations. For instance, an area of elevated ET may or may
not reflect recent precipitation depending on canopy cover
conditions. In areas of very sparse vegetation, evaporation
predominantly occurs from the soil surface layer—about
the top 2—5 cm of the soil profile. Deeper layers are
quickly disconnected from the system evaporative flux
since the hydraulic conductivity rapidly drops to near zero
as the surface skin dries out. High ET over areas of
minimal vegetation cover is therefore an indicator of either
very recent precipitation, or a very shallow water table.
High ET rates will typically not be maintained over bare
soil for long periods without additional replenishment of
moisture content in the soil surface layer. Areas with thick,
healthy vegetation cover, on the other hand, can maintain
high ET for longer intervals after rain events because the
roots provide access to moisture deeper within the soil
profile.

[30] Normalization by the potential ET rate expected
when soil moisture is nonlimiting serves to simplify inter-
pretation of interannual ET variability, and to reduce some
of this conditional dependency. Figure 3 shows 28-day
composites of clear-sky fprr (fper) for June 2002—-2004.
These normalized fields are significantly smoother than are
the actual ET fields for this month (Figure 2). The impact of
the E-W vegetative gradient is reduced in fpgr, improving
comparability across climatic zones and highlighting areas
impacted by stress. The Carolinas, for example, were
experiencing extreme drought conditions in 2002.

[31] Note that the modified Priestley-Taylor (PT) approx-
imation for PET used in ALEXI (Appendix B of Al)
neglects advective forcings on evaporation rates, and may
therefore underestimate PET in the more arid and semiarid
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Figure 2. The 28-day clear-sky composites of instantaneous latent heat flux at time ¢, for April—

September of 2002—-2004.

climates of the western United States. Therefore actual fpzr
values in the west may be somewhat lower than those
displayed in Figure 3. The PT equation has been intention-
ally used in ALEXI instead of a Penman-Monteith approach
to simplify input data requirements and to maintain com-
patibility with the PT equation used by the two-source land
surface model as an initial estimate of the canopy transpi-

ration rate. In future analyses, the PT coefficient could be
made to vary with vapor pressure deficit to better capture
aridity effects in the PET.

4.3. Interannual Variability in Evaporative Stress

[32] To further emphasize climatologically extreme
events that have occurred during the period of investigation,

6 of 13



D11112

ANDERSON ET AL.: CLIMATOLOGY OF U.S.

EVAPOTRANSPIRATION, 2 Di11112

2004

125W 15 105

95 85 75 65 105 95 85 75 65

02 03 04

05 06 07 08

Figure 3. The 28-day clear-sky composites of fpz7 for June of 2002—-2004.

monthly deviations of ESI = I — fpgr from 3-year average
conditions (AESI, equation (4)) are mapped in Figure 4.
Red tones indicate areas characterized by above normal
evaporative stress, while green areas are experiencing wetter
than average conditions. The evaporative stress anomaly
index AESI has the advantage, in comparison with ESI or
frer in that it is less sensitive to inaccuracies in the
determination of PET. Effects of persistent spatiotemporal
biases in estimated PET (e.g., because of neglect of atmo-
spheric saturation deficit effects on the PT coefficient) are
reduced by subtracting the climatological mean. Some
features in Figure 4 are somewhat artificial, arising because
only 3 years of data were used to establish the climatolog-
ical basis (see, e.g., June, where an unusually wet area in the
Great Plains in 2003 coincides with unusually dry area in
2004). These fields will improve as more years of archived
model data become available to establish the baseline
fluxes, smoothing the monthly climatological means.

4.4. Comparison With Other Drought Metrics

4.4.1. Palmer Z Index L

[33] The spatiotemporal patterns in AES/ shown in
Figure 4 correlate well with trends in drought conditions
observed across the United States over this 3-year interval,
with increasingly wet (unstressed) conditions prevailing by
mid 2004 as discussed in section 4.1. In Figure 4, the
ALEXI evaporative stress anomaly index is compared with
maps of the Palmer Z index, reflecting the departure from
normal moisture conditions measured over the period
1900-2004 (data courtesy of the NCDC, http://www1.ncdc.
noaa.gov/pub/data/cirs/). To improve comparability with the
shorter-timescale ALEXI climatological record (2002—
2004), anomalies in the Z index (AZ) with respect to
monthly mean values for 2002—2004 have been displayed.

[34] Overall, there is good spatial correspondence
between the ALEXI and Palmer Indices, which represent
two completely independent means of detecting drought
conditions. The Z index is based primarily on measurements
of antecedent precipitation, while precipitation is not an
input to the ALEXI model. In ALEXI, drought conditions
are diagnosed from the remotely sensed LST and its
relationship to the vegetation cover fraction.

[35] In April 2002, both AESI and AZ highlight the dry
conditions that prevailed in the southwest and extended into
Colorado and the southern tip of Texas. ALEXI also picks
up the drought that is beginning to develop along the East
Coast. By June, the western drought had extended further

north and east into the northern High Plains, as indicated by
both ALEXI and Palmer indices. ALEXI also captures the
extreme drought occurring in Virginia and the Carolinas,
which led to forest fires, yield loss, and water shortages in
these areas. Midsummer rains in North Carolina helped to
downgrade drought severity in July 2002. However, the
extended drought had already significantly impacted cotton
and corn production in the Carolinas and Virginia. Light-
ning strikes in mid-July ignited the historic Biscuit Fire at
the Oregon-California border, ultimately engulfing almost
500,000 acres. In August, both indices show incipient
drought extending up the East Coast into New England
and Maine, as confirmed by the Drought Monitor. The west
remained engulfed in extreme drought through August
2002, but was relieved to some extent in September by
above-average rainfall in New Mexico and Utah.

[36] In April 2003, both indices show central Texas to be
extremely dry. These hot spots persist into May, while the
southeast and central Plains are classified as wetter than
average. In June, ALEXI indicates stress in Wisconsin and
Michigan, also evident to a lesser extent in AZ. The
Drought Monitor records the “introduction of abnormal
dryness around Lake Michigan™ at this time. Conditions
in the central and southern Plains, including Texas improve
in June 2003. In July, the southwest including Colorado was
reclassified from wet or average to extremely dry conditions
according to the Palmer Z index. The Drought Monitor
reports that New Mexico had the driest July in the past
109 years. ALEXI also records this switch in moisture
conditions. By August, dry conditions followed the border
with Canada through the west and Midwest, reflected in
both indices. ALEXI records a patch of stress in Missouri,
Kansas, and Oklahoma that is not seen in the Z index but
was noted in the Drought Monitor, which reported an
increase of corn and soybean crops in poor to very poor
condition this month in these states. The USDA reported
75% of Missouri’s rangeland pasture to be in poor to very
poor condition by the end of August 2003.

[37] In April 2004, a band of unusually dry conditions
extended from California northward into Washington State
and southeastward down into Florida, as seen in both AEST
and AZ. The United States Drought Monitor for April
reports that west Texas, New Mexico, and Colorado were
wetter than usual because of heavy rains, which eased
drought conditions in these areas, as is reflected in both
indices. Monthly precipitation in the southwest was twice
the climatological average, while in New Mexico, precipi-
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Figure 4. The 28-day clear-sky composites of the ALEXI evaporative stress anomaly index AEST
compared with anomalies in the Palmer Z index AZ for April—September of (a) 2002, (b) 2003, and

(c) 2004.
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Figure 5. Fields of AESI and AP for 2002—2004, averaged over April—September.

tation increased fourfold. In May, the southern and central
Plains suffered from lack of rain. Unlike the Z index,
ALEXI indicates stress in southwest Minnesota, while the
Drought Monitor also reported moderate to severe drought
in this area. In June 2004, the 28-day ALEXI composite
picks up signatures of drought in the Texas panhandle,
Oklahoma and Kansas that extended from May into the
early parts of June. The Z index resets at the first of the
month, and therefore is not influenced by conditions in
May. In July 2004, ALEXI and AZ show much of the west
and central United States as wetter than average for the 3-year
period of record. These wet conditions persist into the
month of August. In September, dry conditions prevailed
in a N-S band from Wisconsin and Michigan down to
Louisiana (see both AESI and AZ). Precipitation records
show that little or no rain occurred over southern Missouri
and Arkansas in 2004 during September, and Arkansas
experienced its third-driest September on record.

[38] In general, there is good qualitative agreement
between spatial patterns in AESI and AZ, indicating a
detectable impact of antecedent precipitation (as interpreted
by the Palmer index) on land surface temperature at
continental scales. The ALEXI evaporative stress anomaly
index shows persistence in coherent spatial features from
month to month, reflecting a natural time integration of
moderate-term moisture conditions insofar as they affect
LST and evaporative fluxes. Features in the Z index

disappear abruptly at the end of the month given the
imposed time constant of integration. Given its basis in
remote sensing, ALEXI is able to provide stress information
at significantly higher resolution than is the Palmer index.
4.4.2. Precipitation

[39] Maps of AESI and precipitation anomalies, AP,
with both quantities averaged over the months of April—
September, are displayed in Figure 5 for 2002 —-2004—maps
of anomalies in ET show similar patterns. While the spatial
correspondence is good, we do not necessarily expect
perfect agreement between these fields. The timing of
precipitation events with respect to the vegetation growth
cycle and antecedent moisture status will influence their
impact on system ET. When there is little green vegetation
present, or if the soil profile is already near its water-holding
capacity, the time-integrated impact of a large rainfall on
evapotranspiration will be lessened. Similarly, a large rain-
fall deficit in the eastern United States in 2002 results in a
somewhat weaker stress signal than does a smaller deficit in
Colorado, Kansas and Nebraska where the cover fraction is
lower and the active component of soil moisture is depleted
with a shorter time constant.

[40] The good agreement between these fields indicates
that the surface temperature signature, as interpreted by the
two-source land surface model in ALEXI, is indeed giving
useful information about soil moisture conditions. Because
of the influence of moisture stress on canopy temperature,
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these thermal-based methods even show sensitivity to
moisture content in the eastern United States under high
vegetation cover and therefore may be a valuable comple-
ment to microwave soil moisture retrieval techniques, which
lose sensitivity under these conditions.

5. Conclusions and Future Research

[41] The surface energy balance modeling techniques
described in this paper have demonstrated skill in identify-
ing areas subject to soil moisture stress primarily on the
basis of remotely sensed surface temperature and vegetation
index data. A satellite-derived evaporative stress index,
given by | minus the ratio of actual to potential ET (ESI =
I — fpe7), highlights areas where ET has been suppressed
because of depleted soil moisture or some other stressor.
Simpler TIR/VI-based drought indices like the vegetation
health index do not account for important forcings on surface
temperature, such as available energy and atmospheric
conditions, and can therefore generate spurious drought
detections under certain circumstances. Surface energy bal-
ance inherently incorporates these forcings, constraining ET
response in both energy and water-limited situations.

[42] Examining monthly clear-sky composites of ES/ for
April—October 2002—-2004, the ALEXT stress index shows
good spatial correlation with the Palmer Z index, which is
based on monthly deviations in precipitation from climatic
norms. The ESI also compares well directly to anomalies in
monthly precipitation fields. Unlike the standard meteoro-
logically based drought indicators, the ALEXI algorithm
does not use precipitation and soil texture data as input —
fields that are difficult to specify accurately at high resolu-
tion across continental scales. The spatial resolution of the
ALEXI ESI is limited by the resolution of the available
geostationary thermal data, typically 5—-10 km; drought-
affected areas can therefore be identified at the subcounty
level. An associated flux disaggregation technique, DisA-
LEXI [Norman et al., 2003; Anderson et al., 2004, 2005],
using TIR and VI data from polar orbiting systems such as
Landsat or Moderate Resolution Imaging Spectroradiometer
(MODIS), facilitates stress mapping at even finer resolu-
tions (60 m to 1 km).

[43] The ALEXI system has been fully automated and can
function with limited ground-based inputs, and therefore is
eminently portable to other continents with geostationary
satellite coverage. Preliminary flux evaluations have been
conducted over Spain using thermal data from Meteosat
with minimal modifications required to the model infra-
structure. Because the two-source land surface component
of ALEXI partitions ET into canopy transpiration and soil
evaporation components, we can potentially probe moisture
conditions both in the soil surface layer and the root zone.
The surface layer is expected to respond more rapidly to
precipitation deficits, and therefore the ability to separate
these two moisture pools is an advantage of the two-source
approach in ALEXI in comparison with single-source
thermal land surface models (Al). Ongoing studies are
examining the utility of ESIg and ESI. for monitoring both
meteorological and agricultural drought, respectively, with-
in this unified modeling framework.

[44] Satellite-derived drought indices have a disadvantage
in terms of temporal “‘extendability” [Keyantash and
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Dracup, 2002]; the long-term climatological record for the
ESI is limited by the time span of the geostationary satellite
record. Al demonstrate that noise in fpg7 is uneven across
the monitoring domain because of variability in cloud cover
persistence, and incomplete cloud clearing of the thermal
satellite inputs can add spurious artifacts to the product.
Improved methods for cloud masking should increase the
robustness of shorter-term (e.g., weekly) ESI composites.
Future work will investigate the impact of alternative forms
for computing potential ET on drought severity predic-
tions, e.g., imposing a crop coefficient or VPD-dependent
Priestley-Taylor coefficient. While it is likely that PET is
underestimated in the western United States by employing
the Priestley-Taylor formulation, some of this bias is
removed in the computation of temporal deviations from
mean conditions. Further validation of actual ET estimates
from ALEXI in southwestern field sites is underway, testing
model response to variable VPD and advective conditions.
Good agreement has been found between flux estimates
from the two-source land surface component of ALEXI and
flux measurements made in southern Arizona under a range
in surface moisture conditions [Li et al., 2007].

[45] Svoboda et al. [2002] describe recent efforts to objec-
tively blend multiple indices to create a drought product that
is less subjective and labor intensive than the manually
generated Drought Monitor. Ground- and satellite-based
indicators provide independent information regarding
surface moisture conditions, and in combination should
improve regional drought assessments if errors are uncorre-
lated. With ALEXI/DisALEXI, a multiscale monitoring
approach is possible. Composites of the ALEXI EST can be
generated weekly using geostationary satellite data, identi-
fying areas at the continental scale that appear to be experi-
encing moisture stress. These areas can then be targeted for
disaggregation using high-resolution imagery from polar
orbiting satellites. Landsat-resolution (~ 100 m) thermal data
typically resolves individual fields, facilitating subcounty
level assessments of vegetation health by crop type. Given
the demonstrated utility of the thermal band for remote
drought detection, there is clear necessity for maintaining a
comprehensive and continuous record of high-quality TIR
imagery covering the globe at a variety of spatial resolutions.

[46] Acknowledgments. This work was supported by the NASA
EOS and Land Surface Hydrology Programs. In particular, funding for this
research was provided primarily by NASA grant NAG13-99008 and in part
by USDA Cooperative Agreement 58-1265-1-043.

References

Allen, R. G., M. Tasumi, A. T. Morse, and R. Trezza (2005), A Landsat-
based energy balance and evapotranspiration model in western U.S. water
rights regulation and planning, J. Irrig. Drain. Syst., 19, 251-268.

Alley, W. M. (1984), The Palmer drought severity index: Limitations and
assumptions, J. Clim. Appl. Meteorol., 23, 1100—1109.

Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R.
Mecikalski (1997), A two-source time-integrated model for estimating
surface fluxes using thermal infrared remote sensing, Remote Sens. En-
viron., 60, 195-216.

Anderson, M. C., J. M. Norman, J. R. Mecikalski, R. D. Torn, W. P. Kustas,
and J. B. Basara (2004), A multi-scale remote sensing model for disag-
gregating regional fluxes to micrometeorological scales, J. Hydrometeor-
ol., 5, 343-363.

Anderson, M. C., J. M. Norman, W. P. Kustas, F. Li, J. H. Prueger, and J. M.
Mecikalski (2005), Effects of vegetation clumping on two-source model
estimates of surface energy fluxes from an agricultural landscape during
SMACEX, J. Hydrometeorol., 6, 892—909.

12 of 13



D11112

Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. P. Otkin, and W. P.
Kustas (2007), A climatological study of evapotranspiration and moisture
stress across the continental United States based on thermal remote sen-
sing: 1. Model formulation, J. Geophys. Res., doi:10.1029/
2006JD007506, in press.

Bastiaanssen, W. G. M., E. J. M. Noordman, H. Pelgrum, G. Davids, B. P.
Thoreson, and R. G. Allen (2005), SEBAL model with remotely sensed
data to improve water-resources management under actual field condi-
tions, J. Irrig. Drain. Eng., 131, 85—93.

Bayarjargal, Y., A. Karnieli, M. Bayasgalan, S. Khudulmur, C. Gandush,
and C. J. Tucker (2006), A comparative study of NOAA-AVHRR derived
drought indices using change vector analysis, Remote Sens. Environ.,
105, 9-22.

Dracup, J. A., K. S. Lee, and E. G. Paulson Jr. (1980), On the definition of
droughts, Water Resources Res., 16, 297—302.

Guttman, N. B. (1997), Comparing the Palmer drought index and the
standardized precipitation index, J. Am. Water Resour. Assoc., 35,
113-121.

Guttman, N. B., J. R. Wallis, and J. R. M. Hosking (1992), Spatial compar-
ability of the Palmer drought severity index, Water Resour. Bull., 28,
1111-1119.

Heim, R. R. (2002), A review of twentieth-century drought indices used in
the United States, Bull. Am. Meteorol. Soc., 83, 1149—1165.

Idso, S. B., R. D. Jackson, P. J. Pinter, R. J. Reginato, and J. L. Hatfield
(1981), Normalizing the stress-degree-day parameter for environmental
variability, Agric. Meteorol., 24, 45-55.

Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter (1981), Canopy
temperature as a crop stress indicator, Water Resour. Res., 17, 1133—
1138.

Karl, T. R. (1983), Some spatial characteristics of drought duration in the
United States, J. Clim. Appl. Meteorol., 22, 1356—1366.

Karl, T. R. (1986), The sensitivity of the Palmer drought severity index and
Palmer’s Z-index to their calibration coefficients including potential eva-
potranspiration, J. Clim. Appl. Meteorol., 25, 77—86.

Karnieli, A., M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and
C. J. Tucker (2006), Comments on the use of the vegetation health index
over Mongolia, Int. J. Remote Sens., 27, 2017—-2024.

Keyantash, J., and J. A. Dracup (2002), The quantification of drought: An
evaluation of drought indices, Bull. Am. Meteorol. Soc., 83, 1167—1180.

Kogan, F. N. (1997), Global drought watch from space, Bull. Am. Meteorol.
Soc., 78, 621-636.

Li, F., W. P. Kustas, M. C. Anderson, J. H. Prueger, and R. L. Scott (2007),
Effect of remote sensing spatial resolution on interpreting tower-based
flux observations, Remote Sens. Environ, in press.

Mecikalski, J. M., G. R. Diak, M. C. Anderson, and J. M. Norman (1999),
Estimating fluxes on continental scales using remotely-sensed data in an
atmosphere-land exchange model, J. Appl. Meteorol., 38, 1352—1369.

ANDERSON ET AL.: CLIMATOLOGY OF U.S. EVAPOTRANSPIRATION, 2

Di11112

Monteith, J. L. (1965), Evaporation and environment, in The State and
Movement of Water in Living Organisms, Symp. Soc. Exp. Biol.,
vol. 19, pp. 205-234, Cambridge Univ. Press, New York.

Moran, M. S. (2003), Thermal infrared measurement as an indicator of
plant ecosystem health, in Thermal Remote Sensing in Land Surface
Processes, edited by D. A. Quattrochi and J. Luvall, pp. 257—282, Taylor
and Francis, Philadelphia, Pa.

Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal (1994), Estimating crop
water deficit using the relation between surface-air temperature and spec-
tral vegetation index, Remote Sens. Environ., 49, 246—263.

Myneni, R. B., et al. (2002), Global products of vegetation leaf area and
fraction absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214-231.

Norman, J. M., M. C. Anderson, W. P. Kustas, A. N. French, J. Mecikalski,
R. Torn, G. R. Diak, T. J. Schmugge, and B. C. W. Tanner (2003),
Remote sensing of surface energy fluxes at 10'-m pixel resolutions,
Water Resour. Res., 39(8), 1221, doi:10.1029/2002WR001775.

Otkin, J. A., M. C. Anderson, J. R. Mecikalski, and G. R. Diak (2005),
Validation of GOES-based insolation estimates using data from the Uni-
ted States Climate Reference Network, J. Hydrometeorol., 6, 460—475.

Palmer, W. C. (1965), Meteorological drought, 58 pp, U.S. Weather Bur.
Res. Pap. 45, NOAA, Silver Spring, Md.

Palmer, W. C. (1968), Keeping track of crop moisture conditions, nation-
wide: The new crop moisture index, Weatherwise, 21, 156—161.

Svoboda, M., et al. (2002), The drought monitor, Bull. Am. Meteorol. Soc.,
83, 1181-1190.

Tasumi, M., R. Trezza, R. G. Allen, and J. L. Wright (2005), Operational
aspects of satellite-based energy balance models for irrigated crops in the
semi-arid U. S., J. Irrig. Drain. Syst., 19, 355-376.

Wilhite, D. A., and M. H. Glantz (1985), Understanding the drought phe-
nomenon: The role of definitions, Water Int., 10, 111-120.

M. C. Anderson and W. P. Kustas, Hydrology and Remote Sensing
Laboratory, ARS, USDA, Bldg 007 Rm 104 BARC-West, 10300 Baltimore
Ave, Beltsville, MD 20705, USA. (manderson@hydrolab.arsusda.gov;
bkustas@hydrolab.arsusda.gov)

J. R. Mecikalski, National Space Science and Technology Center,
University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL
35805, USA. (johnm@nsstc.uah.edu)

J. M. Norman, Department of Soil Science, University of Wisconsin-
Madison, 263 Soils, 1525 Observatory Drive, Madison, WI 53706, USA.
(jmnorman(@facstaft.wisc.edu)

J. A. Otkin, Cooperative Institute for Meteorological Satellite Studies,
University of Wisconsin-Madison, 1225 West Dayton Street, Madison, W1
53706, USA. (jason.otkin@ssec.wisc.edu)

13 of 13



