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ABSTRACT: Increased flash drought awareness in recent years has motivated the development of numerous indicators
for monitoring, early warning, and assessment. The flash drought indicators can act as a complementary set of tools by
which to inform flash drought response and management. However, the limitations of each indicator much be measured
and communicated between research and practitioners to ensure effectiveness. The limitations of any flash drought indica-
tor are better understood and overcome through assessment of indicator sensitivity and consistency; however, such assess-
ment cannot assume any single indicator properly represents the flash drought “truth.” To better understand the current
state of flash drought monitoring, this study presents an intercomparison of nine, widely used flash drought indicators. The
indicators represent perspectives and processes that are known to drive flash drought, including evapotranspiration and
evaporative demand, precipitation, and soil moisture. We find no single flash drought indicator consistently outperforms all
others across the contiguous United States. We do find the evaporative demand- and evapotranspiration-driven indicators
tend to lead precipitation- and soil moisture-based indicators in flash drought onset, but also tend to produce more flash
drought events collectively. Overall, the regional and definition-specific variability in results supports the argument for
a multi-indicator approach for flash drought monitoring, as advocated by recent studies. Furthermore, flash drought
research}especially evaluation of historical and potential future changes in flash drought characteristics}should test
multiple indicators, datasets, and methods for representing flash drought, and ideally employ a multi-indicator analysis
framework over use of a single indicator from which to infer all flash drought information.

SIGNIFICANCE STATEMENT: Rapid onset or “flash” drought has been an increasing concern globally, with quickly
intensifying impacts to agriculture, ecosystems, and water resources. Many tools and indicators have been developed to
monitor and provide early warning for flash drought, ideally resulting in more time for effective mitigation and reduced im-
pacts. However, there remains no widely accepted single method for defining, monitoring, and measuring flash drought,
which means most indicators that are developed are compared with other individual indicators or conditions and impacts in
one or two flash drought events. In this study, we measure the state of flash drought monitoring through an intercompari-
son of nine, widely used flash drought indicators that represent different aspects of flash drought. We find that no single
flash drought indicator outperformed all others and suggest that a comprehensive flash drought monitor should leverage
multiple, complementary indicators, datasets, and methods. Furthermore, we suggest flash drought research}especially
that which reflects on historical or projected changes in flash drought characteristics}should seek multiple indicators, data-
sets, and methods for analyses, thereby reducing the potentially confounding effects of sensitivity to a single indicator.
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1. Introduction

Flash drought is characterized by unusually rapid drought
intensification over subseasonal time scales, which reduces

lead time for preparation, response, and management to
drought conditions (Otkin et al. 2022). Although precipitation
deficits are a prerequisite for all types of drought, flash drought
is often caused by concurrent precipitation deficit and elevated
evapotranspiration due to high temperatures, low humidity,
strong winds, abundant solar radiation, or a combination of these
conditions (Otkin et al. 2018). The co-occurrence of limited pre-
cipitation and high evapotranspiration can cause a rapid deple-
tion of soil moisture availability for plant use (Mozny et al. 2012;
Otkin et al. 2013; Ford and Labosier 2017; Koster et al. 2019).
Rapid soil drying can lead to vegetation moisture stress and the
emergence of ecological and agricultural impacts. Because it re-
sults from insufficient precipitation and high evapotranspiration,
flash drought is most likely to develop during the growing season
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when both evaporative demand and vegetation moisture require-
ments are high. Consequently, flash droughts have the potential
to cause significant ecological, economic, and cultural impacts.
For example, economic impacts from the 2012 flash drought in
the central United States were estimated to be approximately
$40 billion (Rippey 2015). The 2017 flash drought in the U.S.
northern plains caused an estimated $240 million loss in
recreation tourism in Montana alone (Hoell et al. 2020).
These are just two of many examples of the adverse impacts
of flash droughts on the environment and economy (e.g.,
Nguyen et al. 2019; Basara et al. 2019; Christian et al. 2020;
Hunt et al. 2021).

The substantial impacts caused by recent flash drought
events have motivated development of multiple indicators
and indices for flash drought monitoring, identification, and
early warning (Lisonbee et al. 2021). Mirroring the varied and
complex processes through which flash drought occurs (e.g.,
Osman et al. 2022), indicators have been derived from a di-
verse set of meteorological and hydrological variables known
to contribute to flash drought, including precipitation deficits
(Noguera et al. 2020; Fu and Wang 2022), elevated evapora-
tive demand or evapotranspiration (Otkin et al. 2013; Hobbins
et al. 2016; Christian et al. 2019), and soil moisture depletion
(Osman et al. 2021; Otkin et al. 2021). While individual indica-
tors have been shown to effectively capture the onset and evo-
lution of flash drought events (Otkin et al. 2016; Nguyen et al.
2019), they inherently represent only a single component of
the interconnected processes that cause flash drought. The sin-
gular focus on precipitation, evapotranspiration, evaporative
demand, or soil moisture, limits the extrapolation of these
indicators beyond their test cases for monitoring compound
multivariate hazards such as flash drought (e.g., Otkin et al.
2013).

The myriad limitations and caveats in any individual flash
drought indicator can be better understood and overcome
through a combination of case study and climatological as-
sessment of their ability to capture flash drought onset and/or
severity. Numerous prior studies have done this, evaluating the
flash drought monitoring efficacy of individual indicators
across a single or multiple flash drought events (e.g., Anderson
et al. 2013; Ford et al. 2015; Christian et al. 2019; Chen et al.
2019; Hoffmann et al. 2021). The advantage of a case study
assessment is that it tests an indicator in a real drought situ-
ation. However, differences in characteristics between flash
droughts also necessitate a climatological assessment to en-
sure an indicator can perform well across a multitude of
conditions and regions. In this study, we leverage the bene-
fits of both climatological and case study assessments to test
indicators.

The ideal validation of a drought indicator would be through
its comparison with a tangible drought impact (e.g., crop yield
loss, watering restrictions, excess wildlife mortality). However,
drought impact assessment is a challenging endeavor partly be-
cause of the diversity of the impacts and when they occur. For ex-
ample, the 2012 U.S. flash drought caused widespread mortality
of seedlings on Christmas tree farms; however, this impact was
not fully realized until several years later with a shortage of
Christmas tree stock (Gutzmer 2018). The complexity of drought

impacts has challenged impact monitoring and reporting, and our
current infrastructure}while rapidly improving}is not sufficient
to capture the breadth and depth of impacts from a severe
drought (Bachmair et al. 2016). Consequently, most prior studies
that evaluate one or more indicators of drought or flash drought
determine a benchmark dataset or indicator that is assumed to
represent the “truth.” This approach may be reasonable in cases
where the ultimate goal is improving monitoring or early warning
for a specific result, such as soil moisture drought (e.g., Hoffmann
et al. 2021; Parker et al. 2021). However, the results of such 1-to-1
indicator comparisons are limited by the uncertainties and
limitations of the indicator that serves as the benchmark or
“truth.” This issue is exacerbated in the case of flash drought,
where there is not a single dataset or indicator that is widely
considered the benchmark to which other indicators can be
compared.

From an operational monitoring perspective, the suite of po-
tentially effective flash drought indicators can act as a comple-
mentary set of tools by which to inform flash drought response
and management. However, the limitations and uncertainties
with each tool must be well measured and communicated be-
tween research and operations to ensure proper use of any indi-
vidual indicator (Otkin et al. 2022). Furthermore, we argue these
limitations cannot be properly understood through 1-to-1 indica-
tor comparisons.

Instead of assuming a single indicator or dataset represents
the truth of flash drought, for our intercomparison we assume
all indicators represent a version of the truth. In this way, we
can evaluate a single indicator with respect to the multiple
versions of the truth provided by the other indicators. Ideally,
an indicator’s version of the truth will closely match that of
other indicators, providing confidence in a convergence of evi-
dence toward operational flash drought monitoring. Osman
et al. (2021) used a similar approach to study the sensitivity of
flash drought climatology and trends in individual indicators
and definitions. Our study is focused on providing a holistic
set of evaluations by which to inform operational flash
drought monitoring using a suite of indicators. In this way, the
study highlights differences in indicator performance when
compared with other indicators and by geographic region.
The study’s focus is the contiguous United States (CONUS)
and evaluates flash drought monitoring over the period
from 2002 to 2021, with flash drought case studies in 2012
and 2019.

2. Flash drought indicators

Since its inception in the scientific lexicon in the early
2000s, flash drought has been defined, studied, and monitored
using many indicators and datasets. Most flash drought studies
have used one or more indicators that can be broadly catego-
rized as those representing 1) evapotranspiration, 2) soil mois-
ture, and 3) precipitation (Lisonbee et al. 2021). Lisonbee
et al. (2021) also include a category for temperature-based
monitoring, but the effects of temperature on flash drought
are captured by the evaporative demand-based indicators.
For this study, we select indicators from these three cate-
gories, thereby representing many important processes and
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impacts associated with flash drought. Within each category
we select indicators that are both widely used in previous re-
search and available for operational monitoring. The latter of
these conditions is important as our intent is to remark on the
current state of flash drought indicators for real-time monitor-
ing applications. Table 1 contains more detailed information
about each of the flash drought indicators used. Although the
indicators selected for this study are not meant to be exhaus-
tive, they do include at least one indicator from each of
the major flash drought monitoring categories delineated by
Lisonbee et al. (2021).

a. Evapotranspiration and evaporative demand indicators

While there has been considerable disagreement among re-
searchers as to how flash drought is characterized and defined,
most agree evapotranspiration and evaporative demand play
important roles in rapid onset drought and intensification
(Otkin et al. 2018; Pendergrass et al. 2020; Nguyen et al. 2023;
O and Park 2023). We use two widely studied evapotranspira-
tion and evaporative demand-based indicators for this study:
the evaporative demand drought index (EDDI; Hobbins et al.
2016) and the evaporative stress index (ESI; Anderson et al.
2007).

EDDI is a nonparametric percentile-based representation
of evaporative demand anomalies. In this study, as in most ap-
plications of EDDI, evaporative demand is estimated using
the American Society of Civil Engineers standardized refer-
ence evapotranspiration equation (Allen et al. 2005), based
on the parameterized Penman–Monteith equation. Standardized
evapotranspiration probabilities are derived using an inverse-
normal approximation. Negative (positive) EDDI values
indicate evaporative demand that is below (above) the
climatological median values. A more detailed description
of EDDI, and its derivation are provided in Hobbins et al.
(2016). For this study, we obtained daily EDDI datasets
from the NOAA/Physical Sciences Laboratory, where EDDI
is also available for operational monitoring (https://psl.noaa.
gov/eddi/). Reference evapotranspiration used to compute
EDDI comes from the operational North American Land
Data Assimilation System (NLDAS-2; Xia et al. 2012). Daily
EDDI data are available at 0.1258 spatial resolution across
CONUS from 1979 to present. We use EDDI computed over
14-day (EDDI-14) and 28-day (EDDI-28) intervals to capture

the typical duration of flash drought onset (e.g., Otkin et al.
2018). We also computed all results with 56-day EDDI, but
the results did not significantly differ from the 28-day itera-
tion, so we only show EDDI-28 results for brevity.

ESI is an evapotranspiration -based indicator, but unlike
EDDI that uses only reference evapotranspiration, ESI is
computed as the ratio of the actual evapotranspiration to a
reference evapotranspiration. The Atmospheric Land Ex-
change Inverse (ALEXI; Anderson et al. 1997) model is used
to estimate actual and reference evapotranspiration. Ratios of
actual to reference evapotranspiration are standardized using
a similar procedure as EDDI, based on climatological anoma-
lies. A more detailed description of ESI and its derivation are
in Anderson et al. (2007) and Otkin et al. (2013). ESI is avail-
able for operational monitoring at ClimateSERV (https://
climateserv.servirglobal.net/map), but only the 28- and 84-day
ESI products are available for download. For consistency with
EDDI, we obtained 14-day (ESI-14) and 28-day (ESI-28) prod-
ucts directly from Dr. C. Hain at the NASA Marshall Space
Flight Center. Daily ESI-14 and ESI-28 products are available
at 0.1258 resolution across CONUS from 2002 to present.

To identify flash droughts based on ESI and EDDI, we
combine the methods of Pendergrass et al. (2020) and Parker
et al. (2021). Specifically, a flash drought is identified with a
$50-percentile change in EDDI or ESI (toward drying) over
14 days. This onset period must end with EDDI reaching at
least the 80th percentile or ESI dipping to or below the 20th
percentile. Last, the high EDDI or low ESI values must be
sustained for another 14 days to imply drought conditions. A
flash drought event was terminated when the EDDI fell below
the 80th percentile (or ESI climbed above the 20th percentile)
and remained there for at least another 14 days. This tech-
nique ensured the method did not identify two separate flash
droughts within a 2-week period.

b. Soil moisture indicator

Soil moisture is an important indicator of flash drought (Ford
and Labosier 2017; Otkin et al. 2019) and is often used as a
benchmark by which to compare other indicators (Christian et al.
2021; Hoffmann et al. 2021; Parker et al. 2021). For this study, we
use 0–40-cm soil moisture from the NLDAS-2 Noahmodel to rep-
resent soil moisture conditions. The Noah model simulates hourly
soil moisture at multiple depths, and we integrate conditions

TABLE 1. Flash drought indicators used in the study.

Indicator
Native

resolution Period of record Reference Data source

EDDI (14 and 28 day) 0.1258 1979–present Hobbins et al. (2016) https://psl.noaa.gov/eddi/
ESI (14 and 28 day) 0.1258 2002–present Anderson et al. (2007) https://climateserv.servirglobal.net/map
SMVI 0.1258 1979–present Osman et al. (2021) https://ldas.gsfc.nasa.gov/nldas/

NLDAS2forcing.php
SPEI (14 and 30 day) 4 km 1979–present Vicente-Serrano et al.

(2010)
https://www.climatologylab.org/gridmet.html

SPI (14 and 30 day) 4 km 1979–present McKee et al. (1993) https://www.climatologylab.org/gridmet.html
USDM } 1979–present Svoboda et al. (2002) https://droughtmonitor.unl.edu/DmData/

GISData.aspx
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across 0–40 cm, matching the depths used in past studies (e.g.,
Ford and Labosier 2017; Osman et al. 2021). Daily NLDAS-2
soil moisture is available at a 0.1258 resolution from 1979 to
present, and we aggregate hourly soil moisture to daily aver-
ages. The NLDAS-2 Noah model was used in this study be-
cause it has been previously shown to have high soil moisture
simulation fidelity (Xia et al. 2015), and it is available in near
real-time for operational drought monitoring (https://ldas.gsfc.
nasa.gov/nldas/drought-monitor).

To identify flash drought based on NLDAS-2 soil moisture,
we adopt the soil moisture volatility index (SMVI; Osman
et al. 2021). Based on the SMVI, a flash drought is identified
if 1) the 5-day running average soil moisture falls below the
20-day running average soil moisture for at least 20 days, and
2) by the end of the 20-day period the soil moisture has
dropped below its climatological 20th percentile for that time
of the year. Soil moisture percentiles were calculated using a
30-day moving window over calendar years, thereby removing
the effects of soil moisture seasonality (e.g., Ford and Quiring
2019). Osman et al. (2021) found the SMVI was more stable
than previously proposed soil moisture-based metrics that re-
lied solely on the “drop” in soil moisture from the 40th to the
20th percentile. The flash drought was considered to be termi-
nated once the soil moisture climbed above the 20th percen-
tile and remained there for at least 14 days.

c. Precipitation indicator

As with any drought, precipitation deficits play an impor-
tant role in determining the speed, intensity, and duration of a
flash drought event. In this study, we use the standardized
precipitation index (SPI; McKee et al. 1993) as a precipitation-
based indicator of flash drought. Precipitation fields for SPI
were taken from the gridMet dataset (Abatzoglou 2013), which
is available daily at an approximately 4-km spatial resolution
across CONUS from 1979 to the present. The precipitation
fields were upscaled to the common 0.1258 spatial resolution
of the other indicators. SPI was then calculated as the gamma-
standardized n-day precipitation accumulation. We derive SPI
over 14-day (SPI-14) and 30-day (SPI-30) periods to capture the
typical flash drought period of onset.

d. Combined indicator

We use the standardized precipitation evapotranspiration
index (SPEI; Vicente-Serrano et al. 2010) as an indicator of
the combined effects of precipitation and evapotranspiration.
Precipitation and reference evapotranspiration fields for SPEI
were taken from the gridMet dataset, and upscaled to the com-
mon 0.1258 spatial resolution of the other indicators. SPEI was
calculated as the log-logistic standardized n-day accumulation
of differences between precipitation and reference evapotrans-
piration. We derived SPEI over 14-day (SPEI-14) and 30-day
(SPEI-30) periods.

We included both SPI and SPEI in this study to contrast
the performance of similar metrics with and without the inclu-
sion of reference evapotranspiration. This comparison is particu-
larly important given the outsized role evaporative demand can
plan in flash drought onset (Christian et al. 2020; Noguera et al.

2022). We adopt the method of Noguera et al. (2020) for identi-
fying flash drought based on SPI and SPEI, where a flash
drought requires a decrease in SPI or SPEI over 28 days with a
total change in SPI or SPEI of 2 or greater and a final SPI or
SPEI value of21.28 or less.

e. The U.S. Drought Monitor

The U.S. Drought Monitor (USDM; Svoboda et al. 2002) is a
weekly map-based drought severity analysis produced by one of
multiple authors with significant local input on drought conditions.
The USDM uses a “convergence of evidence” approach to
drought monitoring, such that USDM-depicted drought condi-
tions in any given region on any given week will generally not be
based on a single indicator. While somewhat subjective, this ap-
proach to drought monitoring reduces the negative impacts of
biases in individual indicators and ensures local experts can inform
the authors about conditions in their areas. USDMmaps are pro-
duced each week on Tuesday and are released on Thursday.

We obtained weekly USDM maps in shapefile format and
converted them to raster format with the common 0.1258 spa-
tial resolution of the other indicators. The shapefile-to-raster
function assigned each grid cell the worst USDM drought cat-
egory that encompassed at least 25% of the gridcell area. The
once-weekly USDM dataset was then converted to a daily
temporal resolution by assuming the same USDM value for
each of the 6 days following the Tuesday on which the USDM
map was produced. In this way we compare the USDM as it
would be compared in an operational drought monitoring en-
vironment, assuming the map depicts drought accurately until
the next USDM map is released. Flash drought is then identi-
fied in the daily USDM dataset using the Pendergrass et al.
(2020) method of having a 21-category decline in 2 weeks
that is then sustained another 2 weeks.

f. Alternative EDDI indicator

Methods used to identify flash drought for both operational
monitoring and research applications generally follow the
same guidelines irrespective of the indicator or variable used.
Those guidelines tend to include a “flash” component where
conditions change from nondrought to drought in a relatively
short period of time, typically 2–6 weeks. Also included is a
“drought” component where conditions must decline to at
least drought status, and in many cases persist in drought sta-
tus for another 2–6 weeks. However, differences in variables,
thresholds, time periods, and standardization techniques can
cause significant differences in the climatological frequency
and intensity of flash drought across different regions. To bet-
ter understand the sensitivity of our results to the method of
identifying flash drought, we repeat the analysis using an al-
ternative identification method based on EDDI-14.

Following a standardized change anomaly technique from
Otkin et al. (2013) and Christian et al. (2019), we derive a
“flash” component by calculating a standardized change in
EDDI (EDDIijdz), such that

EDDIijdz 5
EDDIijd 2 EDDIijd

sEDDIijd
, (1)
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where EDDIijdz is the daily change in EDDI-14 at grid cell i, j
and calendar day d, EDDIijd is the mean change in EDDI-14
for a specific grid cell and calendar day, and sEDDIijd is the
standard deviation of EDDI-14 for a specific grid cell and cal-
endar day. Therefore, EDDIijdz represents the z score of the
change in EDDI-14 for a specific grid cell and calendar day.
This method accounts for the mean and variability of day-to-
day change in EDDI-14 in a specific location, thereby remov-
ing the background climatology of high frequency changes in
EDDI-14.

Flash drought is identified based on EDDIijdz (herein re-
ferred to as DEDDIz) using the 4-part method proposed by
Christian et al. (2019). Flash drought events are required to
have 1) a minimum length of change of 30 days and 2) a final
EDDI-14 value at or above its 80th percentile at the end of
the 30-day “flash” period. Additionally, the DEDDIz must be
at or above the 60th percentile between individual days and
there must be no more than 6 days in the 30-day period where
the daily DEDDIz value is below the 60th percentile. Christian
et al. (2019) calculated flash drought at the pentad scale and
required that at least 5 of 6 pentads during the “flash” period
had a change above the 60th percentile. To match the daily
scale of our analysis, we similarly require at least 24 of 30 days
in the “flash” period to have DEDDIz values above the 60th
percentile. The DEDDIz flash drought climatology and inter-
comparison statistics are compared with those from EDDI-14
to evaluate the sensitivity of our results to flash drought identi-
fication methods. The goal of this analysis is not to provide a
comprehensive evaluation of all indicator sensitivity to flash
drought, but instead demonstrate the importance of under-
standing threshold sensitivity when using a single indicator for
flash drought monitoring and/or research.

Standardization and percentile calculation for EDDI, SPEI,
SPI, and SMVI used statistics over the common period 1979–
2021, while the ESI products used were standardized based on
statistics from the 2002–21 period. The different time periods
over which indicators were computed could introduce a bias
ratio in the results; however, given all but 1 of the standardized
products used the same common period 1979–2021, it would
be unfair to restrict this period because the ESI solely uses a
shorter period. All indicators were compared at a common
0.1258 spatial scale and daily temporal scale over the common
period of March–November 2002–21. Because flash drought is
predominantly a warm-season phenomenon, we did not assess
flash drought onset between December and February.

3. Intercomparison methods

a. Climatological assessment

The goal of this study is to compare ten flash drought indi-
cators to better understand the consistency between them
when monitoring for flash drought. We hold a single indicator
as the “comparison,” which is the indicator we are evaluating.
This indicator is then compared with each of the other nine
indicators separately. In these comparisons, we assume each
of the nine other indicators is the “benchmark” or truth. For
each “comparison” and “benchmark” indicator evaluation,

the 1-to-1 and aggregated comparison statistics are reported.
This process is then repeated for each of the nine remaining
indicators, iteratively holding one as the “comparison” and
the others as the “benchmark.” This process allows us to eval-
uate each indicator against other individual indicators as well
as against the field of flash drought indicators in aggregate.

One-to-one indicator evaluations are done using a map
comparison approach. This process is described using the fol-
lowing example comparing EDDI-14 to SMVI. In this case,
EDDI-14 is selected as the “comparison” indicator (the indi-
cator we want to evaluate) and the SMVI is selected as the
“benchmark” indicator. For those more familiar with forecast
verification, in this example the SMVI is practically denoted
as the observation and EDDI-14 as the prediction. We then
select a single day’s field of EDDI-14 across CONUS and
compare it with each single day’s field of SMVI within 4 weeks
before and after the EDDI-14 day selected. In this way, the
EDDI-14 field is compared with every SMVI field from 28 days
prior to 28 days after. Our 1-to-1 indicator comparisons lag and
lead the benchmark indicator to capture the potential differences
in the timing of flash drought onset between indicators. This ap-
proach more fairly evaluates indicators that may capture the
same flash drought within a relatively small time window, and
also allows us to measure the average lag or lead time with which
the comparison indicator captures flash drought.

For each 1-to-1 comparison of daily flash drought fields,
each grid cell in the comparison indicator across CONUS is
compared with the corresponding grid cell in the benchmark
indicator. The comparison produces a contingency table of
hits a, false alarms b, misses c, and correct negatives d. A hit
is when both indicators indicate a flash drought, and a correct
negative is when both indicators indicate that there is not a
flash drought. In the case of our analysis, there is no certified
flash drought “truth,” and therefore there are no true false
alarms or misses. Instead, both false alarms and misses repre-
sent disagreement between the comparison and benchmark
indicators. The contingency table of each 1-to-1 comparison is
used to calculate the threat score (TS):

TS 5
a

a 1 c 1 b
: (2)

The TS is a measure of how well flash drought events in the
comparison indicator, EDDI-14 in our example, correspond
with flash drought events in the benchmark indicator, SMVI
in our example. We also compute the bias ratio measure for
each 1-to-1 comparison:

bias ratio 5
a 1 b
a 1 c

: (3)

Bias ratio is a measure of the ratio of flash drought events in
the comparison indicator to the frequency of flash drought
events identified by the benchmark indicator. We use bias ra-
tio to indicate if the comparison indicator tends to identify
fewer or more flash droughts with respect to other indicators.
These comparisons and calculations of TS and bias ratio are
repeated by comparing the EDDI-14 field on the single day to
every SMVI field from 28 days prior to 28 days after. We then
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report the highest overall TS between EDDI-14 and SMVI
across the 57-day comparison and the bias ratio on the day
with the highest TS.

This approach has the benefit of simultaneously comparing
two indicators over space and over time and producing 1) the
overall strongest correspondence between the indicators (i.e.,
highest TS) and 2) the time at which the highest correspon-
dence occurred. The timing of the strongest correspondence
gives us important information on the lead or lag of the corre-
sponding indicator relative to the benchmark indicator. For
example, if the strongest correspondence between EDDI-14
and SMVI occurs when comparing EDDI-14 on day n to
SMVI on day n 1 3, the implication is that EDDI-14 depic-
tion of flash drought led SMVI flash drought by 3 days. The
maximum TS, the bias ratio on the day of the maximum TS,
and the timing of the maximum TS are recorded. The entire
process is then repeated for each daily field between March
2002 and November 2021 excluding winter months. Results
are reported as the overall average of daily maximum TS val-
ues and their corresponding bias ratio values, and the distribu-
tion of the timing of maximum TS between comparison and
benchmark indicators. These aggregate statistics provide an
overall summary of comparison between two indicators.

We use a “neighborhood maximum” approach (e.g., Sobash
et al. 2011; Schwartz and Sobash 2017) to relax the require-
ment of an exact match between comparison and benchmark
indicators at the grid cell for a hit. Specifically, a hit is recorded
for a grid cell if both the comparison and benchmark indicators
show flash drought anywhere in a surrounding 5 3 5 gridcell
neighborhood. Such neighborhood-based approaches have been
used widely in high-resolution precipitation forecast verification
(e.g., Ebert 2008) to acknowledge the unrealistic expectation
of a perfect 1-to-1 forecast at high resolution. While flash
drought monitoring, and drought monitoring more broadly, is
typically over coarser spatial scales, the same issues can arise
from 1-to-1 gridcell comparisons that expect perfect matches
between indicators. In most cases of flash drought monitoring,
the precision of flash drought identification is on the order of
tens of kilometers. Therefore, we selected a 5 3 5 gridcell
neighborhood for our evaluation, with an approximate spatial
footprint of 60 km 3 60 km, which was deemed small enough
to provide useable information for flash drought monitoring
but coarse enough to provide a fair comparison between indi-
cators. The neighborhood maximum approach was found to be
the most consistent among 3 neighborhood-based comparison
approaches for precipitation forecasting (Schwartz and Sobash
2017) and was deemed a good fit for our purpose.

One important detail to note is that we only calculated TS
and bias ratio between two indicators when flash drought was
indicated on at least 1% of the CONUS or CONUS region
area in the comparison indicator. This was done to eliminate
erroneously high TS values arising from shared flash drought
between the two indicators in one or two grid cells, with no
flash drought throughout the vast majority of CONUS. The
comparisons were completed for all combinations of indica-
tors across CONUS, and then repeated on a regional basis.
Comparisons were also completed across each of the seven
National Climate Assessment regions (defined in Fig. S1 in

the online supplemental material), allowing evaluation of re-
gional differences in performance.

b. Case studies

We use two noteworthy flash drought events as case studies
by which to compare the indicators. The first is the 2012 cen-
tral U.S. flash drought, one of the most widely studied flash
drought events globally (Otkin et al. 2016; Basara et al. 2019;
Kam et al. 2021). The 2012 drought began in late spring fol-
lowing an extremely warm March and April, and, encom-
passed much of the central United States by July. Agricultural
impacts from the 2012 event are estimated to have exceeded
$30 billion (Rippey 2015) and caused a shock to global food
supply (Boyer et al. 2013). We examine the change in drought
conditions represented in each drought indicator from 1 March
to 1 September 2012 across a portion of the central United
States that was significantly impacted by the drought event. The
second flash drought we use as a comparison case study is the
2019 event in the southeastern United States. While not as infa-
mous as the 2012 central U.S. event, the 2019 southeastern flash
drought developed quickly and had significant impacts on agri-
culture and water resources (Di Liberto 2019). We examine the
change in drought conditions represented in each drought indi-
cator from 1 August to 1 November 2019 across a portion of
the southeastern United States that was significantly impacted
by the drought event.

The case study analyses include both map-based intercom-
parison across the lifetime of each flash drought and a time
series analysis of flash drought spatial extent across the re-
spective regions affected by each event.

4. Results

a. Flash drought climatological frequency

The methods for identifying flash drought in all 10 indicators
are based on a change in percentile or standardized anomaly
over a 2–4-week period, persisting for another 2–4 weeks. De-
spite the similarity in flash drought identification methods, there
are large differences in flash drought frequency between the
10 indicators (Fig. 1). In general, the indicators aggregated over
14-day periods had a higher frequency than the same indicators
aggregated over 28- or 30-day periods. This is likely because
14-day aggregated indicators can respond more quickly to
evolving environmental conditions, which produces overall
more flash drought events. Specifically, the SPEI-14 shows the
overall highest frequency of flash drought across CONUS over
the 20-yr study period, with a domain average of 39 events,
followed by EDDI-14 with 34 events on average, SPEI-30 with
29 events, and SPI-14 with 28 events. All indicators except the
USDM (17 events on average) identified an average of at least
1 flash drought event per year per grid cell across CONUS.
The EDDI-14 indicated a higher overall flash drought frequency
than ESI-14, which is likely due to EDDI’s use of reference
evapotranspiration in contrast to ESI’s actual evapotranspira-
tion. Short-lived spikes in evaporative demand could induce a
flash drought indication based on EDDI-14. But if soil mois-
ture is sufficient to meet that additional demand, there may
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not be an equivalent response in actual evapotranspiration,
thereby producing a differential response between EDDI and
ESI. These differences seem to be less apparent in the 28-day
aggregation of EDDI and ESI, as their CONUS-wide climato-
logical flash drought frequency is similar.

The maps of climatological flash drought frequency also
show considerable regional variability for many indicators.
EDDI-14 and EDDI-28 both exhibit a relatively low flash
drought frequency over the southeastern United States, but in
contrast, ESI-14, ESI-28, and SMVI all have relatively high
frequency in the same region (Fig. 1). Both SPI-14 and SPI-30
identified fewer than 10 flash drought events in the southwest
United States, including most of California and Nevada; how-
ever, their SPEI counterparts show relatively high flash drought
frequency in that region. These differences are likely due to the

SPEI’s inclusion of potential evapotranspiration, which is a par-
ticularly important component to moisture balance and flash
drought occurrence in dry regions. The USDM shows the highest
frequency of flash drought in the Southern Plains and Southeast
regions, with relatively few events identified in the Northwest,
Southwest, and Northeast.

b. Indicator intercomparison across CONUS

The daily maximum TS between two indicators is then av-
eraged across all days of the comparison between 2002 and
2021. The overall TS results of all 1-to-1 indicator compari-
sons are shown in Fig. 2. Higher TS values indicate better cor-
respondence, a TS value of 0 indicates no agreement and a TS
value of 1 represents a perfect match. Overall, the various in-
dicators are moderately well related to one-another, with TS

FIG. 1. Maps of the climatological frequencies of flash drought events between 2002 and 2021. The numbers shown are the flash drought
event frequencies for each indicator.
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values between 0.2 and 0.6. As expected, the different integration
periods of the same indicator (e.g., EDDI-14 and EDDI-28) show
good agreement, as are SPI and SPEI integrated over the same
period (14 or 30 days). However, there is also a notably strong
correspondence between EDDI-14 and SPEI-14 (0.33). Some of
the indicators with relatively weak correspondence included
EDDI-28 and SPEI-30 (0.19) and ESI-28 and SPI-30 (0.20). All
indicators had a noticeably lower correspondence with the
USDM, with TS scores ranging from 0.11 to 0.13. The far-right
column of the table in Fig. 2 shows the median of the nine inter-
comparisons for each indicator. The SPEI-14 had the highest
overall TS (0.29), followed by SPI-14 (0.27) and EDDI-14 (0.26).
The EDDI, ESI, SPEI, and SPI indicators derived over 2 weeks
consistently performed better than those derived over 4 weeks
or 30 days. The only indicator based on soil moisture}the
SMVI}had a higher correspondence to ESI-14 and SPEI-14
(0.28 and 0.29, respectively) compared with ESI-28 and
SPEI-30 (0.21 and 0.22, respectively).

For each comparison, we report the bias ratio at the lead-lag
comparison when the TS is maximized between indicators. For
example, if the TS between SPEI-14 and SPI-14 is maximized

at a 1-day lead time, we will report the bias ratio between the
two indicators at that lead time. The bias ratio signals whether
the comparison indicator tends to identify more or fewer flash
drought events relative to the benchmark indicator. The bias
ratio metric is then averaged over all daily comparisons be-
tween two indicators, with the results shown in Fig. 3. Bias ra-
tio values over 1 (under 1) signify the comparison indicator
indicates more (fewer) flash droughts relative to the bench-
mark indicator. The last column in Fig. 3 shows the median of
the nine bias ratio values for each indicator. Overall, the indi-
cators integrated over 14-day periods tend to have a higher
flash drought frequency relative to other indicators. The ESI-14
has a bias ratio much closer to 1 (1.03). On the other hand,
ESI-28 exhibited the lowest median bias ratio (0.69). SMVI
and EDDI-28 also had lower bias ratio values, 0.75 and 0.76,
respectively, which represents fewer flash drought events
overall from those indicators (Fig. 3).

For each 1-to-1 indicator match, the map of the comparison in-
dicator on day n was compared with the maps of the benchmark
indicator are days n 2 28 to n 1 28, and the day of the bench-
mark indicator that had the highest TS with the comparison

FIG. 2. Color table of the average TS from comparisons between two indicators across all
comparisons. The far-right column shows the median of the nine TS values for each indicator.

FIG. 3. Color table of the average bias ratio from comparisons between two indicators across
all comparisons. The far-right column shows the median of the nine bias ratio values for each
indicator.
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indicator was noted. The distributions of the timing of highest
TS between indicators imply whether a given indicator tends to
lead or lag other indicators’ depiction of flash drought. Figure 4
shows violin plots of the distributions of the timing of highest TS
by indicator. The shaded area in each violin plot represents the
shape of the distribution of the lead or lag times at which hits oc-
cur. The width of the violin plot represents the density of the dis-
tribution for those values, such that a wider (narrower) shape
indicates more (fewer) hits at that lead or lag time. The dark,
vertical line in each plot represents the interquartile range and
the white dot represents the distribution median. EDDI-14 and
ESI-14 tend to be leading indicators meaning they had the stron-
gest correspondence with other indicators prior to the other indi-
cators showing flash drought. Specifically, the EDDI-14 and
ESI-14 lead other indicators by, on average, 3.6 and 2.9 days, re-
spectively. In contrast, the EDDI-28, ESI-28, and SMVI lagged
other indicators by, on average, 4.1, 3.9, and 3.7 days, respec-
tively. SPEI-14 tended to lag other indicators by less than 1 day,
while the other three SPEI or SPI metrics tended to be leading
indicators as often as they were lagging indicators. The USDM
had the broadest distribution of timing, but on average tended
to lag by 2.5 days.

Overall, the intercomparison of flash drought indicators
across CONUS elucidated several important findings. Evapo-
transpiration and evaporative demand-based indicators inte-
grated over 2-week periods (EDDI-14 and ESI-14) tend to
lead other indicators in their identification of flash drought.
However, while the EDDI-14 also produced many more flash
droughts than most other indicators, ESI-14 tended to show
approximately the same flash drought frequency as other indi-
cators (i.e., bias ratio close to 1), and ESI-14 had a similar
overall TS value as EDDI-14 (0.25 vs 0.26). SPEI-14 had the
overall highest TS values, but also tended to identify many
flash droughts that were not identified by other indicators and
did not consistently lead other indicators in flash drought, as
did EDDI-14 and ESI-14. The SMVI, based entirely on soil

moisture, was consistently a lagging indicator, as is well docu-
mented in process-based flash drought studies (Otkin et al.
2016; Ford and Labosier 2017). Across CONUS, the EDDI-14,
ESI-14, and all SPI and SPEI indicators tended to produce
many more flash droughts than were identified by SMVI.
For example, both EDDI-14 and SPEI-14 identified approxi-
mately 1.75 flash droughts for every 1 flash drought identified
by SMVI. This result reflects the lack of definite translation of
meteorological drought}driven by precipitation deficits and
enhanced evaporative demand}to agricultural drought across
CONUS.

c. Regional indicator intercomparisons

Comparisons between flash drought indicators were re-
peated for each of the seven National Climate Assessment re-
gions to evaluate regional variability in indicator performance.
Figure 5a shows the average TS values by indicator for each of
the seven regions. The SPEI-14, SPI-14, and EDDI-14 indica-
tors consistently have the highest TS values across regions,
while the USDM and, to a lesser extent, EDDI-28, ESI-28,
and SPEI-30, have lower overall regional scores. There are dif-
ferences in the overall performance of indicators by region.
For example, the median TS value in the Southeast region is
0.27 as compared with a median of 0.21 in the Southwest. Prac-
tically, these differences represent stronger correspondence
between indicators in the Southeast than in the Southwest
region.

We also aggregate bias ratio between indicators by region
(Fig. 5b). The patterns of flash drought frequency are mostly sim-
ilar between regions. SPEI-14 identifies more flash droughts
overall in every region, but most so in the Northeast and South-
west regions where the indicator shows 1.95 and 2.27 flash
drought events for every 1 event in other indicators. EDDI-28,
ESI-28, and SMVI tend to indicate fewer flash droughts in every
region. All but the Northeast and Southwest regions have a me-
dian bias ratio value very close to 1. The individual region tables

FIG. 4. Violin plots of the distribution of the timing of maximum correspondence between
each indicator and all other indicators. Each point in the distribution represents one daily com-
parison. The white points in the plots represent the overall average timing, and the dark vertical
line shows the interquartile range. Negative timing values represent a leading indicator; positive
values represent a lagging indicator.
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of TS and bias ratio are available in Figs. S2 and S3 in the online
supplemental material.

The overall patterns of timing of flash drought in each indica-
tor are very similar between regions. In all regions, EDDI-14 and
ESI-14 are leading indicators, with average lead times of 2 to
6 days. EDDI-28, ESI-28, and SMVI are lagging indicators in all
regions, with lagging times of 2 to 8 days. SPI and SPEI indica-
tors tend to lead and lag at roughly the same rate, and the
USDM is a lagging indicator in every region except the North-
west, where it has an average lead time of just under 1 day.

The USDM flash drought method is based on categorical
change over 2-week periods, suggesting the USDM changes
more quickly in the Northwest region}relative to other indi-
cators tested}than in other regions. This is particularly the
case when compared with the Northeast region, where the
USDM lags by an average of almost 8 days. It is worth men-
tioning that most flash droughts in the Northwest region in our
study period are in Montana, with fewer than 10 flash droughts
identified by the USDM in Washington, Oregon, and Idaho.
Meanwhile, the USDM identified fewer than 10 flash droughts
in most of the Northeast region. Therefore, these differences
may also partly be a factor of relatively small sample sizes in
these regions.

d. Sensitivity to flash drought definitions

To better understand the sensitivity of our results to the
method of flash drought identification, we repeat our analyses

using an alternative flash drought method based on 14-day
EDDI, the DEDDIz. The climatology and intercomparison re-
sults from DEDDIz are compared with those from EDDI-14
(Fig. 6). The most striking difference between the two indica-
tors, both based on the same 2-week EDDI dataset, is in the
climatological frequency of flash drought over the 20-yr study
period (Fig. 6a). While EDDI-14 tends to show higher flash
drought frequency in the Northeast, western plains, and South-
west and lower flash drought frequency in the Southern Plains
and Southeast, the climatological flash drought frequencies
based on DEDDIz are nearly opposite. DEDDIz shows a hot-
spot of flash drought frequency in the Southern Plains, South-
east, and Midwest regions, with relatively few flash droughts in
the Northeast, Northwest, and parts of the Southwest regions.
For example, the average DEDDIz flash drought frequency in
the Southeast region is 45 events (approximately 2.25 events
per year per grid cell), as compared with an average EDDI-14
frequency of just 23 events in the same region (approximately
1.15 events per year per grid cell). Meanwhile, EDDI-14 shows
an average of 32 events in the Northeast region (1.6 events per
year per grid cell) as compared with 5 events on average based
on DEDDIz (0.25 events per year per grid cell).

We compared DEDDIz with all other indicators using the
same methods as our other intercomparisons, calculating TS,
bias ratio, and the timing of flash drought hits. Based on TS,
the DEDDIz slightly outperforms EDDI-14 in the Northeast,
Southeast, Midwest, and Southern Plains regions, while slightly

FIG. 5. Color tables of (a) average TS values and (b) bias ratio values by indicator for each of the
seven National Climate Assessment regions.
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underperforming in the northern plains, Northwest, and South-
west (Fig. 6b). Relative to the large bias ratio of EDDI-14 in
the Northeast and Southwest regions, DEDDIz has bias ratio
much closer to 1 and has far fewer flash drought events identi-
fied in the Northeast region. The overall higher frequency of
flash drought in the Southeast and Southern Plains regions re-
sult in higher bias ratio in DEDDIz than in EDDI-14, but over-
all, across CONUS the DEDDIz has a bias ratio closer to 1 than
the EDDI-14. These results suggest the DEDDIz may more
closely match the other nine indicators in the study; however,
these results vary considerably by region. Last, the violin plots
in Fig. 6c show the distributions of the timing (i.e., lead or lag)
of flash drought hits between DEDDIz, EDDI-14, and the other
nine indicators. The DEDDIz distribution tends to be broader
than that of EDDI-14, with a longer average lead time of
4.1 days as compared with 3.6 for EDDI-14.

e. Case study intercomparison

Our climatological analysis is complemented by an analysis of
flash drought indicators based on two case study events, the 2012
central U.S. and 2019 southeastern U.S. flash droughts. For each
case study we examine the intensity and spatial extent of drought
across a subregion of the United States, and the change in

characteristics during the drought evolution. The 2012 drought
was preceded by a very warm early spring in the central United
States that corresponded with elevated evaporative demand
(Fuchs et al. 2012). EDDI anomalies were exceedingly high as
early as 1 March 2012, representing strong evaporative demand
(Fig. 7a). SPEI, SPI, and ESI-28 also showed somewhat- to very-
dry conditions early in spring 2012, while SMVI only showed
drier than normal soil conditions in the western half of the study
region. EDDI, SPEI, and SPI indicated rapid drying across virtu-
ally the entire region between 1 May and 1 June in 2012, while
SMVI, ESI, and USDM indicators only showed drought-like
conditions in a fraction of the region (Fig. 7a). The SMVI and
USDM showed rapid drought onset or intensification between 1
June and 1 July, better aligning with SPI and SPEI indicators;
however, ESI did not show drought across most of the region un-
til later in July. A brief reprieve from the very high evaporative
demand reduced EDDI-based drought intensity around 1 July,
but EDDI rapidly reintensified in August. By 1 September, rain
from Hurricane Isaac had improved SPI and SPEI indicators in
the southern half of the region, but the other indicators contin-
ued to show intense drought across much of the region.

We also include a time series of flash drought spatial extent
across the region as an alternative way of visualizing the evolution

FIG. 6. (a) Maps of the climatological frequency of flash drought events between 2002 and 2021 identified by (left)
EDDI-14 and (right) DEDDIz definitions. (b) Bar plots of the CONUS- and region-average TS and bias ratio of flash
drought identification of (blue) DEDDIz and (red) EDDI-14. (c) Violin plots of the timing of hits of (blue) DEDDIz
and (red) EDDI-14 flash droughts in comparison with the other nine indicators.

F O RD E T AL . 1723DECEMBER 2023

Unauthenticated | Downloaded 03/08/24 12:05 AM UTC



of flash drought in 2012 (Fig. 7b). The time series shows a rapid
increase in flash drought in EDDI-14 in early March, followed by
a plateau and reintensification in May and early June. EDDI-14
shows over 30% of the region in flash drought as of 5 March,
which is more than a month before another indicator shows the
same flash drought extent (SMVI, 11 April). In general, most in-
dicators show flash drought expansion between mid-April and
mid-June, with the SMVI, ESI-14, SPI-14, and SPEI-14 generally
leading the ESI-28, SPI-30, and SPEI-30. The USDM lagged
most of the other indicators by 2 to 4 weeks prior to 1 June, but
then shows a rapid flash drought expansion between June and
July and shows 100% of the region experienced a flash drought
by 12 July. The EDDI-28, SPEI-30, and SPI-30 indicate flash
drought in less than 30% of the region through the end of
August, which is considerably less extensive than the other indi-
cators. However, these three indicators do show extensive and
intense dry conditions across the region as of 1 June and beyond

(Fig. 7a). Therefore, the lack of flash drought extent}based on
EDDI-28, SPEI-30, and SPI-30}is more likely due to the
method of flash drought identification rather than the indi-
cators themselves. Irrespective of these issues, there is a
convergence of evidence from most indicators that the re-
gion experienced extensive flash drought between April and
July 2012.

The second case studied differs from the first in many ways.
First, the region affected}the Southeast}spans humid sub-
tropical and humid continental climates with much less dis-
tinct precipitation seasonality than the central United States.
Second, the drought occurred in late summer and autumn,
spanning harvest of summer crops and planting of autumn and
winter crops. August 2019 began with some small areas of
very dry soil and low (dry) values of SPI, SPEI, and ESI in the
southern parts of the region (Fig. 8a). Above normal tempera-
tures increased evaporative demand in August and September,

FIG. 7. (a) Maps of indicator conditions from 1 Mar to 1 Sep 2012 in the central United States. (b) The time series of flash drought spatial
extent from 1 Mar to 1 Sep 2012. Flash drought extent is expressed as a percent of the central U.S. study region.
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as evidenced by positive EDDI-14 and EDDI-28 anomalies.
Like the 2012 drought, EDDI indicated rapidly deteriorat-
ing conditions weeks ahead of most other indicators. How-
ever, SMVI, SPEI-14 and SPI-14 showed rapid expansion of
very dry conditions in the first half of September (Fig. 8a).
SPI-30, SPEI-30 and ESI and USDM indicators lagged in
the expansion of drought conditions by 2–3 weeks, showing
similar expansion in late September. Heavy precipitation
from Tropical Storms Nestor and Olga in mid- to late October
dramatically improved SPI- and SPEI-based conditions and
reduced the extent of drought in the USDM. However, much
of the region remained very dry through the end of October
according to the SMVI and longer-term EDDI-28.

All indicators show a graduate increase in flash drought ex-
tent across the region in August 2019 (Fig. 8b). SPEI-14 and
SPI-14 show the quickest increase in flash drought extent in

August, followed by a rapid expansion in mid-September.
EDDI-14, ESI-14, ESI-28, and SMVI show steady increasing
flash drought extent between late August and late September,
while SPEI-30, SPI-30, and USDM have very little expansion
of flash drought prior to 15 September, followed by rapid ex-
pansion between 20 and 30 September. Despite showing ex-
tensive, severe dry conditions across most of the region,
EDDI-28 identified flash drought in less than 10% of the re-
gion through the end of October, whereas USDM showed
over 90% of the region experienced a flash drought between
August and October. The SPI-14 and SPEI-14 indicators
showed flash drought in at least 40% of the southeastern U.S.
region approximately 2 weeks ahead of the USDM (Fig. 8b),
as compared with a 3-week lag between SPI-14/SPEI-14 and
USDM meeting the same 40% threshold in the 2012 drought
(Fig. 7b).

FIG. 8. (a) Maps of indicator conditions from 1 Aug to 30 Oct 2019 in the southeastern United States. (b) The time series of flash drought
spatial extent from 1 Aug to 30 Oct 2019. Flash Drought extent is expressed as a percent of the southeastern U.S. study region.
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5. Discussion

a. Challenges of a single-indicator focus

Most flash drought studies characterize a noteworthy flash
drought event or climatological characteristics of flash droughts
using a single indicator (Ford and Labosier 2017; Koster et al.
2019; Christian et al. 2021). In these cases, even if other variables
are assessed, the flash drought particulars of onset, duration, in-
tensity, and spatial extent will be sensitive to the indicator used
to characterize the event. The indicator-sensitivity is especially
pernicious when assessing flash drought climatology on regional
to global scales, as shown by Osman et al. (2021) and the EDDI
comparison in this study (Fig. 6). In our case, the two different
variations of EDDI-based flash drought indicators did not per-
form differently when compared with other indicators but did
show large differences in regional frequency of flash drought. A
climatological study of flash drought risk across CONUS using
DEDDIz would identify the Southeast and Southern Plains re-
gions as “hotspots” with high flash drought frequency (as in
Christian et al. 2019), whereas the EDDI-14 indicator would
characterize these regions as having relatively low flash drought
frequency. Such discrepancies make it challenging to study, com-
municate, plan, and prepare for flash drought.

Similarly, we find the climatological assessment and case
study analysis results were sensitive to the method of flash
drought identification, even when using the same indicator. In
the 2012 and 2019 flash drought case studies, the EDDI-28
and SPEI-30 indicated flash drought in only a small fraction
of the study areas. However, both indicators showed wide-
spread drought conditions that expanded and intensified over
a 4–6-week period. These results highlight issues that arise
when 1) treating flash drought as a binary event (i.e., occur-
rence or no occurrence) in climatology- or risk-focused stud-
ies and 2) using a single method for identifying flash drought
with one indicator. Based on the case study analyses, it is pos-
sible the previously published methods used for identifying
flash drought with EDDI-28 and SPEI-30 may be underesti-
mating the frequency of events that can practically be consid-
ered rapid onset droughts. Result sensitivity to flash drought
identification methods is therefore also important to consider
for flash drought research and assessment.

While multivariate, multi-indicator approaches to flash
drought early warning, monitoring, and communication are
preferred (Otkin et al. 2022), studies and early warning/
monitoring systems based on a single indicator can be useful
to improving flash drought resilience if the biases, limitations,
caveats of the indicator}and their implications for monitor-
ing, early warning, and risk assessment}are well understood
and communicated. Detailed assessments of flash drought in-
dicators, datasets, and identification methods are particularly
important in the context of evaluating projections and manag-
ing uncertainty of changes in flash drought frequency and se-
verity in a warming climate because projected changes in flash
drought risk greatly inform the development of adaptive man-
agement strategies (Ojima 2021). Therefore, future research
on the historical or potential future hazard of flash drought
should strive to either 1) use multiple indicators and variables
to characterize the hazard; 2) test the sensitivity of the results

to different indicators, datasets, and methods; or 3) ensure
comprehensive understanding and communication of the limi-
tations and assumptions of the single indicator, dataset, or
method used in the study.

In lieu of a single dataset recognized as the flash drought
“truth” or benchmark by which to evaluate all indicators, as-
sessments must incorporate multiple, diverse indicators, data-
sets, and methods for intercomparisons. Many studies have
relied on the USDM to provide the benchmark by which
to evaluate an indicator’s flash drought monitoring or early
warning prowess. However, we find the USDM consistently
underperforms when compared with the other nine indicators,
with the overall lowest TS values. These results are not neces-
sarily surprising because the USDMwas not designed to mon-
itor flash drought, and it regularly includes lagging indicators
such as streamflow and reservoir levels, which will respond
more slowly to evolving drought than evaporative demand,
precipitation, or soil moisture. We see these lagging character-
istics of the USDM in the flash drought case study analyses as
well (Figs. 7b and 8b). Therefore, the USDM is a good bench-
mark to ensure a flash drought indicator captures the drought
part of the event, but it should not be used as the sole verifica-
tion of any flash drought indicator. Our results suggest the
USDM is not as ideally suited for flash drought monitoring
across CONUS as other indicators evaluated.

b. Which indicator is “best”?

In this study, SPEI-14, SPI-14, and EDDI-14 had the high-
est overall TS values, attributable to the shorter window
length and the indicators’ ability to respond quicker to chang-
ing environmental conditions. These three indicators also con-
sistently lead all others in depicting drought conditions in the
2012 and 2019 flash drought case studies. However, their rela-
tively high biases suggest they may overestimate flash drought
occurrence in most regions. For example, the SPEI-14 and
EDDI-14 had bias ratio values of 1.97 and 1.84, respectively
when compared with the soil moisture-based indicator (SMVI)
in the Midwest region. The SPEI-14 and EDDI-14 indicate 1.8
and 1.5 flash drought events for every 1 event identified by
SMVI in the Midwest, meaning 1 in every 3 flash droughts in
EDDI-14 do not translate to soil moisture flash drought in the
Midwest. Importantly, the flash drought frequency between indi-
cators varied by region. For example, the same EDDI-14–SMVI
comparison with a bias ratio of 1.84 in the Midwest had a bias ra-
tio of only 1.02 in the Southeast, where the SMVI indicated a
flash drought for every 1.1 flash droughts identified by EDDI-14.
This suggests the rapidly increasing evaporative demand condi-
tions captured by EDDI-14 more effectively translate to soil
moisture depletion in the Southeast than in other regions. The re-
gionality in the correspondence between indicators, such as
EDDI-14 and SMVI, is a crucial consideration for researchers
studying and recommending flash drought indicators for opera-
tional use across a region. In this case, our results would suggest
that EDDI-14 may be a better fit for flash drought monitoring in
the Southeast than in the Midwest.

Variations of EDDI, ESI, SPI, and SPEI indicators de-
rived from 14-day periods consistently outperformed the
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same indicators derived from 28- or 30-day periods based on
TS. In the cases of EDDI and ESI, the 14-day derivations also
provided a more consistent lead time of 2–6 days compared
with other indicators, while the 28-day derivations tended to
lag other indicators. These results were in agreement with our
case study analyses as well, such that the 14-day EDDI, SPI,
and SPEI consistently lead the 28- or 30-day derivations for
both the 2012 and 2019 events. However, from a climatological
assessment the 14-day SPI and SPEI did not consistently lead
flash drought indications compared with 30-day SPI and SPEI.
Additionally, while EDDI-14, SPEI-14, and SPI-14 had higher
TS values than their 4-week or 30-day counterparts, they also
exhibited much higher bias ratio scores. The lone exception
was ESI-14, which had a higher TS score than its 4-week coun-
terpart but maintained a bias ratio near 1. The performance
differences between composite window length using the same
dataset and methodology (i.e., SPI-14 vs SPI-30) demonstrate
the sensitivity of results to averaging windows. The time over
which indicators are compiled}for example, 2 weeks, 4 weeks,
or 1 month}is an important component of the indicator and
should be tailored to its use case.

Specifically, when taken across CONUS, the ESI-14 had a
much lower bias ratio (1.03) relative to EDDI-14 (1.55), sug-
gesting the inclusion of actual evapotranspiration with refer-
ence or potential evapotranspiration, as ESI does, may help
reduce the number of evaporative demand-identified flash
droughts that do not necessarily translate to soil moisture im-
pacts. As with most of our findings, the difference of biases
between ESI and EDDI varied regionally, with large differ-
ences in the Northeast, Midwest, northern plains, and North-
west, but much smaller differences in the Southeast, Southern
Plains, and Southwest regions. These regional differences in
EDDI-14 and ESI-14 performance may relate to how well
changes in evaporative demand lead to changes in actual evapo-
transpiration, which is partly attributed to the coupling between
land (soil and vegetation) and atmosphere (Dirmeyer et al.
2018). Therefore, indicators using only potential evapotranspi-
ration may sufficiently forewarn subsequent soil moisture and
vegetation response to emerging flash drought in regions with
strong land–atmosphere coupling, but inclusion of actual evapo-
transpiration may be more ideal in energy-limited environments
with weaker coupling between actual and potential evapotranspi-
ration. Additionally, increasing evaporative demand as a function
of anthropogenic global warming could affect the relationship be-
tween actual and potential evapotranspiration, with consequen-
ces for the representativeness of a solely demand-based indicator
like EDDI (Tomas-Burguera et al. 2020). More research is
needed to understand 1) the magnitude of evaporative demand
changes with continued, hastened, or slowed future warming;
and 2) how those changes could affect drought monitoring indi-
cators like EDDI and ESI.

Our case study analyses revealed the indicators generally
show agreement in rapidly intensifying drought conditions in
both 2012 and 2019 flash drought events. However, there are
important differences in the timing and extent of the various
drought depictions. In both case studies, EDDI-14 showed in-
creasing dryness 2–3 weeks earlier than other indicators, fol-
lowed by SPI-14 and SPEI-14. The SPI-30, SPEI-30, and

USDM varied similarly through the evolution of both case
study flash droughts and tended to lag other indicators by
2–3 weeks. The order of indicators showing drought expan-
sion and flash drought occurrence generally follows the well
documented physical processes underpinning flash drought
across the United States (e.g., Otkin et al. 2018), with evapo-
rative demand leading evapotranspiration leading soil mois-
ture leading combined indicators like the U.S. Drought
Monitor. A few indicators, including EDDI-28 and SPEI-30,
did not show extensive flash drought in the 2012 and 2019
events, despite showing widespread drought conditions that
intensified over time periods sufficiently short to practically
be considered rapid. The lack of flash drought extent in these
cases is therefore more likely attributable to fundamental lim-
itations in the method of flash drought identification and less
so to the indicator, itself.

c. Convergence toward diverse perspectives

Multivariable or multi-indicator approaches to flash drought
research, early warning, monitoring, and assessment are pre-
ferred over the use of a single indicator (Otkin et al. 2022). As
also argued in Osman et al. (2021), our results provide evidence
that research should not try to converge to a single indicator
from which to infer information about flash drought across all
regions. Instead, the inconsistency and regional variability in
our results suggest a variety of perspectives}including evapo-
rative demand, precipitation, soil moisture, and vegetation
response}can provide a more holistic, representative, and ac-
tionable account of flash drought for operational early warning
and monitoring. Likewise, research should not depend on a
single indicator from which to infer historical and potential fu-
ture characteristics of flash drought. Instead, the current and
future risk of flash drought and resultant adaptive management
and response strategies should be based on a multivariable per-
spective on flash drought. Additionally, the noteworthy differ-
ences in climatological flash drought frequency between EDDI-14
and DEDDIz are evidence for the use of multiple datasets and
methods when using a single indicator, like EDDI. Hazard mitiga-
tion, planning, and risk assessment based on either of the maps in
Fig. 6a would result in very different conclusions, especially for
the Southern Plains and Southeast regions where DEDDIz shows
almost double the number of flash drought events of EDDI-14
over the 20-yr study period.

d. Caveats and limitations

Our study provides a novel intercomparison of flash drought
indicators, many of which are used for operational flash drought
monitoring. However, the results of this study come with multi-
ple limitations and caveats, including the limited 20-yr study pe-
riod. An ideal study period would span many decades to capture
as many flash drought events as possible, but our study was lim-
ited by the availability of USDM and ESI indicators. Another
limitation is the use of USDM for our analysis. Because the
USDM is the only weekly updated product, its direct compari-
son with daily resolution indicators partly contributes to its rela-
tively poor performance. With that said, we evaluate USDM
from the perspective of operational flash drought monitoring,

F O RD E T AL . 1727DECEMBER 2023

Unauthenticated | Downloaded 03/08/24 12:05 AM UTC



such that a product with a once-per-week update period will not
be as responsive to rapid changes in precipitation, evaporative
demand, or soil moisture as products that are updated daily. It is
also worth noting that virtually all flash drought indicators iden-
tified 1–2 flash droughts per year per grid cell. The unusualness
of flash drought celerity, by definition, would imply they are not
necessarily frequent events. Therefore, while we cannot defini-
tively conclude all indicators tested overestimated flash drought
frequency, it is safe to say that only a fraction of the flash
drought events identified by these indicators caused tangible and
known drought impacts.

Flash drought identification methods were not identical across
all drought indicators. We considered standardizing all indicators
to the same dynamic range and using one method to identify
flash drought to ensure the method of flash drought identifica-
tion did not affect the results. However, flash drought studies,
whether based on historical or projected climate information, of-
ten use different methods for identifying and characterizing flash
drought, even if using the same variable, like precipitation or
evaporative demand. Likewise, the myriad operational products
that are part of the national or global drought monitoring infra-
structure also have somewhat to very different methods for iden-
tifying and characterizing drought and flash drought. Because
the ultimate goal of this study is to help improve operational
flash drought monitoring through indicator evaluation and com-
parison, we eventually determined the best way forward was to
evaluate each indicator as it is currently used or is proposed to
be used for operational monitoring.

Last, our intercomparison was done without considering
flash drought impacts. Ideally, indicators should be evaluated
with documented flash drought impacts, such as water restric-
tions, ecological damage, or below trend crop yields. Drought
impacts have always been a challenge to integrate into re-
search and assessment. However, the advent of effective drought
impact monitoring and reporting infrastructure portends an im-
proved capability to use impacts directly when evaluating drought
monitoring (Stahl et al. 2016; Otkin et al. 2018). All future re-
search developing new or improved flash drought indicators
should}as much as possible}integrate documented flash
drought impacts in their assessments. Last, the regional aver-
ages of indicator comparisons may obscure other important
differences in indicator performance within a given region.

6. Conclusions

We evaluate flash drought monitoring capability across
CONUS through an intercomparison of nine flash drought
indicators, most of which are currently used for operational
monitoring. The indicators represent diverse perspectives and
processes that are known to drive flash drought, including
evapotranspiration and evaporative demand (ESI and EDDI),
precipitation (SPEI and SPI), and soil moisture (SMVI). We
also include the USDM, which is frequently used as a bench-
mark by which to evaluate flash drought indicators.

We find the precipitation and evaporative demand indica-
tors derived over 14-day periods tended to have the highest
correspondence overall to the other indicators and had the
longest lead time, but also the highest flash drought frequency.

The lone exception with a bias ratio closer to an ideal value of
1 was ESI-14, which tended to produce fewer flash droughts
than similar indicators that do not incorporate actual evapo-
transpiration (e.g., EDDI-14 and SPEI-14). The 14-day SPI
and SPEI indicators had consistently higher correspondence
(TS) and higher bias ratio than their 30-day counterparts but
did not provide consistently longer lead times for early warn-
ing. The USDM had the overall lowest correspondence with
other indicators, which is partly attributable to the weekly up-
date frequency of the USDM, relative to the daily update rates
of the other indicators. The USDM also incorporates inher-
ently lagging indicators of drought}such as streamflow and
reservoir levels}that will not necessarily reflect flash drought
as quickly as other indicators.

Importantly, we find considerable differences in indicator
performance between CONUS regions. EDDI-14 had very
high flash drought frequency in most regions, but less so in
the Southeast and Southwest. We evaluated the sensitivity of
the results to the definition used for identifying flash drought
using an alternative method based on 14-day EDDI. The re-
sults showed large differences in the climatological frequency
of flash drought between EDDI-14 and the alternative EDDI
formation (DEDDIz). The results suggest that 1) flash drought
characteristics and climatological frequency (risk) are very
sensitive to the definition of flash drought based on a single
indicator (like EDDI) and 2) the sensitivity varies regionally.

Overall, we find no single flash drought indicator consistently
outperforms across CONUS or any of the seven regions. Like-
wise, the regional and definition-specific variability in performance
supports the argument for a multivariable and multi-indicator ap-
proach for flash drought early warning and monitoring advocated
by Otkin et al. (2022). Flash drought research, especially evalua-
tion of historical and potential future changes in flash drought cli-
matological risk and characteristics, should seek multivariable
frameworks for analysis, instead of using a single indicator from
which to infer all flash drought information. In doing so, research-
ers can properly understand and communicate the complexity of
flash drought and its impacts, and better guide effective adaptive
management and response strategies.
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A multiscalar drought index sensitive to global warming: The
standardized precipitation evapotranspiration index. J. Climate,
23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1.

Xia, Y., and Coauthors, 2012: Continental-scale water and energy
flux analysis and validation for the North American land data
assimilation system project phase 2 (NLDAS-2): 1. Inter-
comparison and application of model products. J. Geophys.
Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

}}, M. B. Ek, Y. Wu, T. Ford, and S. M. Quiring, 2015: Com-
parison of NLDAS-2 simulated and NASMD observed daily
soil moisture. Part I: Comparison and analysis. J. Hydrome-
teor., 16, 1962–1980, https://doi.org/10.1175/JHM-D-14-0096.1.

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 621730

Unauthenticated | Downloaded 03/08/24 12:05 AM UTC

https://doi.org/10.1175/JHM-D-22-0033.1
https://doi.org/10.1111/nyas.14365
https://doi.org/10.1111/nyas.14365
https://doi.org/10.1029/2021GL097703
https://doi.org/10.1088/1748-9326/acae3a
https://doi.org/10.1016/j.cosust.2021.01.002
https://doi.org/10.1016/j.cosust.2021.01.002
https://doi.org/10.5194/hess-25-565-2021
https://doi.org/10.1175/JHM-D-21-0134.1
https://doi.org/10.1175/JHM-D-21-0134.1
https://doi.org/10.1175/JHM-D-12-0144.1
https://doi.org/10.1175/JHM-D-12-0144.1
https://doi.org/10.1016/j.agrformet.2015.12.065
https://doi.org/10.1016/j.agrformet.2015.12.065
https://doi.org/10.1175/BAMS-D-17-0149.1
https://doi.org/10.1175/JHM-D-18-0171.1
https://doi.org/10.1175/JHM-D-18-0171.1
https://doi.org/10.3390/atmos12060741
https://doi.org/10.3390/atmos12060741
https://doi.org/10.1175/BAMS-D-21-0288.1
https://doi.org/10.1088/1748-9326/abfe2c
https://doi.org/10.1088/1748-9326/abfe2c
https://doi.org/10.1038/s41558-020-0709-0
https://doi.org/10.1038/s41558-020-0709-0
https://doi.org/10.1016/j.wace.2015.10.004
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/WAF-D-10-05046.1
https://doi.org/10.5194/nhess-16-801-2016
https://doi.org/10.5194/nhess-16-801-2016
https://doi.org/10.1175/1520-0477-83.8.1181
https://doi.org/10.1175/1520-0477-83.8.1181
https://doi.org/10.1029/2020JD033017
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1175/JHM-D-14-0096.1

