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ABSTRACT

In this study, object-based verification using themethod for object-based diagnostic evaluation (MODE) is used

to assess the accuracy of cloud-cover forecasts from the experimental High-Resolution Rapid Refresh (HRRRx)

model during thewarmand cool seasons. This is accomplished by comparing cloud objects identified byMODE in

observed and simulatedGeostationaryOperational Environmental Satellite 10.7-mmbrightness temperatures for

August 2015 and January 2016. The analysis revealed that more cloud objects and a more pronounced diurnal

cycle occurred during August, with larger object sizes observed in January because of the prevalence of synoptic-

scale cloud features.With the exception of the 0-h analyses, the forecasts contained fewer cloud objects than were

observed. HRRRx forecast accuracy is assessed using two methods: traditional verification, which compares the

locations of grid points identified as observation and forecast objects, and the MODE composite score, an area-

weighted calculation using the object-pair interest values computed byMODE. The 1-h forecasts for bothAugust

and January were the most accurate for their respective months. Inspection of the individual MODE attribute

interest scores showed that, even though displacement errors between the forecast and observation objects in-

creased between the 0-h analyses and 1-h forecasts, the forecastsweremore accurate than the analyses because the

sizes of the largest cloud objects more closely matched the observations. The 1-h forecasts from August were

found to be more accurate than those during January because the spatial displacement between the cloud objects

was smaller and the forecast objects better represented the size of the observation objects.

1. Introduction

Because detailed information about the horizontal

distribution of clouds can be obtained from satellite

infrared brightness temperatures (BT), satellites’ BTs

have been used in prior studies to evaluate the accuracy

of the cloud field in high-resolution forecasts from

numerical weather prediction models (e.g., Morcrette

1991; Otkin and Greenwald 2008; Otkin et al. 2009;

Cintineo et al. 2014; Thompson et al. 2016; Griffin et al.

2017; Grasso and Greenwald 2004; Grasso et al. 2008,

2014; Feltz et al. 2009; Bikos et al. 2012; Jankov et al.

2011; Van Weverberg et al. 2013; Jin et al. 2014). Dif-

ferences between the observed and forecast cloud fields
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can be quantified using traditional verification metrics

such as root-mean-square error (Wilks 2006) or

neighborhood-based statistics such as the fractions

skill score (Roberts and Lean 2008; Söhne et al. 2006).

Even though these verification methods provide useful

information concerning the model accuracy, additional

information about errors in the spatial distribution

of the cloud field can be obtained through use of

more-sophisticated object-based verification tools such

as the method for object-based diagnostic evaluation

(MODE; Davis et al. 2006a,b).

Several recent studies have employedMODE to assess

forecast skill. MODE has been used to evaluate Rossby

waveguides from the Integrated Forecast System and

ERA-Interim dataset from the European Centre for

Medium-Range Weather Forecasts (Giannakaki and

Martius 2016). Davis et al. (2009) used MODE to

compare the 1-h rainfall accumulation from separate

dynamic cores of theWeather Research and Forecasting

Model. MODE has also been used to assess pre-

cipitation forecasts from the High-Resolution Rapid

Refresh (HRRR; Bytheway and Kummerow 2015; Cai

and Dumais 2015) as well as the Global Forecast System

and North American Mesoscale models (Wolff et al.

2014).

Although prior studies have demonstrated the utility

of satellite infrared BTs for cloud verification, object-

based verification tools until recently have not typically

been used to assess the forecast accuracy of clouds.

Mittermaier and Bullock (2013) used MODE to assess

the spatial and temporal characteristics of cloud-cover

forecasts in high-resolution models over the United

Kingdom. Their study, however, focused on evaluating

the characteristics of clear objects within the satellite

imagery. They showed that object-based verification

provides a useful way to evaluate different attributes

of the forecast. Griffin et al. (2017) most recently as-

sessed the accuracy of the experimental HRRR

(HRRRx) model using simulated BTs and traditional,

neighborhood-based, and object-based statistics. They

found that object-based verification provides in-

formation about the simulated cloud structure, such as

errors in the location, shape, orientation, and spatial

extent of the cloud field, that is not readily obtained

using traditional or neighborhood-based verification

metrics. Therefore, object-based statistics provide a

more unique assessment of the forecast accuracy.

The purpose of the paper is to assess the accuracy of

the HRRRx cloud-cover forecasts during two 1-month

periods covering August 2015 and January 2016. These

periods were chosen for this analysis to investigate

potential differences in cloud characteristics during the

warm and cool seasons. Given the fine spatial resolution

(3 km) of the HRRRx model, qualitatively small differ-

ences between the observed and forecast cloud fields

may lead to large quantitative errors that differ greatly

from a subjective forecaster evaluation of the model

forecast accuracy. Therefore, these cloud-field differences

are quantified using MODE instead of traditional or

neighborhood-based statistics, which mainly measure

spatial displacement between the observed and forecast

cloud fields (Griffin et al. 2017). Using the method of

assessing model cloud cover by comparing simulated

and observed infrared BT, model cloud validation will

be accomplished by comparing objects created from

HRRRx simulated infrared BTs with objects created

from observed infrared BT.

The paper is organized as follows: The datasets used

in this study are described in section 2, and MODE will

be described in more detail in section 3. The method

used to evaluate the HRRRx forecast accuracy will be

presented in section 4. Results and conclusions will be

presented in sections 5 and 6, respectively.

2. Data

a. Simulated brightness temperatures from
the High-Resolution Rapid Refresh model

This study uses simulated Geostationary Operational

Environmental Satellite 13 (GOES-13) 10.7-mm BTs

computed using output from the HRRRx model. The

10.7-mmBTs are sensitive to cloud ice particles and thus

are an ideal dataset to assess the accuracy of the cloud

field in the upper troposphere. The HRRRx is an hourly

updating model that covers the contiguous United

States (CONUS) with 3-km horizontal grid spacing

and 51 vertical levels. The version of the HRRRxmodel

used for this study was implemented at the Earth System

Research Laboratory on 4 May 2015 (http://

rapidrefresh.noaa.gov/). It uses initial conditions from

the Rapid Refresh (RAP) model and then applies data

assimilation at 3-km resolution, including the assimila-

tion of radar reflectivity. The HRRRx is a convection-

allowing model that does not include deep convective

parameterization (Benjamin et al. 2016). The HRRRx

uses the Thompson aerosol-aware, version 3.6.1, mi-

crophysics scheme (Thompson and Eidhammer 2014);

Mellor–Yamada–Nakanishi–Niino (MYNN), version

3.61, planetary boundary layer scheme (Nakanishi and

Niino 2004, 2009); RUC, version 3.61, land surface

model (Smirnova et al. 2016); and the Rapid Radiative

Transfer Model for general circulation models

(RRTMG) shortwave and longwave radiation schemes

(Iacono et al. 2008; http://rapidrefresh.noaa.gov/).

Simulated GOES-13 BTs are computed for forecast

hours 0–24 and are valid at the beginning of the hour.
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These BTs are computed using HRRRx output and

version 2.0.7 of the Community Radiative Transfer

Model (CRTM; Han et al. 2006) in the Unified Post

Processor (UPP). The UPP incorporates the correct

GOES-13 viewing-angle geometry. For clear grid points,

simulated BTs are computed using several model-

predicted fields, including surface skin temperature,

10-m wind speed, pressure, and vertical profiles of

temperature and water vapor. For cloudy grid points,

additional information about cloud radiative properties

is required to simulate BTs. Vertical profiles of mixing

ratio and number concentration are used to compute

the effective particle diameters for each hydrometeor

species (cloud water, cloud ice, rainwater, snow, and

graupel) predicted by the Thompson aerosol-aware

microphysics scheme. In the CRTM, standard lookup

tables for cloud absorption and scattering properties,

such as extinction, single-scatter albedo, and the full

scattering phase function, are used to assign values to

each hydrometeor species as a function of the cloud

effective diameter computed using the particle size dis-

tribution assumptions for that scheme (e.g., Otkin et al.

2007). Cloud optical properties are computed for each

species and model layer and then are combined into

an effective set of properties for each layer before

computing the simulated infrared BTs.

b. Observed brightness temperatures

The satellite validation data used during this study

are from the GOES-13 imager. The 10.7-mm GOES-13

BTs have a 4-km spatial resolution at nadir and are

remapped to the 3-km HRRRx grid using an area-

weighted average of all of the observed pixels that

overlap a given HRRRx grid box. TheGOES-13 imager

typically completes a scan over the CONUS every

15min, and simulated HRRR BTs will be compared

with the scan beginning at the top of the hour. An ex-

ception occurs every 3h (0000, 0300 UTC, etc.), when

the scan at the top of the hour is skipped so that the full

disk scan that started 15min earlier can be completed.

In these instances, simulated HRRR BTs will be com-

pared with the GOES-13 scan starting 15min prior to

the HRRRx forecast time. Although this may introduce

some uncertainty into the analysis, it is expected to

be minor.

c. Seasonal comparison

Toassess theHRRRx forecast accuracy, simulated and

observedGOES-13 10.7-mmBTs from two 1-month-long

periods, 1–31 August 2015 and 1–31 January 2016, were

evaluated. These time periods were chosen so that the

forecast accuracy of the HRRRx model could be

assessed during both warm and cool seasons given

potential differences in meteorological regimes and

associated cloud characteristics. Representative snap-

shots of the GOES-13 10.7-mm BT are shown in Fig. 1.

The image on the left is from 2 August 2015, and the

image on the right is from 22 January 2016. Cloud

features in the upper troposphere associated with the

coldest BTs were generally smaller in August than in

January, although both large and small objects occurred

during both months.

3. Method for object-based diagnostic evaluation

This study uses MODE (Davis et al. 2006a,b) to

analyze the accuracy of the HRRRx forecast cloud field.

MODE is a technique for identifying and matching

objects in two different fields (e.g., observation and

model forecast fields). These objects represent ‘‘regions

of interest,’’ which for this study are upper-level cloud

features that contain the coldest infrared BTs.

The MODE process is fully described in Davis et al.

(2006a); a short outline as applied to cloud systems is

provided here for context:

1) Smooth and threshold the forecast and observed BT

fields using a process called convolution thresholding

to identify objects.

2) Calculate various object attributes for each observed

and forecast cloud object.

3) Match forecast and observed cloud objects using a

fuzzy-logic algorithm and calculate attributes of

paired objects, such as intersection area and distance.

4) Output attributes for individual objects and matched

object pairs for assessment.

The convolution radius used for both the observed and

forecast fields in step 1 was chosen to be five grid points

(15km) on the basis of Griffin et al. (2017). This radius

allows for the analysis of small-scale storms, sinceCai and

Dumais (2015) state a range of two–eight grid points as

identifying convective storm objects in;4-km-resolution

radar imagery. Object merging, in which larger objects,

identified with a lower threshold, fully contain multiple

individual objects, was not performed in the individual

observation and forecast fields.

Step 1 of the above process requires choosing a BT

threshold to define the edges of the cloud objects.

As seen in Fig. 1, however, cloud objects contain dif-

ferent BTs depending upon the season, weather regime,

and location. In addition, Griffin et al. (2017) identified

a cold bias in the HRRRx forecast BTs that varies as a

function of forecast hour. To illustrate these differences,

probability distributions for the observed and simulated

10.7-mm BT from August and January at forecast hours

0 and 3 are shown in Fig. 2. Although the coldest BTs
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occurred during August, the entire BT distribution is

overall colder in January than it was during August. In

addition, the coldest HRRRx simulated BTs are colder

in the 3-h forecast than in the 0-h analysis, with themean

bias error from the 0-h analysis in August decreasing

from 5.74 to 0.19K by the 3-h forecast and the mean bias

error from the 0-h analysis in January decreasing from

4.30 to 0.17K by the 3-h forecast. Thus, to account for

these seasonal and forecast-hour differences, the BT

threshold used for each observed (forecast) BT field is

based on the 10th percentile of the observed (simulated)

BTs accumulated over the entire model domain covered

by GOES-13 observations during the 10-day period

prior to and including the valid (forecast) time. In Fig. 1,

the 10th percentile ofGOES-13 observed BTs is 252.0K

for 2 August 2015 and 241.0K for 22 January 2016.

The 10th percentile is used so that the analysis focuses on

the coldest cloud objects occurring in the upper tropo-

sphere. Ten days are used to determine the BT threshold

for upper-level clouds because it is possible that no

upper-level clouds are present if a shorter time period is

used. The threshold applied to the observed GOES-13

BT is computed for each hour of the day to account for

different cloud characteristics associated with the diurnal

cycle. The threshold applied to the HRRRx simulated

BT for a given HRRRx forecast is calculated from

HRRRx forecasts with the same forecast hour and ini-

tialized at the same time of day as the given HRRRx

forecast to account for any potential variations between

different HRRRx initialization times. Since current

versions of MODE are unable to compute the BT

thresholds, they are calculated prior to running MODE.

When matching forecast and observation objects,

MODE measures the correspondence between two ob-

jects by computing the interest value between matched

objects (Developmental Testbed Center 2014). Interest

values are a single number ranging from 0 to 1, with a

perfect match having an interest value of 1. The interest

value is a weighted combination of the object-pair attri-

butes, where various object-pair attribute weights are

defined by the user. The attributes and user-defined

weights applied in this study are shown in Table 1. Attri-

bute weights were chosen after testing multiple combina-

tions using 5-h HRRRx forecasts from 1400 and 2000

UTC 23 July. The 5-h HRRRx forecasts are used to avoid

potential errors associated with model spinup. Overall,

the matching of observation and forecast objects in this

analysis prioritizes the distance and size comparison be-

tween the objects. Two distance attributes are highly

weighted relative to other attributes, with the minimum

distance (boundary_dist) between the edges of objects

having a slightly lower weight than the centroid distance

(centroid_dist) that measures the distance between the

objects’ ‘‘centers of mass’’ so that more emphasis is placed

on the displacement between the objects’ centers of mass

rather than their edges. Note, however, that, since the

MODE centroid distance weight is the user-defined

weight multiplied by the ratio of the objects’ areas, the

boundary distance between objects has greater weight

when the ratio between the observation and forecast

object area is less than 0.75. The area attributes receive the

same user-defined weight as the distance attributes.

The ratio of the objects’ areas (area_ratio) is weighted

higher than the ratio of the intersection area of objects to

the observation or forecast object’s area (int_area_ratio)

because the int_area_ratio value can be artificially high

when a small object is fully enclosed within a larger object.

Sample MODE objects defined using the observed

and simulated BT thresholds from the 0-h HRRRx an-

alyses are shown in Fig. 3. A solid black line surrounding

FIG. 1. Representative example IR-windowBT image from the twomonths of interest in the study: (left) 1900UTC 2Aug 2015 and (right)

1900 UTC 22 Jan 2016.
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one or more objects, along with forecast and observa-

tion objects with the same color for a particular time,

identifies an object cluster. A cluster is defined as a set

of one or more observation (forecast) objects matching

the same one or more forecast (observation) objects

(Developmental Testbed Center 2014). In this analysis,

clusters are defined as object matches exceeding an in-

terest value threshold of 0.65 [fromGriffin et al. (2017)].

FIG. 2. Cumulative distribution of BT for August (red) and January (blue) for GOES-13

observedBT (dashed curves, identical in both panels), alongwith the cumulative distribution of

simulated HRRRx BT (solid curves) for (top) the 0-h analysis and (bottom) the 3-h forecast.

TABLE 1. User-defined weights and brief description of the object-pair attributes used in this analysis.

Object pair

attribute

User-defined

weight (percent) Description

Centroid_dist 4 (25.0) Distance between objects’ centers of mass

Boundary_dist 3 (18.75) Min distance between the objects

Convex_hull_dist 1 (6.25) Min distance between the polygons surrounding the objects

Angle_diff 1 (6.25) Orientation-angle difference

Area_ratio 4 (25.0) Ratio of the forecast and observation objects’ areas (or its reciprocal, if it yields

a lower value)

Int_area_ratio 3 (18.75) Ratio of the objects’ intersection area to the lesser of the observation or forecast area

(whichever yields a lower value)
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FIG. 3. (left)GOES-13 observed and (right) HRRRx simulated IR-window BT images from (top) 1900 UTC

2 Aug 2015 and (bottom middle) 1900 UTC 22 Jan 2016, and the (top middle),(bottom) respective

corresponding MODE objects.

2322 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56



4. Method

a. Dichotomous (yes/no) verification

The relationship between the locations of MODE-

identified observation and forecast cloud objects can

be assessed using a standard 2 3 2 contingency table

(Table 2) to depict HRRRx forecast accuracy. Thus, this

analysis assesses overlapping observation and forecast

object grid points, not matching object pairs. A grid

point that is identified as both an observed and forecast

cloud object is considered to be a hit, whereas a grid

point that is not identified as either a forecast or ob-

served object is considered to be a ‘‘correct no.’’ A grid

point that is identified as an observation cloud object

but not a forecast object is considered to be a miss. A

grid point that is identified as a forecast cloud object

but not an observation object is considered to be a

false alarm.

Output generated from the 2 3 2 contingency table

will be displayed using a performance diagram that

displays four different metrics on one image: probability

of detection (POD), success ratio (SR), bias, and critical

success index (CSI; Roebber 2009). The equations for

these metrics are provided in Table 3 and are based on

those found inWilks (2006). The POD is the ratio of the

number of observation object grid points coincident

with an HRRRx object to the total number of obser-

vation object grid points. The SR is 1 minus the false-

alarm ratio, the number of incorrect HRRRx object grid

points divided by the total number of HRRRx object

grid points. Both the POD and SR have a range from

0 to 1, with higher numbers indicating a better forecast.

Bias is the ratio of the number of HRRRx object grid

points to observation object grid points. Unbiased

forecasts have a bias equal to 1, with biases of greater or

less than 1 indicating that the HRRRx model is over-

forecasting or underforecasting, respectively, the num-

ber of observation object grid points. Overall forecast

accuracy is assessed using the CSI, the number of cor-

responding observation and HRRRx object grid points

relative to the number of observation object grid points

and false HRRRx object grid points. It has a range from

0 to 1, with 1 representing a perfect forecast. Since the

CSI assumes correct-no forecasts are of no consequence

(Schaefer 1990), it will not be artificially high because of

the larger percentage of grid points that are not associ-

ated with observation or forecast objects. An additional

metric, the equitable threat score (ETS), will also be

used to assess forecast accuracy. The equation for the

ETS can be seen in Table 4. Unlike the CSI, the ETS

does account for correct-no forecasts when using the

sample forecast size (Wilks 2006).

b. MODE composite score

The extensive output generated from MODE to

describe objects and object matches can be condensed

using the MODE composite score (MCS; Griffin et al.

2017). The MCS is an area-weighted calculation that

combines the interest values computed by MODE into

a single value while still preserving the unique in-

formation provided via object-based verification

methods. The MCS includes two components, one for

cloud clusters and the other for cloud objects, and is

computed as follows:

MCS5�
NC

i51

Area
Observation_Cluster

(i)

Total_Area
3 Interest_Value(i)

1�
NO

j51

Area
Observation_Object

( j)

Total_Area
3 Interest_Value( j).

(1)

Here, the total area in the denominator is defined as the

area of the observed cloud objects plus the area of

the forecast cloud objects that are unmatched to the

observed cloud objects. TheNC andNO in the summation

TABLE 2. Relationship between HRRRx forecast object grid

points and GOES-13 observation object grid points in a 2 3 2

contingency table.

GOES-13 observation object

Yes No

HRRRx forecast object Yes h f

No m z

TABLE 3. Forecast metrics displayed on performance diagrams

using the 2 3 2 contingency table in Table 2.

Forecast metric Equation

POD
h

h1m

SR 12
f

h1 f

Bias
h1 f

h1m

CSI
h

h1m1 f

TABLE 4. ETS using the 2 3 2 contingency table in Table 2.

Forecast metric Equation

ETS
h2href

h2 href 1 f 1m

href
(h1 f )(h1m)

n

n h 1 m 1 f 1 z
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represent the number of observation clusters and objects,

respectively. Given that the maximum centroid distance

in this analysis is chosen to be 200km, all objects in

the observed field will be matched and therefore have a

nonzero interest value, with a forecast object that is

within 200km. The MCS has a range from 0 to 1. An

MCS equal to 1 indicates that all HRRRx objects per-

fectly match observation objects. An MCS equal to

0 indicates that no HRRRx and observation objects are

within a centroid distance of 200 km. This is unlikely to

occur, however.

Since multiple objects in the observation (forecast)

field may correspond to a single object in the forecast

(observation) field, the MCS calculation first analyzes

clusters. Once the MCS accounts for the clusters, only

object pairs for which both the individual observation

and forecast objects do not already belong to a matched

cluster will be used in the MCS calculation. Because

each observation and forecast object is only used once,

remaining object matches are analyzed from highest to

lowest interest value to calculate the highest possible

MCS. Object matches with an area ratio of less than 5%

are not included in the MCS calculation.

5. Results

a. Object comparison

The first step in assessing the accuracy of the model

forecasts is to determine whether they accurately rep-

resent the number of upper-level cloud objects that are

present in the GOES-13 observations. Figure 4 shows

the number of observed and forecast objects plotted as a

function of time of day aggregated over all forecast hours

and cycles during August (red) and January (blue).

Overall, there are more observation (and forecast)

cloud objects in August, with a more prominent diurnal

cycle. This behavior is consistent with the more pre-

dominant small-scale convective cloud features found

during the summer as compared with the larger

synoptic-scale cloud systems more frequently observed

during the winter.

Although the different characteristics of the diurnal

cycle are accurately captured in both the August and

January forecasts, there are typically not enough fore-

cast objects in both months. For example, the median

number of forecast objects, identified by the middle line

in the box plot, is smaller than the number of observed

objects for each time of day and season, with the only

exception occurring near 0000 UTC during August

(Fig. 4). Even though the median number of forecast

objects is smaller, however, the whiskers and outliers

indicate that the largest number of forecast objects is

typically larger than the largest number of observed

objects. Figure 5 shows the number of observation and

forecast objects plotted as a function of forecast hour.

The typical situation is that too many forecast cloud

objects are associated with the 0-h model analyses. This

difference is attributed to multiple small convective

cores in the model analyses versus a larger cloud cluster

in the observations (not shown). In later forecast hours,

there are generally fewer forecast objects identified

relative to observation objects in theGOES-13 imagery.

The median number of forecast objects reaches a mini-

mum around forecast hour 4 during August before

slowly increasing with time. During January, however,

there is a steady drift toward fewer forecast objects with

increasing forecast hours as the largest forecast cloud

objects have the tendency to increase in size with time.

The total size of the MODE objects as a function of

time of day can be observed in Fig. 6. With a few

FIG. 4. Box-and-whisker plot of number of MODE objects for August (red) and January

(blue) as based on time of day. Lighter reds and blues represent the number of GOES-13

observation objects, and darker reds and blues represent the number of HRRRx forecast

objects from all HRRRx forecast hours.
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exceptions, the January objects encompass more of the

HRRRx domain area than do the August objects. Be-

cause August has a higher number of objects than Jan-

uary (e.g., Fig. 4), this result indicates that the median

cloud-object size for August is smaller than that for

January, reflecting the cellular nature of convection in

the summer. The number of grid points that the MODE

objects encompass differs by season, with a greater

number for January than for August. Because the BT

threshold to determine MODE objects is calculated

using data from the previous 10 days, the area of the

MODE objects will not necessarily account for 10% of

the total domain at any one time. In addition, the 10th-

percentile BT threshold is applied to the raw BT data.

Objects are then created from the raw data using a

fuzzy-logic algorithm (Developmental Testbed Center

2014). During this process, the percentage of grid points

identified as objects is reduced relative to the percent-

age of raw grid points identified using the BT thresh-

old. This reduction is highly correlated with the number

of objects, with correlations of 0.913 and 0.994 for

observation forecast objects, respectively. Therefore,

the average reduction in observed object grid points is

greater in August (0.61%) than in January (0.46%) be-

cause more objects are observed. The reduction in

forecast object grid points is even greater in August

(0.95%) than in January (0.58%), which could in-

herently cause a low bias in the number of forecast ob-

ject grid points relative to observation object grid points.

b. Dichotomous (yes/no) verification

Results from comparing the collocation of the obser-

vation and forecast object grid points can be seen in the

performance diagram for August and January in Fig. 7.

Each of the boxes corresponds to the 99% confidence

interval (CI) for a given forecast hour for every available

HRRR initialization in a given month. The CI for the

given variable X is calculated using

CI(X)5mean(X)6 2:58
Standard_Deviation(X)

Sample_Size(X)
,

where 2.58 is based on the 99% cutoff probability of a

two-tailed Gaussian distribution (Wilks 2006). Colored

squares in the left and right panels represent the data

from August and January, respectively, and the open

FIG. 5. As in Fig. 4, but as based on HRRRx forecast hour.

FIG. 6. As in Fig. 4, but for the overall size of MODE objects.
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squares in each panel represent the data from the other

month (panel) to ease comparisons between themonths.

Forecast skill increases to the upper right in each image.

For both months, the forecast skill typically decreases

with forecast hour. One exception to this behavior is that

the 1-h forecast is more accurate than the 0-h analysis.

August forecasts are less skillful than the January fore-

casts at later forecast times, as based on the performance

diagrams and the ETS in Table 5. This is consistent with

the difficulty in accurately predicting the evolution of

the smaller convective cells that are more common

during the summer (Wolff et al. 2014). Of interest,

though, is that the most skillful forecasts were actually

obtained during August. The 0-h analyses and 1-h

forecasts have the highest POD and SR when com-

pared with all other forecast hours and thus have the

highest CSI. This result suggests that the strong reliance

of the HRRRx and RAP data assimilation systems on

radar observations is beneficial during the summer when

there is convection covering a larger part of the grid. The

current radar data assimilation emphasizes higher-

reflectivity observations, and therefore the lower-

reflectivity winter precipitation (often stratiform in

stable conditions) does not have as much impact during

assimilation. These improvements then drop off within a

couple of hours because ofmore limited predictability of

thunderstorms as compared with the large-scale cloud

and weather systems that prevail during the winter.

The POD for August begins to remain steady around

the 6-h forecasts because the number of HRRRx ob-

ject grid points increases with increasing forecast hour

(as seen in Fig. 5). These additional HRRRx object

grid points are not associated with observation object

grid points, however, likely because the displacement

between matching objects increases. January has a

steady decline in forecast accuracy because the num-

ber of HRRRx object grid points remains fairly

FIG. 7. Performance diagram for (left) August and (right) January, as indicated by the colored squares. The open

squares represent the data from the other month for comparison. Square size represents the CI.

TABLE 5. Average CSI and ETS for August and January by

forecast hour. The highest value is in boldface type.

Forecast hour Aug CSI Aug ETS Jan CSI Jan ETS

0 0.452 0.410 0.406 0.363

1 0.470 0.431 0.425 0.382

2 0.405 0.364 0.406 0.362

3 0.359 0.317 0.391 0.346

4 0.332 0.288 0.376 0.330

5 0.317 0.273 0.367 0.321

6 0.307 0.262 0.362 0.315

7 0.299 0.253 0.357 0.311

8 0.295 0.249 0.353 0.306

9 0.292 0.246 0.350 0.303

10 0.288 0.241 0.346 0.299

11 0.286 0.239 0.340 0.293

12 0.285 0.237 0.334 0.288
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constant with forecast lead time, but the displacement

between object pairs increases.

According to the performance diagram, both August

and January have a bias of less than 1. This result in-

dicates that there are fewer grid points associated with

forecast objects than with observation objects. This

outcome is expected on the basis of the results shown in

Fig. 6 and is due to the fact that the reduction in grid

points from raw data to objects is larger for forecasts

than for observations. The larger reduction in the fore-

casts is related to the larger BT range exhibited in

the HRRRx, as the logarithmic regression between the

reduction in percentage of area and BT range for

GOES-13 and HRRRx BTs has a correlation of 0.821.

c. MODE composite score

In this section, the accuracy of forecast cloud-object

characteristics relative to the observation cloud objects is

assessed using the MCS. Figure 8 shows the mean MCS

plotted as a function of forecast hour for August and

January, with the gray shading indicating the 95% con-

fidence interval around the mean MCS. Overall, the 1-h

forecast is the most accurate for both months, with dis-

cernable skill out to 2h and a steady decrease thereafter

as predictability decreases. This figure indicates that the

1-h forecast objects better represent the observation ob-

jects than do other forecast hours. Also, the 0-h analyses

and 1-h forecasts are more accurate for August than for

January. Forecast hours 2 and beyond have similar ac-

curacy for each season, with the MCS decreasing with

increasing forecast hour. This result is consistent with the

results from the performance diagram, which also

indicated that the 0-h analyses and 1-h forecasts from

August are the most accurate when compared with

HRRRx forecasts from August and January.

d. Why is August more accurate than January?

As shown in the dichotomous verification and MCS,

the 1-h forecast for August is more accurate than the

1-h forecast for January. This result seems counter-

intuitive because the small-scale features observed in

August should be more difficult to forecast (Wolff

et al. 2014; Griffin et al. 2017). This behavior is not

simply related to the larger January objects being

unmatched in the MCS calculation. For the 1-h fore-

cast, the MCS for August and January are 0.871 and

0.830, respectively. After removing the impact of un-

matched objects, and therefore confining the total

area to the area of the matched observation objects,

the MCS for August (0.930) is still higher than that for

January (0.903).

To identify why the August forecasts tend to be more

accurate than the January ones, attribute-based MCS

values are calculated for the four main attributes related

toMODE object pairs in this analysis: centroid distance,

boundary distance, area ratio, and intersection area ra-

tio. The attribute-basedMCS is calculated using Eq. (1),

with the attribute-specific interest value replacing the

total interest value. Two assumptions are made when

calculating the attribute-based MCS. First, the MODE

centroid distance weight is the user-defined weight in

Table 1 for ease of comparison. Second, the total area is

only the area of the matched observation objects since

unmatched objects do not affect which forecast hour is

more accurate. Attribute interest values are used in-

stead of the actual attribute magnitude (for example, a

centroid distance of 170 km) because attribute interest

values are calculated using interest functions that are

based on the actual attribute magnitude. For example,

the centroid distance interest function is

FIG. 8. Mean MCS values plotted as a function of forecast hour for August (red line) and

January (blue line). Gray represents the 95% confidence interval.
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Centroid Distance Interest Value

5

1 if X# 20 km

1502X

1502 20
if 20,X, 150 km,

0 if X$ 150 km

8>>>>><
>>>>>:

where X is the centroid distance between two matched

objects. Therefore, a centroid distance of 170 km has the

same attribute interest value as a centroid distance of

199 km even though it is smaller.

The comparison between the August and January

attribute-basedMCSs can be observed in Table 6. For all

four attributes, the August attribute-based MCS is

higher than in January, with the greatest differences

observed for the centroid distance and area ratio attri-

butes. The interest values for these attributes, as based

on observation object size, are shown in Fig. 9. For each

season, attribute interest values from matched object

pairs are divided into 30 bins on the basis of the obser-

vation object size. Each bin has approximately the same

number of matched object pairs, 1175 for August and

812 for January. The interest values for each bin are then

averaged. For almost all observation object bins, the

centroid distance interest values are greater in August

than in January. This indicates that the displacement

between centers of mass for matched object pairs is

smaller in August than in January, potentially as a result

of the stronger flow associated with dynamic systems

yielding larger displacement errors in January than in

August. This smaller displacement is one reason for the

larger POD and CSI in August (Fig. 7), because more

forecast object grid points overlap with more observa-

tion object grid points. For the area ratio attribute, the

interest values for August and January are similar for

more than one-half of all object matches. For larger

objects, however, the area ratio interest values are

greater for August; for smaller objects, the area ratio

interest values are greater for January. Therefore, the

forecast objects are not accurately depicting the size of

the larger January observation cloud objects or the

smaller August observation cloud objects relative to the

August objects. The larger observation objects have

a greater impact on the MCS because the MCS is an

area-weighted calculation, leading to a more accurate

forecast for August than for January.

e. Why is the 1-h forecast the most accurate?

Both the dichotomous verification and MCS indicate

that the 1-h HRRRx forecast is the most accurate

forecast for both August and January. Again, this is also

not purely the result of more matched forecast and

observation objects. Removing unmatched objects from

the MCS calculation increases the MCS for the 0-h an-

alyses from 0.898 to 0.917 and the MCS for the 1-h

forecasts from 0.902 to 0.930. To identify the reasons

that the 1-h forecast is more accurate than the 0-h

analysis, the MODE interest values for the distance

and area attributes from the 1-h forecasts were com-

pared with those from the 0-h analyses. The comparison

between the 0-h analysis and 1-h forecast attribute-

based MCSs can be observed in Table 7. The centroid

distance attribute and area ratio attribute have higher

attribute-based MCSs for the 1-h forecast, whereas the

boundary distance and intersection area ratio actually

have higher attribute-based MCSs for the 0-h analysis.

To identify the cause of the differences between

attribute-based MCSs, corresponding observation ob-

ject sizes and attribute interest values are compared.

Because the observation object sizes are the same, the

attribute interest values for matched object pairs are

arranged on the basis of the size of the matching ob-

servation object. Because the number of matches for a

given observation cloud-object size can differ as a result

of an observation object only having a matched forecast

object in either the 0-h analysis or 1-h forecast, however,

the percent of occurrences is calculated. The percent of

occurrences is the ratio of the number of instances in

which observation objects of a particular size and cor-

responding attribute interest value are observed relative

to the total number of instances in which an observation

object size is observed in matched pairs. The difference

in percent of occurrences is then defined as

Difference in Percent of Occurrences

5
Number(score, obs_size)

0-h_analyses

Total(obs_size)
0-h_analyses

2
Number(score, obs_size)

1-h_forecasts

Total(obs_size)
1-h_forecasts

, (2)

where ‘‘score’’ is the attribute-specific interest value and

‘‘obs_size’’ is the size of the observation object in the

matched object pair.

TABLE 6. Attribute-based MCS for four object-pair attributes

for 1-h forecasts from August and January. It is assumed that the

MODE centroid distance weight is the user-defined weight in

Table 1.

Object-pair attribute Aug Jan Max value

Centroid distance 0.165 0.145 0.25

Boundary distance 0.178 0.176 0.1875

Area ratio 0.206 0.198 0.25

Intersection area ratio 0.176 0.172 0.1875
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The difference in percent occurrences for the centroid

distance attribute is shown in Fig. 10. Blue or red colors

indicate that the centroid distance interest value and

observation object size combination occurs more fre-

quently in the 1-h-forecasts or in the 0-h-analyses object

pairs, respectively. For small objects, a higher percent-

age of observation objects have lower interest values in

the 1-h forecasts than in the 0-h analyses. This result is

not unexpected because displacement errors tend to

increase with increasing forecast hours (Griffin et al.

2017) and lower interest values are associated with

greater displacement errors between the objects’ centers

of mass. Higher interest values are also observed more

frequently in the 1-h forecast for the largest cloud ob-

jects, however, which indicates that these objects have

centers of mass that are closer to their matched forecast

objects in the 1-h forecast. Because this improvement

in the centroid distance interest value occurs for the

largest objects, it has a greater impact on the MCS

because the MCS is an area-weighted calculation.

The smaller displacement for large objects at the 1-h

forecasts could correspond to a higher percentage of

overlapping grid points for these objects and, ultimately,

higher SR relative to the 0-h analyses. This is potentially

the effect of convective-scale growth toward the end of

the ‘‘spinup’’ period.

Differences in the percent of occurrences in the

boundary distance interest values are shown in Fig. 11.

Overall, the highest interest values are associated with

the 0-h analyses, which is a result that indicates that the

model initialization is more accurate than the 1-h fore-

casts for this particular attribute. As was seen in the

centroid distance scores in Fig. 10, lower interest values

are more common for the small cloud objects in the 1-h

forecasts. This result is due to greater displacement

TABLE 7. As in Table 6, but for the 0-h analysis and 1-h forecast

from August.

Object pair attribute 0-h analysis 1-h forecast Max value

Centroid distance 0.154 0.165 0.25

Boundary distance 0.181 0.180 0.1875

Area ratio 0.201 0.206 0.25

Intersection area ratio 0.178 0.176 0.1875

FIG. 9. The centroid distance (solid) and area ratio (dashed) attribute interest values, as based

onobservation object size, forAugust (red) and January (blue). Thematched observation objects

are divided into 30 bins, on the basis of observationobject size, so that each bin has approximately

the same number of objects. The interest values for each bin are averaged.

AUGUST 2017 GR I F F I N ET AL . 2329



between the small cloud objects. Unlike the centroid

distance interest values, however, there are only very

small differences for the larger cloud objects. Because

the boundary distance is the minimum distance between

the edges of the observed and forecast cloud objects,

larger objects need a larger displacement between cloud

objects for no overlapping to occur. The difference in

percent of occurrences for the intersection area ratio

FIG. 10. Percent difference in the occurrence of MODE centroid interest scores between the

0-h analysis and 1-h forecasts during August plotted as a function of MODE interest score

along the x axis and observation object size along the y axis. Blue colors indicate that the

given centroid distance interest score and observation object size combination occurs more

frequently in the 1-h forecast than in the 0-h analysis, and red colors indicate that they occur

less frequently.

FIG. 11. As in Fig. 10, but for the MODE boundary distance attribute.
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interest value (Fig. 12) is very similar to the boundary

distance interest values for this same reason. As the

displacement between objects increases, the size of the

overlapping area, and thus the intersection area ratio

interest value, decrease. Matched pairs with larger ob-

served objects are still overlapping, however, and

therefore no changes are evident between the 0-h

analysis and 1-h forecasts for the larger objects.

The difference in the percent of occurrence for the

area ratio attribute is shown in Fig. 13. Overall, the

differences between the 0-h analysis and 1-h forecasts

are relatively small for this attribute. An important ex-

ception, however, is the largest observation objects, for

which higher area ratio interest values are more likely to

be associated with the 1-h forecast than with the 0-h

analysis. This increase in the area ratio interest value for

FIG. 12. As in Fig. 10, but for the MODE intersection area ratio attribute.

FIG. 13. As in Fig. 10, but for the MODE area ratio attribute.
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the 1-h forecasts indicates that the size of the cloud

objects in the 1-h forecast better represents the observed

objects than does that in the 0-h analysis. Because the

observed object sizes remain unchanged, it is assumed

that this better representation of large observed objects

is a result of the model spinup and forecast objects in-

creasing in size. This would explain how the intersection

area ratio remains unchanged between the 0-h analysis

and 1-h forecasts for larger cloud objects. In addition,

the center-of-mass distance between the objects could

decrease even though displacement occurs because

forecast objects are larger. Therefore, the 1-h forecasts

are more accurate than the 0-h analyses because the

areas of the largest cloud objects are more accurate and

thus the distance between these object pairs is smaller.

6. Conclusions

In this study, the accuracy of HRRRx forecast cloud

objects in the upper troposphere was assessed during

warm- and cool-season months using MODE, a sophis-

ticated object-based verification tool. This was accom-

plished by comparingMODE-identified cloud objects in

simulated and observedGOES-13 10.7-mm BT imagery

for two 1-month periods, 1–31 August 2015 and 1–31

January 2016. To account for biases in the HRRRx

simulated BTs and differences in cloud characteristics

between the warm and cool seasons, objects were de-

fined using the 10th percentile of the BT distribution

accumulated using data over a 10-day period. Overall,

more objects were identified in August. The total area

encompassed by the August objects was also smaller

than that for the January objects, which is consistent

with themore predominant small-scale convective cloud

features that are found during the summer as compared

with the larger synoptic-scale cloud systems that are

more frequently observed during the winter.

TheHRRRx forecast accuracy was assessed using two

methods. The first method is dichotomous verification,

in which the locations of the observation and forecast

cloud objects are compared. On the basis of the CSI, the

1-h forecasts for both August and January are the most

accurate for their respective months. Therefore, these

forecasts have the highest proportion of correctly iden-

tified observation object grid points. Again on the basis

of the CSI, the 1-h forecasts from August are the most

accurate overall. The second method for assessing the

HRRRx forecast accuracy is the MCS, which uses the

MODE interest value from matched pairs of observa-

tion and forecast objects. Again, the 1-h forecasts for

both August and January are the most accurate for their

respective months, with 1-h forecasts fromAugust being

the most accurate overall. Thus, the 1-h forecast objects

better match the observation objects in location and size

when compared with other forecast hours, with the 1-h

forecast objects from August having the best object

portrayal overall.

By using MODE to calculate interest scores for indi-

vidual attributes, the reasons for why the 1-h forecasts

fromAugust are more accurate than those from January

were identified. For matched observation and forecast

objects, the displacement between the objects’ centers

of mass is smaller inAugust than in January. The smaller

displacement results in more grid points corresponding

to both observation and forecast objects, increasing the

POD and ultimately the CSI. The forecast objects from

the August 1-h forecasts also better represent the size of

larger observation cloud objects. Combined with the

smaller displacements, the improved object depictions

result in a more accurate forecast by increasing the

MODE interest values and therefore the MCS.

Individual MODE attribute interest scores were also

used to identify the reasons for why the 1-h forecasts

are more accurate than the 0-h analyses. As expected,

displacement errors between observation and forecast

objects increase between the 0-h analyses and 1-h fore-

casts, except for larger observation objects for which the

centroid distance errors are smaller for the 1-h forecasts.

The sizes of the 1-h forecast objects better represent the

large observed GOES-13 objects, however, which is

consistent with model convective-scale spinup. This

improvement for the largest cloud objects has a more

positive impact on the MCS and forecast accuracy than

the degradations that occurred for the smaller cloud

objects.

This study highlights many interesting results related

to seasonal characteristics of the HRRRx model. The

overall decrease in HRRRx accuracy is potentially of

interest to forecasters. As of the time of writing, fore-

casters can access real-time comparisons of simulated

and observed GOES BTs and statistical analyses from

both the HRRR and HRRRx models online (http://

cimss.ssec.wisc.edu/hrrrval/). Because the simulated

BTs for a given HRRRx forecast cycle typically are not

available in real time until about 100min after the ini-

tialization time, the verification results between the 0-h

analysis and 1-h forecasts presented in this study are

more relevant to researchers who are working on data

assimilation and parameterization schemes than to

forecasters. It is important to note, however, that the

data latency is substantially lower for the operational

HRRR model (,1 h).

Future work will use object-based verification to un-

derstand better why the seasonal characteristics of the

HRRRx model exist. For example, differences in the

number of observation and HRRRx cloud objects
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observed during model spinup could also be due to the

microphysics scheme producing too many or too few

clouds or clouds that have an incorrect cloud optical

depth. In addition, the accuracy of simulated HRRR

BTs will be assessed for individual weather regimes to

identify whether the HRRRx model does better in cer-

tain situations and worse in others. The overall smaller

displacement errors between object pairs in August may

be related to more-intense vertical motions identifying

the correct cloud locations, whereas the smaller vertical

motions that are more associated with frontal systems in

January take longer to appropriately spin up frontal-

system cloud features. This could also be related to the

radar-reflectivity data-assimilation approach used by

the HRRRx model that focuses on higher reflectivity

features that are more common in the warm season

when model response to convective forcing (latent

heating) is more significant. It is also possible that all-sky

satellite infrared radiance assimilation could improve

the analysis and forecast accuracy through a more ac-

curate depiction of the spatial distribution of clouds,

especially in regions that lack higher radar reflectivities.
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