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ABSTRACT

In this study, the utility of dimensioned, neighborhood-based, and object-based forecast verification

metrics for cloud verification is assessed using output from the experimental High Resolution Rapid

Refresh (HRRRx) model over a 1-day period containing different modes of convection. This is accom-

plished by comparing observed and simulated Geostationary Operational Environmental Satellite

(GOES) 10.7-mm brightness temperatures (BTs). Traditional dimensioned metrics such as mean absolute

error (MAE) and mean bias error (MBE) were used to assess the overall model accuracy. The MBE

showed that the HRRRx BTs for forecast hours 0 and 1 are too warm compared with the observations,

indicating a lack of cloud cover, but rapidly become too cold in subsequent hours because of the generation

of excessive upper-level cloudiness. Neighborhood and object-based statistics were used to investigate the

source of the HRRRx cloud cover errors. The neighborhood statistic fractions skill score (FSS) showed

that displacement errors between cloud objects identified in the HRRRx and GOES BTs increased with

time. Combined with theMBE, the FSS distinguished when changes inMAEwere due to differences in the

HRRRx BT bias or displacement in cloud features. The Method for Object-Based Diagnostic Evaluation

(MODE) analyzed the similarity between HRRRx and GOES cloud features in shape and location. The

similarity was summarized using the newly defined MODE composite score (MCS), an area-weighted

calculation using the cloud feature match value from MODE. Combined with the FSS, the MCS indicated

if HRRRx forecast error is the result of cloud shape, since the MCS is moderately large when forecast and

observation objects are similar in size.

1. Introduction

Being able to accurately forecast cloud cover in the

near term has many beneficial applications. Cloud

cover and cloud properties are useful for forecasting

convective initiation (Mecikalski and Bedka 2006;

Sieglaff et al. 2011) and severe weather (Purdom 1993;

Cintineo et al. 2013). Cloud cover has important avia-

tion implications. Most of the air traffic delays in the

United States are the result of thunderstorms (Kaplan

et al. 2005; Murray 2002; Mecikalski et al. 2007),

and thunderstorms are a cause of a documented in-

flight aviation hazard: convectively induced turbulence

(Hamilton and Proctor 2002). Furthermore, cloud

cover has an implication on daily temperatures, as it is

negatively correlated with the diurnal temperature

range (Karl et al. 1993; Dai et al. 1999).

Different statistical techniques exist that can be used

to assess the skill of a numerical weather prediction

(NWP) model at predicting variables, including cloud

cover. Typically, to assess the predictive skill of an

NWP model, the NWP forecast and model-derived

fields are compared directly to their accompanying

observational fields (DelSole and Tippett 2014).

However, there are many different metrics available to

assess forecast skill. One type is dimensioned verifi-

cation metrics, such as mean absolute error (MAE)

and mean bias error (MBE) (Wilks 2006). Other

metrics include neighborhood-based statistics such as
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the fractions skill score (FSS; Roberts and Lean 2008;

Roberts 2008) or object-based statistics (Davis et al. 2006,

2009). Each metric has its strengths and weaknesses. For

example, dimensioned metrics are easy to implement.

However, they often penalize high-resolution NWP

forecasts (Mass et al. 2002; Done et al. 2004) since they

require near-perfect correspondence between the fore-

cast and observation fields, which is difficult to achieve at

higher resolutions. Neighborhood-based statistics are less

sensitive to spatial scale (Wolff et al. 2014) but require an

arbitrary threshold to be applied to the field of interest.

Object-based statistics can account for spatial displace-

ment (Clark et al. 2014), but they can be more difficult to

employ and require the use of numerous user-defined

parameters to identify objects.

Numerous studies have employed the above metrics

to explore the skill of high-resolution precipitation

and cloud cover forecasts, including forecasts from

convection-allowingmodels. Brown and Comrie (2002)

applied the MBE to assess the accuracy of the 1 km 3
1 km regression model they developed based on data

from the National Climatic Data Center and used to

estimate average precipitation in the southwest United

States. Schwartz (2014) compared 3-km High Resolu-

tion Rapid Refresh (HRRR) precipitation forecasts to

other high-resolution models using the FSS. Söhne
et al. (2006) used the FSS to compare simulated

brightness temperatures (BTs) from the French me-

soscale model MesoNH, initialized using different

analyses and horizontal grid resolutions, to observed

Meteosat Second Generation Scanning Enhanced

Visible Infrared Imager (SEVIRI) infrared BTs.

Object-based statistics can be calculated using the

Method for Object-Based Diagnostic Evaluation

(MODE). MODE has been used to compare pre-

cipitation forecasts from the HRRR (Bytheway and

Kummerow 2015; Cai and Dumais 2015), as well as

cloud cover from a convection-permitting and near-

convection-resolving Met Office Unified Model

on a 2-km horizontal grid over the United Kingdom

(Mittermaier and Bullock 2013).

The purpose of the paper is to demonstrate how the

different verification metrics used in the above studies,

as well as the introduction of a new metric, can be used

to assess the accuracy of the experimental HRRR

(HRRRx) cloud cover forecasts. In particular, model

cloud validation will be performed with the indirect

method of comparing HRRRx-simulated infrared BTs

to observed infrared BTs (Morcrette 1991; Otkin and

Greenwald 2008; Otkin et al. 2009; Cintineo et al. 2014,

Lee et al. 2014; Thompson et al. 2016). Cloud validation

will be carried out using dimensioned metrics, as well

as neighborhood-based and object-based statistics, to

deduce how each metric can be used to quantify the

accuracy of HRRRx-simulated BTs and, therefore, the

accuracy of the HRRRx cloud cover. Another objective

of this manuscript is to represent each metric of forecast

accuracy as a single number, since some metrics, like

object-based statistics, can provide multiple methods of

displaying forecast accuracy.

While not the focus of this manuscript, the methodol-

ogy presented will be leveraged in future work to po-

tentially improve operational forecasting in at least two

ways. The metrics presented are computed in real time,

allowing for a quick assessment of the HRRRx cloud

cover accuracy and efficient determination of which

HRRRx initialization best represents the observed cloud

cover at a given time. Second, the statistics can be accu-

mulated over a long time period to determine if any

systematic errors exist in the HRRRx-simulated BTs,

including errors associated with the diurnal cycle, specific

initialization times, weather regimes, or seasons.

The manuscript is organized as follows. The datasets

used in this study are described in section 2. Each verifi-

cationmetric will be presented inmore detail in section 3,

and the methodology is described in section 4. Results

will be presented in section 5, and discussion and con-

clusions, respectively, will be shown in sections 6 and 7.

2. Data

a. Experimental High Resolution Rapid Refresh
model-simulated brightness temperatures

The model data used in this study are generated from

the HRRRx model. HRRRx was implemented at Earth

System Research Laboratory on 4 May 2015 (Earth

System Research Laboratory 2016). HRRRx, which

covers the continental United States (CONUS), is an

hourly updating model that uses 3-km horizontal grid

spacing and 51 vertical levels. HRRRx uses initial con-

ditions from the Rapid Refresh model and then applies

data assimilation at 3km including the assimilation of

radar reflectivity. HRRRx is a convection-allowingmodel

that does not include deep convective parameterization

(Benjamin et al. 2016). HRRRx uses the Thompson

aerosol version 3.6.1 microphysics, version 3.6 of the

Mellor–Yamada–Nakanishi–Niino (MYNN) schemewith

the planetary boundary layer, the RUC land surface

model, and RRTMG shortwave and longwave radiation

(Earth System Research Laboratory 2016).

Simulated GOES 10.7-mm BTs from the HRRRx

model are used in this study. The 10.7-mm wavelength is

an infrared window band that is sensitive to cloud-top

properties when clouds are present and to surface skin

temperature when clouds are absent. HRRRx-simulated
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BTs are available hourly for forecast hours (FHs) 0–24.

SimulatedGOES-13 BTs are computed for each forecast

time usingHRRRxmodel output and version 2.0.7 of the

Community Radiative Transfer Model (CRTM; Han

et al. 2006) in the Unified Post Processor, which in-

corporates the correct GOES viewing angle geometry.

For clear grid points, simulated BTs are computed using

several model-predicted fields, such as surface skin tem-

perature, 10-m wind speed, pressure, and vertical profiles

of temperature and water vapor. For cloudy grid points,

additional information about cloud radiative properties is

required to calculate the simulated BTs. Vertical profiles

of mixing ratio and number concentration are used to

compute the effective particle diameters for each hy-

drometeor species (cloud water, cloud ice, rainwater,

snow, and graupel) predicted by the Thompson aerosol

microphysics scheme. In the CRTM, standard lookup

tables for cloud optical properties, such as extinction,

single-scatter albedo, and the full scattering phase func-

tion are used to assign values to each hydrometeor spe-

cies as a function of the cloud effective diameter

computed using the particle size distribution assumptions

for that scheme (e.g., Otkin et al. 2007). Cloud optical

properties are computed for each species andmodel layer

and then combined into an effective set of properties for

each layer before computing the simulated infrared BTs.

b. Observed brightness temperatures

The satellite validation data used during this study are

derived from the GOES-13 imager. The 10.7-mm GOES

BTs have a 4-km spatial resolution at nadir and are re-

mapped to the 3-km HRRRx grid using a weighted av-

erage of all the observed pixels overlapping a given

HRRRx model grid box. The GOES imager typically

completes a scan over theCONUSevery 15min except for

every 3h (0000, 0300 UTC, etc.) when the scan at the top

of the hour is skipped so the full-disk scan that started

15min earlier can be completed. Thus, simulated HRRR

BTs will be compared with the 0-min scan for most hours,

but will be comparedwith the full-disk scan starting 15min

prior to the HRRRx forecast time for cases when the

0-min CONUS scan is skipped. This introduces some un-

certainty in the analysis, but this is expected to be minor.

c. Case study time period

HRRRx-simulated BT imagery andGOES-observed

BT observations from 1200 UTC 23 July to 1200 UTC

24 July 2015 are used during this analysis. This time

frame was chosen because it contains a variety of se-

vere weather regimes over the United States that al-

lows us to more thoroughly assess the characteristics of

each statistical method. Severe weather reports com-

piled by the Storm Prediction Center can be seen in

Fig. 1a, with the colored boxes representing the differ-

ent focus areas of this study. The red box represents the

northern plains, the black box represents the central

plains, and the blue box represents the southeast United

States. These regions were chosen to correspond to

those on the SPC mesoscale analysis web page (http://

www.spc.noaa.gov/exper/mesoanalysis/). Snapshots of

the GOES BTs for each sector (Figs. 1b–d) help illus-

trate the nature of convection in each severe weather

regime. The weather in the northern plains sector is

characterized by a surface low pressure in Canada and

frontal passage extending into the United States, caus-

ing the broad cloud field seen in Fig. 1b. There are

single-cellular cloud features in the central plains, as

seen in Fig. 1c. A broad cloud field with localized colder

cloud tops is observed in the southeast sector (Fig. 1d).

These cloud features are primarily the product of a

stationary front and sea breezes.

3. Verification measures

a. Dimensioned metrics

Two dimensioned metrics are used during this analy-

sis. These metrics are called ‘‘dimensioned’’ since they

have the same units as the variable of interest (Willmott

and Matsuura 2005) and are point based, comparing a

single grid point in amodel field with the same grid point

in the observational field. Dimensioned metrics are

useful for assessing model forecast skill because they

are easy to compute and provide an efficient way to

compare forecasts with point or gridded observations.

The first metric used in this analysis is the MAE,

defined as

MAE5
1

N
�
n

i51

jF
i
2O

i
j , (1)

where F represents the HRRRx-simulated BTs and O

represents the GOES-observed BTs. The MAE repre-

sents the overall model error, and it is deemed to be a

more appropriate measure for model comparison than

the root-mean-square error (Willmott and Matsuura

2005) since the HRRRx errors do not follow a normal

distribution (Chai and Draxler 2014). A perfect MAE

has a value of zero. The second metric is the MBE,

defined as

MBE5
1

N
�
n

i51

(F
i
2O

i
) . (2)

The MBE indicates model bias, with a positive (nega-

tive) MBE meaning the HRRRx-simulated BTs are too

warm (cold) compared with the GOES observations.
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b. Fractions skill score

The FSS is a neighborhood-based statistic that is less

sensitive to spatial errors than traditional gridpoint

statistics (Mittermaier and Roberts 2010). While the

FSS can be characterized as a point-based statistic like

the dimensioned metrics, its value is determined by the

grid points located within a specified region (defined as

n 3 n grid points) surrounding each grid point.

Therefore, the FSS is an objective measure of how the

forecast skill varies with spatial scale (Wolff et al. 2014)

and can also provide an assessment of displacement

errors (Mittermaier and Roberts 2010). Benefits of the

FSS include it being less sensitive to small-scale or

displacement errors compared to dimensioned metrics

while still remaining easy to implement.

The FSS is fully described in Roberts and Lean

(2008), but a shorter description is provided here for

context. First, binary yes/no forecast and observation

fields of ones (zeros) exceeding (not exceeding) a

FIG. 1. (a) Storm Prediction Center storm reports from 1200UTC 23 Jul to 1200 UTC 24 Jul 2015. Colored boxes

represent the different sectors focused on in this analysis and are characterized by different causes of severe

weather. IR windowBT image for (b) the north plains sector at 0400UTC 24 Jul 2015 and (c) the central plains and

(d) southeast sectors at 2345 UTC 23 Jul 2015.
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given threshold are created. Then, fractions are com-

puted for each forecast (observation) grid point based

on the surrounding points within a square length n grid

points in the forecast (observation) binary field. The

number of grid points in the square surrounding a

given point is therefore n 3 n. An example of calcu-

lating the fraction for a single grid point can be seen in

Fig. 2, adapted from Roberts and Lean (2008). Blue

(white) squares represent grid points exceeding (not ex-

ceeding) the chosen threshold. At the center grid point,

identified with a circle, the forecast (observation) fraction

for a square length n of 3 points (solid square) is 3/9 (3/9).

The forecast (observation) fraction for a square length n of

5 points (dashed square) is 9/25 (7/25). Finally, the FSS is

calculated using the equation

FSS5 12
MSE

MSE
ref

. (3)

The mean-squared error (MSE) is calculated using the

equation

MSE5
1

N
�
N

i51

(O_fraction
i
2F_fraction

i
)2 ,

and MSEref is calculated using the equation

MSE
ref

5
1

N
�
N

i51

O_fraction2

i
2

1

N
�
N

i51

F_fraction2

i
,

where O_fractioni denotes the observation fractions

and F_fractioni denotes the forecast fractions. The

low-skill reference forecast is represented by MSEref,

the largest possible MSE that can be obtained if no

overlap exists between the forecast and observation

binary fields (Wolff et al. 2014). A disadvantage of

the FSS is it is only valid for values above or below a

user-provided threshold, unlike the dimensioned

metrics.

The FSS has a range from 0 to 1, with an FSS of zero

indicating that a forecast has no skill at the square

length n it was assessed while an FSS equal to one

represents a perfect forecast at the assessed square

length of n. When errors are present, the lowest FSS is

observed with a square length n 5 1, and FSS scores

increase as the neighborhood square length increases

(Roberts and Lean 2008). Forecasts contain useful

information when the FSS equals or exceeds the uni-

form FSS (Wolff et al. 2014). The uniform FSS is de-

fined as

FSS
uniform

5 0. 51
FSS

random

2
, (4)

where FSSrandom is the FSS that would be obtained

from a random forecast with the same fractional cov-

erage over the observation domain. An FSS greater

(less) than the FSSuniform indicates the displacement

error is smaller (larger) than the square length n divided

by 2 (Roberts and Lean 2008). For Fig. 2, FSSrandom
equals 0.28 (7/25), assuming the 25 grid-square box

represents the full domain. Thus, forecast accuracy can

be compared using the FSS at a given scale as well as the

spatial scale at which a forecast becomes useful.

FIG. 2. An example of FSS neighborhood calculations. Blue (white) squares represent grid

points exceeding (not exceeding) the threshold and thus having a value of 1 (0). At the grid

point identified with the circle, the forecast (observation) value for square length of 3 (solid

square) is 3/9 (3/9). The forecast (observation) value for square length of 5 (dashed square) is 9/

25 (7/25). [Adapted from Roberts and Lean (2008) see their Fig. 2.]
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c. Method for Object-Based Diagnostic Evaluation

MODE is a technique for identifying and matching

objects in two different fields (Davis et al. 2006, 2009).

Unlike point-based statistics, which are unable to ac-

count for spatial errors when assessing model accuracy,

and the FSS, which can assess object displacement but

not shape, object-based statistics allow for comparison

of features characteristics even if they are spatially

separated. Objects are meant to represent ‘‘regions of

interest’’ (Developmental Testbed Center 2014), which

for this analysis are upper-level cloud systems contain-

ing cold infrared BTs. The BT data used in the analysis

are most sensitive to cold clouds. Therefore, the two

MODE fields are the GOES-observed 10.7-mmBTs and

the HRRRx-simulated 10.7-mm BTs. The MODE pro-

cess is described inDavis et al. (2006), but a short outline

as applied to cloud systems is provided here for context:

1) smooth forecast and observedBTfields using a process

called convolution thresholding to identify objects;

2) calculate various object attributes, for each observed

and forecast cloud object;

3) match forecast and observed cloud objects using a

fuzzy logic algorithm and calculate attributes of

paired objects, such as intersection area and distance;

and

4) output attributes for individual objects and matched

object pairs for assessment.

The MODE process is highly configurable. For the

convolution thresholding process, users determine the

convolution radius, which defines the radius of the cir-

cular convolution applied to smooth the raw data fields,

and the convolution threshold, the value applied to the

smoothed field to define discrete objects. In addition,

weights for the object pair attributes, used for object

matching and merging, also need to be set.

The settings used in this study are tuned to best identify

individual forecast and observation objects, as well as

object matches between the forecast and observation

fields. These settings were chosen after testing multiple

combinations of convolution radii and attribute weights

(not shown) using 5-h HRRRx forecasts from 1400 and

2000 UTC 23 July. The 5-h HRRRx forecasts are used to

avoid potential errors associated with model spinup.

Based on the objects identified from the 5-h HRRRx

forecasts, a convolution radius of five grid points (15km)

is used for both the observed and forecast fields to allow

for the analysis of small-scale storms. This convolution

radius is consistent with a range from two to eight grid

spaces stated by Cai and Dumais (2015) as identifying

convective storm objects in ;4-km resolution radar im-

agery. The convolution threshold for this studywill be the

10th percentile of the BTs andwill vary based on the valid

time to account for the diurnal cycles.

For matched objects, MODE computes an interest

value that is a single number portraying the correspon-

dence between two objects. The interest value is a

weighted calculation of the object pair attributes, with

individual parameter weights assigned by the user. In-

terest values range from 0 to 1, with a perfect match

having an interest value of 1. The user-defined attribute

weights used during this analysis can be seen in Table 1.

Overall, this analysis prioritizes the distance and size

comparison between the objects, though other options

could also be used. The minimum distance (boundary_

dist) between objects has a lower user-defined weight

than the centroid distance (centroid_dist) to put more

emphasis on the displacement between the objects.

However, MODE-assigned centroid distance weight is

the user-defined weight multiplied by the ratio of the

objects’ areas. Therefore, the boundary distance between

objects has greater weight when the ratio between the

observation and forecast area is less than 0.75. The ratio

of the intersection area of objects to the observation/

forecast object’s area (int_area_ratio) has a lower weight

than the ratio of the objects’ areas (area_ratio) because

the int_area_ratio value can be artificially high when a

small object is fully consumed by a large object. As is

default in MODE, no object merging in the individual

observation and forecast fields is performed.

MODE COMPOSITE SCORE

MODE output provides multiple ways to interpret

and display forecast accuracy. For example, users can

TABLE 1. User-defined weights and brief descriptions of the object

pair attributes used in this analysis.

Object pair

attribute Weight (%) Description

centroid_dist 4 (25.0) Distance between objects’

‘‘center of mass’’

boundary_dist 3 (18.75) Min distance between

the objects

convex_hull_dist 1 (6.25) Min distance between the

polygons surrounding the

objects

angle_diff 1 (6.25) Orientation angle difference

area_ratio 4 (25.0) Ratio of the forecast

and observation objects’

areas (whichever yields

a lower value)

int_area_ratio 3 (18.75) Ratio of observation

(forecast) object to the

objects’ intersection area

(whichever yields

a higher value)
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compare the number and area of objects (Wolff et al.

2014) or distance between objects (Bytheway and

Kummerow 2015). For this study, however, a single

number to express both object size and distance be-

tween objects is desired. Thus, we developed a new

analysis metric called the MODE composite score

(MCS) to summarize this information. The MCS is an

area-weighted calculation using the interest values

from the MODE output:

MCS 5 �
NC

i51

Area
Observed Cluster

(i)

Total Area
3 Interest Value(i)

1 �
NO

j51

Area
Observed Object

( j)

Total Area
3 Interest Value( j) ,

(5)

where the total area is the area of the objects in the

observation field plus the area of the objects in the

forecast field that are unmatched to observation

objects. We use Nc and NO to represent the number

of observation clusters and objects, respectively.

Area weighting is used so that large objects are given

more weight than small objects. Since the maximum

centroid distance in this analysis is 200 km, any ob-

ject in the observation field will be matched and,

therefore, have an interest value, with a forecast

object that is within 200 km. However, each obser-

vation object and corresponding forecast object can

only be used once when calculating the MCS. To

calculate the highest possible MCS, object matches

are analyzed from the highest interest value to the

lowest. Object matches with an area ratio less than

5% are not included. Like the FSS, the MCS has a

range from 0 to 1. An MCS of zero indicates a fore-

cast that has no skill while an MCS equal to one

represents a perfect forecast.

The MCS calculation first examines clusters to ac-

count for multiple objects in the observation (forecast)

field that may correspond to a single object in the

forecast (observation) field. A cluster is defined as any

set of one or more objects in one field that matches any

one or more objects in the other field (Developmental

Testbed Center 2014). Clusters are defined as object

matches exceeding the interest value threshold, which

is set to 0.65 in this analysis. Objects can be components

of the same cluster if one or more of the observation

(forecast) objects match the same forecast (observa-

tion) object. An example of clusters can be seen in

Fig. 3. Clusters are identified by thick black lines sur-

rounding the same-colored objects. In Nebraska and

Kansas, the HRRRx forecast (Fig. 3, top left) has a

much larger object area than the GOES observations

(Fig. 3, top right). Since the two circled observation

FIG. 3. Example of (top) MODE objects created from (bottom) BT imagery from (left) the HRRRx

forecast at 2000 UTC 23 Jul 2015 and (right) GOES observations valid at 0100 UTC 24 Jul 2015. Black

contours around the objects represent clusters defined using a total interest threshold of 0.65.
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objects and the forecast object are identified as a cluster

(black line circling the objects), both observation objects

are equated to the single forecast object in the MCS

calculation. If clusters are not used when calculating the

MCS, the circled observation object in Kansas would not

match a forecast object, and its interest value in the MCS

calculation would be zero.

4. Methodology

Calculating the FSS and MCS requires the forecast

and observation data to bemasked based on a given BT

threshold. The FSS needs a mask to create the binary

yes/no field, and MODE needs a mask for the convo-

lution thresholding process. For this study, we employ a

percentile-based BT threshold when computing these

values. This is advantageous because it does not con-

strain the FSS and MODE to a specific time of day and

year based on differences in the cloud field. The 10th

percentile of the BTs will be used as the threshold for

each field so that the analysis focuses on the coldest

cloud tops. For the GOES-observed BTs, the 10th

percentile of the BT threshold ranges from 253.5 to

238.5K. Convective clouds account for 7.6%–9.3% of

the absolute cloud amount, depending on the season

(Chang and Li 2005). The observed (forecast) BT

threshold used during this study is obtained using ob-

served (simulated) BTs during the 10-day period prior

to and including the valid (forecast) time. The thresh-

old is computed for each hour of the day to account for

different cloud characteristics due to the diurnal cycle.

The threshold applied to the HRRRx-simulated BT

from a given HRRRx forecast must have the same

initialization time and forecast hour as the given

HRRRx forecast to account for any potential varia-

tions between different HRRRx initialization times.

The BT percentile thresholds for FSS and MODE are

computed over a domain covering 258–558N and 1108–
748W.

When calculating the MCS, MODE will search over

the full domain seen in the bottom images of Fig. 3,

except for the areas containing no data (shaded gray).

The full domain is used to identify the objects in order to

avoid complications associated with cloud objects

overlapping the boundaries of the smaller focus areas.

Clusters and objects are also matched in the full domain.

When calculating theMCS for the sectors seen in Fig. 1a,

the sector-specific MCS is calculated using the obser-

vation objects and clusters that are over half contained

within the sector’s domain. Forecast objects that do not

have a matching observation object in the full MODE

domain and are over half contained within the sector’s

domain will also be included in the sector-specific MCS

calculation. This would result in a lower MCS because

the total area in Eq. (5) is increased with the unmatched

forecast objects.

5. Results

a. Dimensioned metrics

1) MEAN ABSOLUTE ERROR

The overall error in the simulated BTs is analyzed

using theMAE.An example for the central plains sector

can be seen in the ‘‘quilt’’ plot shown in Fig. 4, with each

square showing theMAE for a specific HRRRx forecast

hour and valid observation time. Forecast hours increase

upward along the columns, while valid times increase to

the right along a row. This means that forecast hours

from an individual HRRRx forecast move upward and

to the right along a diagonal line. Therefore, this display

method allows for quick comparison of the forecast er-

rors between different HRRRx forecasts valid at the

same time as well as providing a comparison between

HRRRx forecasts based on time of day.

Intuition would suggest that the forecast skill would

decrease for longer forecast lead times due to error

growth, and therefore the MAE would increase upward

along a given column in Fig. 4. However, for this single

day, this is not always the case. For example, for a valid

time of 0000 UTC 24 July, the 12-h forecast from the

HRRRx forecast initialized at 1200 UTC 23 July has a

lower MAE (12.89K) than the 5-h HRRRx forecast

from the HRRRx forecast initialized at 1900 UTC

(MAE equal to 18.62K). Thus, the 12-h forecast has less

overall error than the 5-h forecast. Qualitative com-

parison of these forecasts in Fig. 5 agrees with the MAE

analysis. The 12-h forecast better represents the GOES

BTs than the 5-h forecast because the cold BTs are less

expansive along the line from Nebraska to Texas. An-

other example is the MAE for the HRRRx forecasts

initialized at 1900 UTC 23 July, where the 6-h forecast

valid at 0100 UTC 24 July is the less accurate than the

17-h forecast valid at 1200 UTC 24 July.

Comparing the MAE from different HRRRx initial-

izations valid at the same time can indicate which

HRRRx initialization will better represent a later

GOES observation. For the example in Fig. 5, the 1-h

forecasts from 23 July 2015 at 1200 and 1900 UTC have

MAEs of 6.00 and 9.52K, respectively. The 5-h forecast

from 1200 UTC 23 July 2015 also has a lower MAE

(9.19K) than the 5-h forecast from 1900 UTC 23 July

2015 (18.62K). Overall, the MAE for 6-h or earlier

HRRRx forecasts is moderately correlated (subjectively

defined as a correlation coefficient greater than or equal

to 0.5) with the MAE for a HRRRx forecast valid 5 h in
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the future. Therefore, it can be assumed that, when

comparing multiple HRRRx initializations valid at the

same time, the initialization with the lowest MAE will

better represent future GOES observations.

2) MEAN BIAS ERROR

The overall bias between the HRRRx-simulated BTs

compared with the GOES-observed BTs can be eval-

uated using the MBE. The biases in the north plains

sector can be seen in Fig. 6. The MBE demonstrates a

consistent bias among all HRRRx initialization times.

Specifically, the MBE for 0- and 1-h HRRRx forecasts

is positive by 1K or more, indicating a warm bias ini-

tially exists; however, as the forecast hour increases,

the MBE decreases. By forecast hour 3, a negative

MBE, or a cold bias, is observed in over half of the

HRRRx initializations. This indicates that the first 1–2

forecast hours do not have sufficient areal extent of the

cold BTs (less cloud cover than the observations). This

is consistent with Bytheway and Kummerow (2015),

whose work indicated the HRRRx requires an addi-

tional 1–2 h of spinup beyond the 1 h currently built into

the HRRRx.

Then, later forecast hours have too much cloud cover.

An example can be seen in Fig. 7 for the GOES obser-

vation at 1100 UTC 24 July 2015. The top-left image in

Fig. 7 shows the 1-h forecast at 1000 UTC 24 July 2015,

and the lack of cloud cover extent in Wisconsin and

southeastern Nebraska is apparent. The bottom-left im-

age in Fig. 7 presents the 4-h forecast at 0700UTC 24 July

2015, and too much cloud cover is produced over Min-

nesota and Wisconsin.

In addition to the HRRRx warm bias in the early

forecast hours due to model spinup, a secondary warm

bias can be observed during the night in association

with nocturnal convection. For forecast hours greater

than nine valid between 0500 and 1200 UTC 24 July

2015 (midnight to 0700 local time), the MBE is exclu-

sively positive. This indicates a lack of cloud cover

compared to the GOES observations and is due to the

HRRRx model dissipating the cloud cover too quickly

during the night. An example is shown in Fig. 8. The left

and center columns correspond to HRRRx forecasts

initialized at 1700 and 1900 UTC, respectively, with

individual panels valid at the GOES observation time

in the right column. Both sets of HRRRx forecasts

exhibit a cold bias at 0000 UTC 24 July 2015 (top row in

Fig. 8); however, by 0500 UTC (center row), both

forecasts exhibit a warm bias that continues to grow

during the next 4 h. Comparison of the images shows

that the warm brightness temperature bias is primarily

due to insufficient coverage of thin cirrus clouds sur-

rounding the thunderstorms and insufficient storm

coverage in the southern half of the region.

FIG. 4. Quilt plot of MAE as a function of HRRRx forecast hour and valid time for the

central plains sector. Each square indicates the MAE associated with a HRRRx forecast hour

(listed along the y axis), valid at a given time (listed along the x axis).
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b. HRRRx-simulated brightness temperature cold bias

A different measure of the simulated cold BT bias

can also be observed in Fig. 7. Overall, the simulated

BTs for deep convective clouds are colder than the

observations. This is even apparent for the cloud fea-

tures in the 1-h forecast (Fig. 7, top) despite the overall

warm bias, as indicated by the MBE of 3.06K, when

assessed over the entire region (Fig. 6). For example,

for the cloud system near the Nebraska–Kansas border,

the 10th percentile of simulated BTs is approximately

207.5K while the 10th percentile of the observed

BTs is about 211.3K. The simulated BTs along the

Minnesota–Wisconsin border are also colder than the

observations, with the 10th percentile of the simulated

(observed) BTs approximately 208.9K (214.1K).

Cumulative distribution functions (CDFs) provide an

alternative way of identifying the simulated cold BT

bias. Figure 9 displays the HRRRx-simulated BT CDF

in red for 1- and 5-h forecasts valid between 1200 UTC

23 July and 1200 UTC 24 July 2015, with the corre-

sponding GOES BT CDF plotted in blue. As seen in

Fig. 9a, the simulated CDFs for the 1-h forecasts are

larger for colder temperatures (BT , 230K) compared

with the GOES CDFs. The MBE is positive for 1-h fore-

casts because theHRRRxCDF is smaller than theGOES

CDF for temperatures warmer than 260K, indicating

more HRRRx pixels have a BT greater than 260K (fewer

cloudy pixels) compared with GOES. This again demon-

strates the HRRRx produces convective cloud tops that

are too cold and the areal extent is too small in the 1-h

forecast. For the 5-h forecasts, seen in Fig. 9b, the simu-

lated CDFs for BTs less than 270K are larger compared

with the GOES CDFs. This presumably larger extent of

cloud pixels results in an MBE that is negative.

This cold bias needs to be accounted for when

applying a masking BT threshold for FSS and MODE.

Therefore, separate thresholds are defined for the

GOES and HRRRx data to account for the bias. Each

threshold is the 10th percentile of BTs over the prior

10-day period described previously. The values of this

BT threshold based on the HRRRx forecast hour can

be observed in the box-and-whisker plot in Fig. 10. The

colored boxes extend the range of the middle 50% of

the 10th percentile BTs, and the black line represents

the median FSS. Each HRRRx box for a given forecast

hour indicates the 10th percentile BTs from HRRRx

initializations whose forecast for that given forecast hour

FIG. 5. HRRRx-simulated BT imagery from (top left) a 12-h forecast at 1200 UTC 23 Jul 2015 and (bottom left)

a 5-h forecast at 1900 UTC 23 Jul 2015, valid at 0000 UTC 24 Jul 2015 for the central plains sector. (right) GOES

observations at 2345 UTC 23 July 2015.
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is valid between 1200UTC 23 July and 1200UTC 24 July.

Each GOES box represents the 10th percentile BTs for

GOES observations corresponding to the HRRRx fore-

casts. The small difference in GOES BT for 0 and 24

forecast hours is due to fewer 0- and 24-h HRRRx fore-

casts being valid in this time frame. Figure 10 indicates

that the area of HRRRx cold, convective clouds at fore-

cast hours 0–1 is too small and then too large at forecast

hour 3 and greater. While the HRRRx BT threshold for

FH 0 is warmer than most BTs associated with deep

convection (Konduru et al. 2013), it will still be used in

this analysis as it is provided and any potential errors

should be assessed.

c. Neighborhood-based statistic

The neighborhood-based statistic used in this study is

the fractions skill score. The FSS can be used in two

separate ways to assess forecast accuracy. The first

method compares the FSS values for a given square

length or lengths of n grid points surrounding a grid

point. FSS values for varying square lengths can be seen

in the box-and-whisker plot in Fig. 11. Each box and

whisker represents 304 HRRRx forecasts with 0–12-h

lead times that are valid between 1200 UTC July 23

and 1200 UTC July 24. As expected, the FSS

increases with increasing square length (Roberts and

Lean 2008), since lower skill is associated with finer-

resolution NWP (Ebert 2009). For each square length,

the median FSS is lower for the central plains sector

than the other two sectors, presumably because the

localized cellular cloud features are more difficult to

accurately forecast in location.

FSS can also be used to identify the most skillful

forecast for features of a given scale L. This is accom-

plished by computing the FSS at a square length n,

where n equals L times 2 divided by the horizontal grid

spacing. To assess the HRRRx forecast accuracy for

features with L equal to 100 km, FSS would be calcu-

lated at a square length n of 66 pixels (;200 km) for the

3-km horizontal grid spacing HRRRx. An FSS of 0.5

at a square length n of 200 km indicates the 100-km

forecast feature is displaced by 100 km, with smaller

(larger) displacements having a higher (lower) FSS

(Mittermaier and Roberts 2010). Figure 12 displays the

central plain sector FSS at a square length of 66 grid

points, double the approximate size of cloud cover as-

sociated with single cellular convection (Heymsfield

and Blackmer 1988), for forecast hours 0–12. The

dashed line represents the uniform FSS described in

section 3b and notches in the box display a confidence

interval around the median. If notches from two boxes

do not overlap, there is 95% confidence the medians

differ (Chambers et al. 1983). The 1-h forecast has the

highest FSSs, with a median FSS of 0.932, and thus

exhibits the smallest displacement in features. Since

the notches for the 1-h forecast do not overlap with the

FIG. 6. As in Fig. 4, but for MBE for the north plains sector. Blue (red) represent HRRRx-

simulated BT imagery that is overall colder (warmer) than the corresponding GOES BT

imagery.
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0-h forecast, it can be stated with 95% confidence that

the 1-h forecast is more skillful at identifying the lo-

cation of the single cellular cloud features than the 0-h

forecast. Forecast skill then decreases from forecast

hour 1 and over half the forecasts are no longer skillful

by forecast hour 6, indicating the displacement error is

greater than the scale of the given features (100 km).

Because of the larger size of the cloud features in the

north plains and southeast sector (see Fig. 1b), FSS is

calculated at a square length n of 100 for an L equal to

150 km. The 1-h forecast has the highest FSSs, however

not at the 95% confidence level for the north plains

sector, and the median forecast is still skillful even at a

12-h forecast (not shown).

Another method for assessing HRRRx forecast ac-

curacy is by finding the spatial scale for which an

HRRRx forecast is deemed to be skillful (scalemin).

This occurs when the FSS at a square length n equals or

exceeds the uniform FSS described in section 3b. A

smaller value of scalemin indicates a forecast that is

more skillful, as the displacement errors are smaller

(Roberts and Lean 2008). The average scalemin for each

sector for FHs 0–12 can be seen in Fig. 13, with the

error bars representing the 95% confidence interval

around the mean. The value of scalemin is smallest for

early forecast hours, indicating smaller displacement

errors, and then increases for later forecast hours for all

sectors except the northern plains. The northern plains

scalemin increases before slightly decreasing and re-

maining constant after FH 5. We believe this is due to

the nature of the convection in the northern plains

sector. In this sector, the convection is large (Fig. 1b),

and thus displacement errors in the HRRRx cloud

features still result in overlapping with theGOES cloud

feature. This convection is also more strongly forced,

thereby making it more predictable. It is important to

note that scalemin will not identify the most accurate

forecast if multiple forecasts have the same scalemin.

Note that scalemin only indicates the FSS for these

forecasts are greater than the uniform FSS, not which

forecast has the highest FSS at the square length of

scalemin grid points. In these instances, FSS should be

calculated at a square length n that is equal to scalemin

to identify the most accurate forecast.

d. Method for Object-Based Diagnostic Evaluation

HRRRx forecast accuracy is assessed in this section

using MODE and the MCS from Eq. (5). A quilt plot of

FIG. 7. As in Fig. 5, but for (top left) a 1-h forecast at 1000 UTC 24 Jul 2015 and (bottom left) a 4-h forecast at

0700 UTC 24 Jul 2015 for the north plains sector.
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MCS values from the southeast sector is shown in

Fig. 14. Figure 14 shows there is no distinct pattern ev-

ident in the MCS values. Unlike the MAE and scalemin,

which usually increase with increasing forecast hour

(thus indicating decreasing forecast skill, particularly at

smaller scales), the MCS varies as the forecast hour in-

creases. This is especially noticeable for HRRRx fore-

casts valid at 0800 UTC 24 July 2015, where the MCS

equals 0.67 for a 6-h forecast, 0.39 for a 7-h forecast, and

0.56 for an 8-h forecast.

This variation of the MCS is considered a strength

compared to dimensioned and neighborhood statis-

tics like the MAE and scalemin. Unlike the di-

mensioned and neighborhood statistics, which mainly

just identify object displacement, the MCS can ac-

count for both object displacement between forecast

and observations as well as consistency between the

object shapes and sizes. The MCS is calculated using

the interest values from forecast and observation

objects that are matched. As may be observed in the

histogram plot in Fig. 15, these interest values are

correlated to both the displacement and size comparison

between the forecast and observation objects. Each col-

ored bar represents the number of occasions the corre-

lation value between the interest value and the attribute is

observed. The interest values are negatively correlated

with the distance attributes, indicating that larger dis-

placements between forecast and observation objects re-

sult in smaller interest values for matched objects. The

area attributes are positively correlated with the interest

value, indicating forecast objects that have the same size

or overlap observation objects produce larger interest

values. Therefore, as displacement between objects in-

creases with increasing forecast hour, as observed with

scalemin, the MCS can still be moderately large if the

forecast and observation objects are similar in size. In

these cases, HRRRx had appropriately developed

the extent and timing of the deep convection, but it is

displaced from the observation.

Given that the MODE configuration in this study re-

sults in interest values correlated with both object dis-

tance and area, twoHRRRx forecasts can have a similar

FIG. 8. HRRRx-simulated BT imagery at (left) 1700 UTC 23 Jul 2015 and (center) 1900 UTC 23 Jul 2015 for (right) valid GOES obser-

vations. Valid times are at (top) 0000 UTC 24 Jul 2015, (middle) 0500 UTC 24 Jul 2015, and (bottom) 0900 UTC 24 Jul 2015.
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MCS for different reasons. An example can be observed

in Fig. 16. Valid at 2300UTC 23 July 2015, the left image

is an 5-h forecast initialized at 1800 UTC 23 July 2015

and has an MCS of 0.79 while the right image is an 24-h

forecast initialized at 2300 UTC 22 July 2015 with an

MCS equal to 0.82. However, the forecast objects (red)

from the two HRRRx initializations differ compared

with the GOES observation objects (blue). The sizes of

the 5-h forecast objects appear more similar to the ob-

served objects; however, almost every object is displaced

spatially. More overlapping objects are observed with

the 24-h HRRRx forecast; however, the forecast and

observation object sizes are less similar. However, this is

not a weakness of the MCS; it is a result of the emphasis

placed on both the area and distance between objects in

the MODE configuration. As will be shown in the dis-

cussion, combining the MCS with metrics like the FSS

can help indicate if forecast error is the result of the

distances between objects.

Another noticeable occurrence in Fig. 14 is the re-

duction in the MCS between valid times at 0400 and

0600 UTC 24 July for each model initialization time

(e.g., column). This abrupt shift is primarily a result of

the size of the GOES observation objects. The MCS is

an area-weighted calculation and, therefore, can be

dominated by large objects. The GOES observation ob-

jects, colored by interest values, for 0400 and 0600 UTC

24 July 2015 can be seen in Fig. 17. The 0400UTCGOES

observation (left) has 41 748 object pixels, with one

object with a near-perfect interest value accounting

for 34 434 pixels. The 0600 UTC GOES observation

(Fig. 17, right) only has 2966 object pixels, since over

half of the large object seen at 0400 UTC is now out-

side the sector domain. Therefore, caution should be

used when employing the MCS to compare forecast

hours from a single model initialization that are valid

at different times, especially for sectors smaller than

the full MODE region.

6. Discussion

An example of using the four forecast accuracy

metrics jointly is shown in Fig. 18. Figure 18 displays

the value of each forecast metric for different forecast

hours and initialization times valid at 0100 UTC 24 July

2015 for the central plains sector. The forecast hours

range from 1 to 11.

According to the MAE, the smallest errors occur in

the 1-h forecast, with the forecast accuracy decreasing

thereafter. However, it is unclear, based on the MAE

alone, whether the diminished accuracy is due to cloud

BT errors or the displacement of the coldest BTs be-

tween the forecast and observation. This can be ob-

served by inspecting the MBE and scalemin metrics.

A small (large) MBE magnitude represents small

(large) bias in the BTs, while a small (large) scalemin

indicates a small (large) displacement in the coldest

BTs. The 2-h forecast has a higher-magnitude MBE

compared with the 1-h forecast. This indicates the

larger MAE is probably due to the colder HRRRx-

simulated BTs in the 2-h forecast compared with the

observations, since the MBE for FH 2 is negative. This

is further corroborated by scalemin, which remains

unchanged between FH 1 and FH 2 and therefore both

the 1- and 2-h forecasts are skillful at the same scale. In

addition, the MCS increases slightly between FH 1 and

FH 2. Since the MCS accounts for the BT bias when

defining objects, a slightly higher MCS indicates the

2-h HRRRx forecast is more accurate once the BT bias

is also considered.

Overall, combining MBE, scalemin, and MCS can

explain differences in the overall model error in-

dicated by theMAE between different forecast hours.

For example, the MAE for FH 7 is smaller than for

FH 8, indicating the 7-h HRRRx forecast is more

accurate when assessed using traditional dimensioned

FIG. 9. (a) BT CDFs for 1-h HRRRx forecasts (red) and corre-

sponding GOES observations (blue) valid between 1200 UTC 23

Jul 2015 and 1200 UTC 24 Jul 2015. (b) As in (a), but for 5-h

HRRRx forecasts.
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verification metrics. At FH 7, the MBE is greater in

magnitude and the scalemin is lower compared with

FH 8. Therefore, the differences in MBE and scalemin

indicate that the lower MAE for the 7-h HRRRx

forecast is the result of a smaller displacement in the

cloud features. The consistent MCS but larger

scalemin between FH 7 and FH 8 indicates the forecast

objects from FH 8 better represent the observation

objects; however, greater displacement is experi-

enced. An example of the MAE becoming smaller

with increasing forecast hours occurs between FHs 10

and 11. While this is partially due to smaller BT bias

and displacement errors, theMCS also indicates there

is a large difference in the MODE objects between

these two forecasts.

The MCS increases from 0.18 at FH 10 to 0.61 at FH

11 because a forecast object of 10 384 pixels is un-

matched in the 10-h forecast. This feature overOklahoma

and Arkansas in Fig. 19 (left) does not appear in the

11-h forecast (right), and thus the total area for Eq. (5)

is lower and the MCS is higher. In general, a large

increase in MCS can be indicative of two things. If a

large increase in MCS occurs between two forecast

hours with the same valid time and therefore different

HRRRx initializations, unmatched forecast objects

that appear in the forecast with the lower MCS are not

present in the forecast with the higher MCSs. If a large

increase in MCS occurs between two forecast hours

from the same HRRRx initialization and thus differ-

ent valid times, then large observation objects are

FIG. 10. Tenth percentile BT thresholds for GOES and HRRRx based on HRRRx forecast

hour. Each HRRRx box for a given forecast hour indicates the 10th percentile BTs from

HRRRx initializations whose forecast for that given forecast hour is valid between 1200 UTC

23 Jul and 1200 UTC 24 Jul. Each GOES box represents the 10th percentile BTs for GOES

observations corresponding to the HRRRx forecasts. The small difference in GOES BTs

for 0 and 24 forecast hours is due to fewer 0- and 24-h HRRRx forecasts valid in this

time frame.

FIG. 11. Box-and-whisker plot of FSS based on square lengths surrounding each pixel. Each

box and whisker represents 304 HRRRx forecasts with 0- to 12-h lead times valid between

1200 UTC 23 Jul and 1200 UTC 24 Jul.
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being matched with forecast objects at the forecast

hour with larger MCSs. Large decreases in MCS be-

tween forecast hours indicate large forecast or obser-

vation objects that are no longer being matched at the

forecast hour with smaller MCSs.

7. Conclusions

In this study, dimensioned, neighborhood, and object-

based statistical metrics are used to assess the accuracy

of experimental HRRRx cloud cover forecasts. This is

accomplished through comparison of observed and

simulated GOES 10.7-mm BTs for a 1-day time period

(23–24 July 2015) containing different modes of con-

vection across parts of the United States. Results are

used to investigate how each statistic conveys in-

formation about the model forecast accuracy. Overall,

during 23–24 July 2015, dimensioned statistics indicate a

warm bias existed in the HRRRx-simulated BTs for

forecast hours 0 and 1. This bias then shifts to a cold bias

for the next few forecast hours. Therefore, the HRRRx

initially does not have enough cloud cover before rap-

idly having toomany upper-level, cold clouds in this case

study. This forecast bias behavior is consistent with

current limitations in theHRRRx data assimilation. The

HRRRx is not yet fully cycling forecasts in successive

initializations and restarts with a 13-km analysis each

hour, which, when combined with the current 3-km ra-

dar reflectivity data assimilation, results in a spinup and

transition from slightly under- to overforecasting cloud

mass (convection) in the first few hours. Additionally,

the HRRRx does not currently assimilate any clear or

all-sky satellite radiances. Instead, the HRRRx assimi-

lates retrieved cloud-top pressure estimates, but is cur-

rently limited in their application to the building

(addition) of clouds only at low levels below 1200m

FIG. 12. Box-and-whisker plot of FSS for a 33-pixel square length surrounding each pixel for

the central plains sector. The dashed line represents a skillful forecast. Notches in the box

display a confidence interval around the median. If the notches from two boxes do not overlap,

there is 95% confidence the medians differ (Chambers et al. 1983).

FIG. 13. Square length a forecast contains useful information based on forecast hour for the

north plains (red), central plains (gray), and southeast (blue) sectors. Error bars represent the

95% confidence interval around the mean.
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AGL in an attempt to avoid an overall moist (relative

humidity and precipitation) bias during the model

forecasts. Clearing (removal) of clouds is applied at all

levels in the model (Benjamin et al. 2016). Finally, a

HRRRx model bias exists, most notably at longer

forecast lengths, which results in forecasts with toomuch

upper-level relative humidity and insufficient conver-

sion to upper-level cloud mass. Neighborhood statistics

indicate the displacement error between HRRRx-

simulated BTs and GOES-observed BTs is the small-

est for early forecast hours. Displacement between the

forecast and observations increases with increasing

forecast hour, and smaller-scale cloud features are more

difficult to accurately forecast.

The MAE is a useful method for assessing overall

model accuracy. However, it does not identify if

existing model error is the result of displacement be-

tween forecast and observation features or a BT bias

FIG. 14. As in Fig. 4, but for MCSs for the southeast sector.

FIG. 15. Histogram of the correlation between attributes and interest values. Each colored

bar represents the number of occasions the correlation value between the interest value and the

attribute is observed.
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between the forecast and observation fields. The

MBE can be used to assess the overall model bias

by indicating how the forecast field represents the

observation field.

A neighborhood-based statistic, the FSS, is useful

for identifying displacement errors between forecast

and observation features. By using the 10th percentile

of HRRRx-simulated BTs and GOES-observed BTs

for thresholding, respectively, when calculating the

FSS, the FSS can account for the bias in the HRRRx-

simulated BTs. The FSS can be utilized in two ways.

First, the displacement of a feature of a given scale L

can be evaluated by calculating the FSS using a

square with a length of n grid points, where n is L

divided by the grid resolution. However, this method

requires knowledge of feature sizes or a scale where

displacement is acceptable. Second, the FSS can in-

dicate the scale for which a forecast contains useful

information (scalemin). However, this method does

not indicate the best forecast if two forecasts have the

same value for scalemin.

A new object-based statistic called the MODE com-

posite score (MCS) was introduced in this manuscript.

The MCS is calculated using interest value output from

the Method for Object-Based Diagnostic Evaluation

(MODE). In this study, the weight of the area ratio

between objects is given will have a similar but slightly

higher weight than the displacement between objects

when calculating the MODE interest values. Therefore,

the MCS accounts for object size while still assessing the

object displacement in its calculation, making it overall a

better metric for accessing forecast accuracy. However,

it is the most difficult metric to implement, as it requires

MODE to calculate its results.

While each individual metric is useful for determining

accuracy, comparing statistical metrics can best assess

FIG. 16. Comparison of MODEHRRRx forecast objects and GOES observation objects for (left) a 5-h forecast

initialized at 1800UTC 23 Jul 2015 and (right) a 24-h forecast initialized at 2300UTC 22 Jul 2015 valid at 2300UTC

23 Jul 2015.

FIG. 17. (left) GOES observation objects (colored) from 0400 UTC 24 Jul 2015 and 1-h HRRRx forecast objects

(outlined) from 0300UTC 24 Jul 2015. (right) GOES observation objects (colored) from 0600UTC 24 Jul 2015 and

3-h HRRRx forecast objects (outlined) from 0300 UTC 24 Jul 2015.
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forecast accuracy. By comparing MAE, MBE, MCS,

and scalemin, it can be inferred whether a change in

forecast accuracy is due to changes in the bias between

the forecast and observation fields or a change in

the displacement between the forecast and observa-

tion objects. An unchanged scalemin and an increasing

(decreasing) MCS indicate a forecast with objects

that have a better (worse) representation of the

observation objects.

This study serves as a basis for identifying how model

accuracy can be quantified using different statistical

metrics. These metrics can be used by operational

forecasters in real time to determine which HRRR

model run may be the most accurate at depicting the

current cloud features and to improve short-term

weather forecasting. Real-time satellite-based verifica-

tion metrics can be found online (http://cimss.ssec.wisc.

edu/hrrrval/). Future work includes expanding the

verification system to also support the operational ver-

sion of the HRRRmodel and then using these statistical

metrics to assess the accuracy of bothmodels over a long

time period to determine if any systematic errors exist in

the model forecasts. The accuracy of the HRRR model

will be investigated during the summer and winter sea-

sons to provide a comparison between different weather

regimes. In addition, MODE will be used more exten-

sively to investigate object properties using the attribute

values identified in this study. Finally, work is also under

way to diagnose the cause of the cold bias that is often

seen in the simulated brightness temperatures in regions

containing ice clouds in the upper troposphere. Some

preliminary tests using other forward radiative transfer

models suggest that this bias is primarily due to the cloud

property lookup tables that are being used by the

CRTM. This issue will be addressed more thoroughly in

future studies.

FIG. 18. Central plains MAE, MBE, minimum scale forecast is considered useful based on

FSS, and MCS for forecast hours 1–12 valid at 0100 UTC 24 Jul 2015.
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